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Abstract. The variety of data types generated in manufacturing environments 
leads to a situation where data-driven approaches for analytical maintenance sup-
port no longer have to be limited to the equipment level, but rather can be ex-
tended to further perspectives. To this end, this paper examines how process min-
ing (PM) as an approach to extract knowledge about process-related relationships 
can be applied to support maintenance-related objectives. Our research is carried 
out by using exemplary data from a manufacturing company, where we succes-
sively take different data attributes from various source systems into account and 
apply selected PM techniques to demonstrate their applicability. As a result, we 
showcase how different insights can be provided, such as the analysis of a ma-
chine’s internal behavior, examination of error dependencies across multiple pro-
duction steps, determination of a machine’s relevance within the equipment net-
work or the discovery of bottlenecks regarding frequencies, cycle times and costs. 

Keywords: Data-Driven Maintenance, Maintenance Objectives, Process Min-
ing, Data Mining, Business Analytics 

1 Introduction 

In no other sector, more data are generated than in the field of manufacturing, ranging 
from process control and production status records to condition monitoring data of the 
overall equipment [1]. The variety of machine-generated data provides a vital asset for 
industrial maintenance, where approaches like condition-based maintenance (CBM) are 
applied for diagnostic and prognostic purposes to guarantee high reliability, low envi-
ronmental risks and human safety [2-4]. Such approaches primarily focus on the equip-
ment level and make use of data mining (DM) algorithms like clustering and classifi-
cation techniques [5]. However, due to the diversity of manufacturing data, there are 
also other methodical approaches which allow a consideration from more distinct per-
spectives. Such further perspectives could be provided, for example, by applying tech-
niques from the field of process mining (PM), where sequentially generated event data 
are utilized to extract hidden knowledge about process-related relationships and pat-
terns [6]. In this way, it possible to obtain insights that are no longer based only on an 
instance level, but rather extend to an inter-unit consideration, making this approach 
also interesting for maintenance questions beyond a scope on the equipment level. 
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While PM has already been applied successfully in various domains like transportation, 
healthcare, banking, retail or education [7], an application to the field of industrial 
maintenance is rather scarce within the current literature. For this reason, our paper 
aims to demonstrate its applicability within this particular context and addresses the 
following research question (RQ): 

RQ: How can process mining techniques be applied for knowledge extraction in 
manufacturing environments to support maintenance-related objectives? 

To carry out our research, we used exemplary data records from a manufacturing com-
pany, where we successively took data attributes from various source systems into ac-
count and applied PM techniques derived from the literature. Following this approach, 
the remainder of this paper is structured as follows: In Section 2, we provide the con-
ceptual background for both disciplines of interest. We then showcase the applicability 
of PM techniques to support maintenance-related objectives in Section 3. Finally, we 
draw a conclusion and give an outlook for further research in Section 4. 

2 Conceptual Background 

2.1 Industrial Maintenance 

Industrial maintenance can be understood as a broad field with many accentuations and 
facets. Therefore, a consideration of various maintenance definitions is required to de-
rive central objectives for which analytical approaches based on different data assets 
can provide a methodical contribution. 

In general, maintenance can be defined as a combination of all administrative and 
technical activities that are required for preserving the desired operating condition of 
the production equipment [8]. This statement can be extended by the British Standard 
Institution including the activities to restore the operating condition of production 
equipment [9]. Likewise, the guarantee on plant availability as well as part of the plant 
safety through resilient systems are connected to those objectives [10, 11]. Addition-
ally, the DIN EN 13306 includes the aspects cost efficiency, environmentalism and 
product quality [12]. [13] augments this list with the efficient use of resources, which 
have divergent manifestations. Thus, [14] distinguishes “main resources” and “other 
resources”. Conclusively, the Maintenance Engineering Society of Australia announces 
“(…) that maintenance is about achieving the required asset capabilities within an eco-
nomic or business context” [15] and specifies the optimization of production equipment 
as another aspect of maintenance. As a result, nine different core objectives of mainte-
nance can be extracted as listed in Table 1, which will be referenced in the following 
by referring to their respective objective identifier (OID). 

The actual maintenance execution is then carried out via different programs like 
time-based or data-driven concepts [2, 4], whereas our focus is on a data-driven support. 
Given the strong emphasis on the equipment level, the majority of data-driven concepts 
like CBM or predictive maintenance primarily concentrates on a particular unit of in-
terest and thus employs classical DM techniques from statistics and machine learning 
[5]. This includes, for example, cluster analyses to detect unusual machine behavior, 
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classifiers to determine heterogenous fault modes or artificial neural networks to predict 
a machine’s remaining useful life [4, 5, 16]. However, due to the diversity of generated 
data in manufacturing environments, it is also possible to establish further analytical 
perspectives. As specified by our research goal, this will be demonstrated by applying 
techniques from the field of PM. 

Table 1. Core Objectives of Industrial Maintenance 

OID Objectives References 

O1 Increase of machine lifetime [8-11] 
O2 Optimization of production equipment [15] 
O3 Retention or increase of product quality [12] 
O4 Minimization of machine downtimes [8-11] 
O5 Guarantee of safety [10] 
O6 Reduction of risk of failure and damage [8-11] 
O7 Efficient use of resources [10, 13, 14] 
O8 Retention of environment protection [10, 12] 
O9 Increase of cost efficiency [12-15] 

2.2 Process Mining 

PM is characterized as a young research area that has been researched in the information 
systems domain in the last decade and established as a connection between business 
process management on the one hand and data science/business analytics on the other 
hand [6]. In general, PM tries to gain, aggregate and visualize both company- and pro-
cess-relevant information by evaluating and analyzing great amounts of data in the 
sense of so-called event logs. Up to now, PM has been used in diverse fields like retail, 
education or healthcare, thus showing wide application areas. For example, while [17] 
and [18] use PM for the maintenance of web pages and their optimization and improve-
ment, [19] tries to achieve personalized learning based on students’ performance data. 
Furthermore, [20] show how PM can be used to identify deviations in healthcare pro-
cesses from existing policies and best-practices, whereas [21] show a possibility to use 
PM to discover the customer fulfillment process in a telecommunication company. 

Overall, there are three components of PM, each specialized on one remit. First, 
process discovery handles the creation of process models that are representative in be-
havior towards the underlying event logs. Hence, process discovery can be seen as the 
most relevant but also most difficult task of PM and offers many possibilities because 
of divergent process perspectives, such as the organizational or time-based perspective. 
By contrast, process conformance checking focuses the conformity of process models 
with the operative behavior observed within the event logs [6]. The aim of this com-
parison is to detect similarities, differences and deviations to evaluate “if actual pro-
cesses follow prescribed behaviors or rules” [22]. As a last type of PM, the extension 
of existing event logs by additional attributes is characterized as process enhancement. 
These attributes define new perspectives and analytical possibilities in and on the pro-
cess, whereby PM is opened for potential adjustments to reach subjective goals [6]. 
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3 Maintenance Support with Process Mining 

The following section demonstrates the applicability of PM towards the support of 
maintenance-related objectives. For this purpose, exemplary anonymized data from a 
manufacturing company producing car tires were used. The production process extends 
over various steps that are carried out on distributed machines. For the application of 
PM techniques, data from different source systems had to be brought into a standardized 
event log structure [6]. Here, we started with the minimum of required attributes at the 
lowest level and then successively considered additional attributes and levels to apply 
further perspectives. Relevant data were extracted from systems at different application 
layers, such as energy meters, programmable logic controllers, a manufacturing execu-
tion system (MES) or an enterprise resource planning system (ERP). For demonstration 
purposes, data samples from all systems were filtered and strongly simplified. Thus, 
the focus was primarily set on the overall feasibility instead of quantitively evaluating 
specific scenarios with regard to the current status and possible improvements. 

3.1 Starting with the Minimum of Required Data  

The minimum required data for PM is defined by the existence of two attributes: i) an 
activity that refers to an event class of interest and ii) a case ID that relates each event 
to a particular process instance. Since most PM tools also require a timestamp to ensure 
the event order, this attribute was integrated as well. With this basic data, it was possible 
to perform process discovery to investigate procedural structures at different levels [6]. 

At the lowest level, process activities can be defined by events derived from different 
machine components like logical elements, transistors or switching circuits. This allows 
to track consecutive states of a single machine and derive insights into a system’s in-
ternal behavior without considering the entire production process. Thus, irritants like a 
high number of skipped events in machines or increased operation time can be detected 
at an early stage to trigger proactive maintenance actions and prevent further damage. 

At a next level and this will remain the primary focus in the following considerations, 
process activities can be defined at the scope of the actual manufacturing process with 
all its steps and sub-steps mainly derived from MES data. This leads to multiple ad-
vantages as it becomes feasible to analyze the entire manufacturing setting regarding 
frequencies and durations of steps/sub-steps as well as variants, whereby one variant 
describes a specific path through the production process [23]. As a result, bottlenecks, 
time per step or variant and many other process statistics can be evaluated. 

In an analogous manner, it is also possible to examine event data generated by the 
execution of maintenance tasks. This allows to reconstruct and critically analyze the 
procedures of operational maintenance activities. However, since most maintenance 
tasks are still executed manually without leaving extensive digital traces - as in the 
particular case where only scarce information could be extracted from the ERP - the 
focus will remain on the investigation of existing machine and production data. 

Subsequent to the discovery of process structures, the results can be used to realize 
the process conformance checking, following [6]. As already stated, this allows to ex-
plore deviations and commonalities between the intended/documented processes on the 

1859



one hand and the real as-is processes on the other hand. Moreover, it is possible to 
determine if specific process steps exceed predefined control limits like excursion rates, 
cycle times or a predefined amount of process instances to run on one single machine. 

Overall, in terms of the maintenance objectives regarding machine lifetime (O1) and 
equipment optimization (O2), all those insights can be used to reveal unintended be-
havior of the production process at different abstraction levels and thus help to schedule 
maintenance activities proactively to prevent machine failures. Furthermore, this me-
thodical approach offers the possibility to validate performed maintenance actions and 
their impact by comparing the process performance before and after an intervention. 

3.2 Including Machine Attributes to Enrich Process Activities 

While in the preceding scenario the activities of the production process were primarily 
considered in isolation, the database can further be enriched with resource information 
in the sense of process enhancement. Therefore, the process steps to be explored are 
subsequently not only specified by the production activities, but also by the machines 
performing those activities. Thus, after the process discovery, it can now be observed 
that all process steps consist of activity/machine-compositions, as shown in Figure 1, 
where the first step “PSc3e047c7” is performed by the machine “S_636gt”. 

 

Figure 1: Simplified Production Process with Machine Data (Recorded in Disco) 
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With this representation, the workload of the machines can be expressed by frequency 
numbers and different color schemes indicating the different intensities. Thus, it is pos-
sible to detect machines with high workloads that are possibly more exposed to contin-
uous stress. Those machines often occupy central positions within the production flow 
(like in the first, third, fourth and sixth step in Figure 1) and therefore require more 
attention to proactive maintenance, since a failure may disrupt the entire process (O4). 

Similarly, the distribution of the workload between different machines performing 
the same production step can be examined. For example, the second step is executed 
by four different machines in parallel. However, while machine “S_gjyx1” was running 
296 instances, unit “S_x15ke” was only executing 239 instances. In combination with 
scheduling information, these insights can be used for an optimal allocation of process 
instances to machines, with the goal to equalize the number of processed products (O2) 
and thus to lengthen the machines’ lifetime (O1). 

Moreover, by not only focusing on a single activity level but also considering their 
transitions, different process variants can be evaluated in terms of distinct production 
paths. Here, the activity/machine-composition offers the advantage to gather insights 
about sequential machine interdependencies. As such, it can be assessed, for example, 
whether some incidents primarily occur within process paths where certain machines 
were previously involved. This can also be relevant for quality assurance (O3), where 
specific machine combinations throughout the production flow may lead to different 
quality levels of the final product (c.f. Section 3.5). 

Another perspective can be provided by analyzing durations of activities and transi-
tions using timestamps instead of solely concentrating on frequencies. Analogously, 
time attributes can directly be incorporated in the process model to detect activity/ma-
chine-combinations with high cycle times in terms of bottlenecks and inefficiencies 
(O2). Simultaneously, exceptionally long cycle times are an indicator for faulty ma-
chine behavior to trigger further inspections and respective interventions. 

3.3 Implementing and Expanding the XES-Lifecycle Extension 

The exploration of failure events within the process is another relevant facet of mainte-
nance support. For such a consideration, the given event log requires an additional at-
tribute to document the production status of each step. 

This can be implemented by employing the XES-Lifecycle Extension as introduced 
by [24], which provides predefined values like “start”, “complete”, “suspend”, “re-
sume” or “pi_abort”, with the last value defining an interruption of the current process 
instance. It is conspicuous though, that with these values only the possibility is given 
to analyze interrupting machine errors and suspending errors. However, with regard to 
errors that do not interrupt the production process, this framework requires an exten-
sion. Thus, we created an additional state, called “fail_complete”, to describe the com-
pletion of a process step while errors take place in execution. This allows to focus on 
failure events in the process analysis and generates high profit for subsequent analysis, 
such as tracking overall failure times. For example, the PM tool Celonis allows to define 
domain-specific key performance indicators (KPI) that can be monitored live during 
process execution. By using this feature in combination with the newly created state, 
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KPIs for the number and the ratio of failure events in a single production equipment 
can be defined. This live-monitoring of the production process combined with the his-
torical process data gives some indication of past and future machine behavior. For 
instance, this enables to determine the average number of internal errors until the pro-
cess instance is finally interrupted by a serious error (O4). 

Moreover, also the duration of failure events is of high relevance for maintenance. 
At this point, there are multiple ways to achieve the documentation of these downtimes. 
Enhancing the event log by inclusion of an additional attribute containing these data 
represents one way to accomplish this goal. However, this approach contradicts with 
one of the fundamental principles of PM, as the downtimes exhibit a direct reference to 
the processing machine and not to the activity. Another option arises when saving the 
desired information in an additional event log defining the production equipment as 
events. But this leads to a loss of the process perspective. Therefore, it’s necessary to 
calculate the downtimes by using existing data and to add another dimension to the 
predefined time perspective. Based on the assumption that the downtime is calculated 
by the timestamps of the failure and the reactivation of the machine, the dead times can 
be computed by using the pseudocode depicted in Figure 2. In contrast to the previous 
approaches, this allows to view dead times directly in the process and to analyze them 
in case specific or cumulative way by using all advantages of process discovery. 

 

 

Figure 2: Pseudocode for Calculating Downtimes 

Apart from this, dependencies between different errors in the process are focused. For 
the discovery of such dependencies, different techniques from statistics and machine 
learning can be used, such as support vector machines or logistic regression [25]. Ex-
emplarily, we use the logistic regression that allows to receive direct failure probabili-
ties. Transferred to the present context, this enables to determine if the probability for 
a specific machine documenting an error increases, when another machine earlier in the 
process also documented an error. It could be found, for example, if station “S_636gt” 
documents an error, then station “S_dvwfz” is 2.56 times more likely (ܤ = Ͳ.ͻͶ, 𝑝 <Ͳ.ͲͲͳ) to also write an error in reference to the state in which station “S_636gt” would 
not have documented one (Χଶሺͳሻ = ʹ͵.ͺͶ, 𝑝 < Ͳ.ͲͲͳ). In this way, failure dependen-
cies in the process can be revealed and provided for decision support by directly visu-
alizing this information within the process model. 

1 # get_breaktime:

2 n = max(#
CaseID

)

3 FOR i=0 TO n-1 DO

4 current_machine = #
Machine

(e)[i]

5 current_LC_transition = #
LC
(e)[i]

6 IF current_LC_transition == "stop" THEN

7 FOR j = i+1 TO n - 1 DO

8 next_machine = #Machine(e)[j]

9 IF current_machine == next_machine THEN

10 #
Starttimestamp

(e)
j
- #

Endtimestamp
(e)

i

11 END IF

12 END FOR

13 ELSE

14 continue

15 END FOR
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This particular scenario illustrates the successful combination of PM and DM tech-
niques. PM first aims at uncovering sequential patterns to identify process complexities 
and distinct paths. This allows the detection of discrepancies between the desired and 
actual process behavior, for example, in the form of anomalous paths, bottlenecks or 
deviating process performance. Once such discrepancies are detected, DM techniques 
can then be used to identify non-local and multi-causal effects that possibly span over 
multiple process steps [26]. Referring to machine failures during the execution of pro-
duction processes, it is possible to determine patterns which classify a specific sequence 
of error events. Thus, the option arises to predict the breakdown of a machine based on 
the error events that occurred in previous stages, which allows to interfere in the process 
at the right time and to perform tasks to prevent upcoming machine failures (O1, O4). 

3.4 Adding the Organizational Extension 

Another perspective provided by PM is the organizational view, with the goal to extract 
and visualize social network structures between different entities involved in a process 
environment [7]. In this context, a social network consist of i) nodes representing or-
ganizational units and ii) relationships representing the connections between those units 
[6]. Transferring this approach to the current setting, the first part can be defined by the 
production equipment, whereas the second part is characterized by ingoing- and out-
going connections according to the manufacturing process. To achieve this kind of net-
works, the XES Standard defines the “organizational extension”, encompassing the 
name or the ID of the respective operator in the event log [24]. 
 

  

Figure 3: Network of Production Equipment (Recorded in ProM) 

Besides the creation of a visual network (c.f. Figure 3), the machines can additionally 
be assessed according to their importance within the network using centrality measures. 
Following this, the most valuable machine in the network is characterized by the highest 
number of connectors [27]. Focusing on the reduction of risk and failure damage (O6), 
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it can be concluded that theoretically station “S_y9tj7”, positioned in the center, is of 
high relevance for the production process, as its failure may influence different other 
machines which could lead to a high capacity loss. Nevertheless, this approach only 
indicates a high equipment relevance based on relations to other production equipment, 
whereas ramifications of failures, like emission of harmful substances, are not included 
in this risk estimation. 

3.5 Integration of Domain-Specific Attributes 

When executing production steps, machines usually consume different input resources 
like energy and materials while simultaneously producing waste and other by-products. 
As such, the event log can further be enriched with attributes in terms of measured 
values and specific KPIs to illustrate the resource flow at a machine and process level. 

Data attributes can be gathered from various systems, as in the current case where 
power consumption was measured via energy meters and material flows were collected 
from the MES. However, event characteristics are generally not limited to those as-
pects, but rather can extend to any other subject of interest, such as further environmen-
tal indicators [28] or quality-related attributes [29].  

The integration of attributes can be done in two ways: On the one hand, it is possible 
to simply add them to the event log by appending it as a property to the corresponding 
events. On the other hand, an explication of an additional extension to the XES-Stand-
ard is possible to achieve a certain level of standardization by specifying concrete def-
initions of the attributes in the extension definition. This also permits to create domain-
specific extensions for a complete set of properties, which then can be in the center of 
further analysis with a predefined prefix for their identification [24]. 

Once the event log is enriched with further attributes, they can be examined at the 
different levels addressed previously, i.e. for i) the overall production process, ii) indi-
vidual production steps, iii) individual machines, iv) activity/machine-combinations, or 
v) distinct paths. In this way, it is possible, for example, to monitor resource efficiencies 
(O7), but also to track material flows in terms of waste and harmful materials (O5, O8). 

In addition, it is also advisable to not only consider each attribute in a univariate 
manner, but rather to analyze them in combination with each other along the entire 
manufacturing process. Here, the combination with DM techniques proves to be helpful 
again, where each attribute either serves as a target variable of interest or as an input 
feature to predict the respective output [26]. This makes it possible, for example, to 
determine the relationship between the final product quality, measured at the end of a 
process, and the machine and process attributes at each individual production step (O3).  

3.6 Evaluating the Cost Efficiency 

In a production process, there are many different types of costs that need to be regarded 
when evaluating the overall cost efficiency. Therefore, an individual cost model needs 
to be applied to determine which parameters to include to the event log. In the given 
context, the costs for one process activity 𝑒 in the set of all process activities 𝐸 will be 
calculated with #்𝐶ሺ𝑒ሻ =  #𝐸𝐶 ሺ𝑒ሻ ∗ #௧ሺ𝑒ሻ ∗ 𝐸𝑃 + #𝑀𝐶 ሺ𝑒ሻ with 𝑇ܥ as total costs of 
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event 𝑒 ∈ 𝐸, 𝐸ܥ and 𝐸𝑃 as energy consumption and its current price, 𝑡 as duration and 𝑀ܥ as material consumption. When enriching the event log with the not yet included 
(external) data, it is noticeable that, due to the event centric focus of PM, there is a loss 
of information or costs regarding the event transitions of the process model. These tran-
sitions also need to be regarded as they are in the time or frequency perspective of a 
process. It is conspicuous that there are costs like the energy consumption in standby 
mode of a machine, required energy to get in production ready state or the consumption 
for cooling down in the time between two process steps in a production process. In 
conclusion, there are costs right before and after executing a specific task that are not 
yet regarded by an event centric focus. By further adding the cost calculation at the start 
and end timestamp of a process activity, possibilities arise to determine these unregis-
tered costs and to provide a cost perspective of the process. Therefore, the costs before 
activity execution can be determined by subtracting the costs at the start of an event #ௌ௧𝑎௥௧𝐶௢௦௧௦ሺ𝑒𝑖ሻ from the costs at the end of the previous executed event #𝐸௡ௗ𝐶௢௦௧௦ሺ𝑒𝑖−ଵሻ, 
whereas the costs after execution are determined by the subtraction of all cost attributes 
of an event: 𝑐𝑎𝑒ሺ𝑒𝑖ሻ =  #𝐸௡ௗ𝐶௢௦௧௦ሺ𝑒𝑖ሻ − #𝐴௖௧𝑖𝑣𝑖௧𝑦𝐶௢௦௧௦ሺ𝑒𝑖ሻ − #ௌ௧𝑎௥௧𝐶௢௦௧௦ሺ𝑒𝑖ሻ. Given 
these attributes, it can be stated that the overall costs of a transition 𝑐𝑡 between events 
can be calculated by adding the pre-execution costs of an activity to the post-execution 
costs of the activity before that: 𝑐𝑡ሺ𝑒𝑖 , 𝑒𝑖+ଵሻ = 𝑐𝑎𝑒ሺ𝑒𝑖ሻ + (#ௌ௧𝑎௥௧𝐶௢௦௧௦ሺ𝑒𝑖+ଵሻ − #𝐸௡ௗ𝐶௢௦௧௦ሺ𝑒𝑖ሻ) | 𝑒𝑖 ≻  𝑒𝑖+ଵ (1) 

In conclusion, a cost perspective on the process can be realized that allows to gather all 
information available through process discovery and to achieve a long-term validation 
and possible predictions of future production costs. Therefore, cost referred bottlenecks 
and cost intensive areas of the process can be identified (O9). Moreover, by focusing 
on process variants, optimization potentials can be realized, e.g. by distributing process 
instances to less cost-intensive machines (O2). 

4 Conclusion and Outlook 

The goal of this paper was to demonstrate the application of PM techniques in manu-
facturing environments to support maintenance-related objectives. Using successively 
more data attributes from various source systems at different application levels, it could 
be shown how insights from multiple perspectives were achievable. This includes, for 
example, i) the discovery of a machine’s internal behavior by tracking its consecutive 
states, ii) the identification of error dependencies across multiple production steps by 
combining PM with DM techniques, iii) the determination of a machine’s relevance 
within a network by using organizational mining, iv) the examination of bottlenecks by 
analyzing different process levels (e.g., process paths vs. single activities) with regards 
to time, frequency and cost indicators, or v) the evaluation of a machine’s input and 
output efficiencies based on domain-specific attributes. Consequently, all maintenance 
objectives (ranging from aspects like lifetime extension and equipment optimization to 
resource efficiency and quality assurance) could be addressed to some extent. 
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While the focus at this stage was mainly on the demonstration of the overall applicabil-
ity and feasibility, future work will be devoted to a more detailed examination in the 
sense of a quantitative evaluation. As such, it is planned - in accordance with given 
confidentiality restrictions - to provide more details about the data samples in each 
analysis scenario and then quantitatively discuss the results of applied approaches. For 
example, such an in-depth consideration could be based on a large number of summary 
statistics and indicators on the recorded behavior of machines and processes, which are 
then compared with the expected results from technical experts to evaluate how the 
generated insights can be used for better decision support. 

Likewise, further work will place greater emphasis on the necessary data preparation 
steps, as this was largely ignored in the current study. For demonstration purposes, dif-
ferent data samples were filtered and strongly simplified. However, the integration of 
different data attributes from heterogenous systems into a standardized PM event log 
structure has to be considered as a challenging task [6]. For example, most of the in-
volved manufacturing systems provide required event data only as by-products, which 
then have to be selected and merged at an adequate abstraction level on which a process 
flow is to be analyzed. Similarly, specific event attributes like energy or material con-
sumption are often not recorded by default for each individual machine at each single 
production step. The challenge is therefore to assign such attributes in the event log 
according to their cause, thus enabling more fine-grained analyses. Consequently, those 
and many other aspects still remain as data preparation challenges [30], that may con-
siderably hinder a successful PM application. However, once these steps are taken, our 
study showed a possible direction for how PM can provide multi-perspective insights 
to support decision making in maintenance as well as manufacturing settings in general. 
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