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Abstract. Recently, traditional quality assurance methods, which often require 

human expertise, have been accompanied by more automated methods that use 

machine learning technology. These methods offer manufacturers to reduce error 

rates and, consequently, to increase margins as well. In particular, predictive 

quality assurance (PreQA) allows to minimize expenses by feeding back 

information from product returns and quality checks into the early product 

development. However, PreQA requires detailed information about previous 

quality problems which is not always readily available in a structured form. In 

this paper, we therefore discuss the potential of leveraging initially unstructured 

information in the form of images, taken either during quality checks or by 

customers when returning a product, to the end of product quality improvement. 

We furthermore show how this might be realized in practice using the case of 

fashion manufacturing as an example. 

Keywords: quality assurance, image analysis, data science 

1 Introduction 

Manufacturers strive to avoid product defects as they have the potential to diminish 

margins and are detrimental to their public image. Traditionally, quality problems have 

been combatted by quality checks during production to avoid defective products 

slipping through to the customer and manual analyses of problem causes to avoid the 

initial bad decisions that might lead to quality problems further down the road [1]. 

Recently, these prevalent methods, which often require some form of human expertise, 

have been accompanied by more automated methods that use machine learning 

technology. In particular, the idea of predictive quality assurance (PreQA) [2] allows 

to minimize expenses due to product failures by feeding back information from product 

returns and quality checks into the early product development phase where then data-

based predictions are made. 

Predictive quality assurance requires as detailed information as possible about 

previous quality problems. However, quality checks are laborious and, for the case of 

product returns, while information is provided “for free” by the customer, it is often 

also very imprecise and coarse. A common situation is that of a customer taking 
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photographs of her defective product to point out the respective problems, but not using 

any kind of systematic annotation. This is the case for online purchases in particular as 

there is no sales staff to discuss issues with. 

In such cases, information is available but not in a structured form so that it cannot 

be immediately used for machine learning purposes. To retrieve the knowledge hidden 

in photographs, structured information has to be mined from them. In this paper, we 

will discuss the potential of leveraging the initially unstructured information in the form 

of images, taken either during quality checks or by customers, to the end of product 

quality improvement, and how this might be realized in practice. The latter is 

demonstrated using the case of fashion manufacturing as an example. 

After reviewing previous work in the next section, we summarize the predictive 

quality assurance approach [2] and discuss the role of unstructured data in that context 

(Sec. 3). In Sec. 4, we then outline an application scenario in fashion industry and show 

how a processing pipeline can use state-of-the-art image processing and vision methods 

to mine detailed information about product defects from photographs of different 

garments. First results presented in Sec. 5 underline the feasibility of the approach in 

practice. We conclude with an outlook towards future work on the topic (Sec. 6). 

2 Previous Work 

Existing literature overlapping with the topics of this paper comes from the domains of 

quality assurance, machine learning and computer vision. 

2.1 Machine Learning for Quality Improvement 

Applying machine learning to quality assurance is not a recent idea but has been around 

for a few decades. Early approaches however used to be rather passive in nature, 

focusing on the mere prediction of quality-related problems based on features and 

properties of a product and its production process. Examples include predicting whether 

a particular software component is error prone based on source code properties [4], or 

forecasting product quality in injection molding processes [5] and semiconductor 

manufacturing [6] given the manufacturing parameters. While such predictions can 

help to avoid producing low quality products they do not automatically lead to the 

production of higher quality products – for that, optimization approaches are necessary. 

E.g., given a model predicting the quality of an injection molding process in terms of 

properties of the resulting product, the process parameters may be tweaked 

automatically using a genetic algorithm [7]. Such pure optimization approaches have 

recently been accompanied by assistance systems which do not only allow to tweak 

existing products but which can already assist their users during product design and 

which allow the transfer of knowledge to completely new products instead of being tied 

to a specific process for a specific product. In particular, the predictive quality assurance 

architecture [2] provides a framework to implement such an assistance system. None 

of these existing approaches have however demonstrated how unstructured information 
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about product quality problems can be mined and then used for an eventual quality 

improvement, so far. 

2.2 Image Processing and Computer Vision 

Research in image processing and computer vision has produced methods which are 

relevant to this work in two ways. First, there is a history of methods with a similar 

objective that use image processing to detect defects on objects either during 

maintenance or quality checks in production [8]. Second, for our proposed processing 

pipeline (Sec. 4), we transfer algorithms originally designed for different tasks such as 

people detection and pose estimation to serve a new, additional purpose as sub-steps in 

the mining of defect information from images. 

For identifying defects and failures from images, there are both supervised methods, 

i.e. methods requiring a labeled data set to be trained on [9-11], and unsupervised 

methods [12-14], purely based on detecting statistical irregularities. Some aim at 

generic anomaly detection [14] while others have fixed application domains ranging 

from wood boards [13] to steel rails [11] to textiles [10]. The vast majority of those 

methods assumes their input images to be of a very regular nature, only showing a 

relevant patch of an object’s surface texture, not the whole corresponding objects. This 

requires images to be taken under pre-defined conditions either automatically using 

calibrated equipment at a production site, e.g., at a fixed distance, angle and under pre-

defined lighting conditions, or manually by an instructed expert. Consequently those 

approaches cannot easily be transferred to the much more irregular photographs taken 

by customers using varying hardware and showing different views of a full object or 

even just showing drastically varying complex objects such as different garments. 

We post-pone the discussion of related work originally developed in other contexts, 

which we propose for different processing steps, to Sec. 4 where we will introduce our 

defect mining methodology. 

3 Background 

In this section we first summarize the main ideas behind the predictive quality 

assurance architecture [2] before going on to discuss the role and benefits that image 

data may provide in this context. 
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3.1 Predictive Quality Assurance 

 

Figure 1. Predictive quality assurance: Data about products and the problems they exhibited 

previously is collected throughout the depicted process from conception to sales. The predictive 

quality system analyzes this data to gain insights which are fed back into the early process steps. 

Predictive quality assurance (PreQA) uses historical data about manufactured goods 

and the defects they exhibited to eventually increase the quality of future products. At 

the core of the method are classification algorithms which are trained to predict the 

expected occurrence rates for different types of product defects, given a structured 

description of product features as input. In particular, predictions can also be made 

given only a subset of all possible features so that the method can already be applied in 

early stages of product development where not all existing features have been specified 

yet (Fig. 1). Using these predictions, issues such as bad product designs can be 

identified early-on. An integrated assistance component then allows to correct adverse 

decisions made about the product by suggesting alternative options with significantly 

lower expected probabilities of failure. 

3.2 The Value of Image Data for Quality Assurance and Improvement 

As PreQA is based on classification algorithms, the availability of a high quality dataset 

to train these algorithms on is crucial to the method’s success. This not only concerns 

the level of detail found in the specifications of existing products, which should 

comprise a large set of expressive features, but furthermore especially the descriptions 

of previous cases of defect. 

Using the case of fashion industry as an example, product defects can be of 

drastically varying nature: holes, stains, fragile seams, broken zippers, lost buttons, 

bleached colors or strong pilling all are reasons for a customer to return a piece of 

clothing. But they have very different causes. A bad material mix may affect pilling 

behavior but arguably has little influence on oil stains caused by a production machine. 

A weak thread can lead to loose buttons but will not cause problems with a zipper. 

Thus, if different types of failure are clustered together into a single class of defect, 

valuable potential for a detailed analysis and a subsequent reliable prediction and failure 

avoidance is lost irretrievably. 

Unfortunately, when returning an item bought from a store due to a defect, customers 

are usually required to specify their reasons for doing so only in a very coarse way. This 

is because customers, on one hand, cannot be expected to analyze the specific nature of 
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product failures as they are no domain experts and, on the other hand, because it would 

take additional time and lead to increased frustration at the customer’s end. While the 

provided coarse defect information can give first insights into problems connected to 

specific products the imprecision makes it difficult to connect particular defects to 

individual product features using machine learning. This is reflected in the fact that the 

prediction confidence of PreQA is usually lower for unspecific defect labels while 

being higher for more specific ones [2]. 

Attaching unstructured data in the form of images to product return cases offers a 

way to mitigate this problem: A picture is worth a thousand words. Using photographs, 

we can generate detailed descriptions of situations in the fraction of a second. Taking a 

picture of her defective item takes the customer less effort than filling out a detailed 

return form by selecting appropriate defect descriptions from dropdown lists but still 

encodes virtually all information about the occurred problem into a compact visual 

description. The same applies to quality checks of final products performed in 

companies. While in this case the staff is specialized and experienced in assessing 

defects, just taking a photograph could significantly decrease the time required for 

checks which would allow a denser sampling of the full production yield given the same 

time budget and increase the quality of the items sold by itself. 

3.3 Manual Visual Inspections in Fashion Companies 

An automated analysis of images showing defective products should ideally produce 

output which is identical to the one expected from a human expert assessing the case  

manually. We will thus briefly describe the way visual inspections proceed for the 

exemplary case we are dealing with in this paper, the fashion industry. 

While there are some industrial norms for quality checks in the form of ISO or DIN 

standards in clothing industry they mainly concern apparel which is used in safety-

critical contexts. When it comes to quality checks of casual clothing, each company 

defines its own inspection protocols to follow. Nevertheless, there are certain best 

practices performed in most companies. 

 

Figure 2. Typical defect zones used in visual garment inspections, according to [19] 

First, a list of possible defects is defined. These potential quality flaws are then 

considered one by one during visual inspections. Second, garments are commonly 

subdivided into different zones called e.g., zone A to C or I to III, as depicted in Fig. 2. 
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These zones often correspond to different levels of visibility, and consequently also 

severity, of defects. Usually, the highest severity is assigned to parts visible when 

presenting the product in a store (Fig. 2, zones I), the second highest to areas more 

visible when wearing it (Fig. 2, zones II) and so on. Third, each company defines 

combinations of defect types and defect locations, in terms of zones, which lead to the 

rejection of a piece of clothing or its re-use in outlet stores, respectively. 

4 A Processing Pipeline for Mining Textile Defects from Images  

 

Figure 3. Image processing pipeline to mine details about product defects from images for the 

case of fashion industry. Steps are labelled by the order in which they are described. 

We will now outline how computer vision techniques can be used to compose a 

processing pipeline to mine textile defects from photographs of pieces of clothing. An 

overview is shown in Fig. 3. It is inspired by the best practice approaches used in 

companies (Sec. 3.3) on one hand and the requirements set by machine learning 

algorithms on the other hand. The input to the pipeline is a photograph of a defective 

garment. No additional annotation is required. The output of the pipeline consists of a 

defect description regarding three properties: the type of the defect, its location with 

respect to the garment and a severity rating depending on the type and location which 

can be used to decide how to proceed further with the specific item. The pipeline 

consists of seven processing steps. For each of these steps, we will describe which 

output they compute, why they are necessary and which existing methods can be used 

to implement them. 
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4.1 Foreground Segmentation 

Customers and customer care staff may take photographs of defective products in front 

of varying backgrounds. The first processing step therefore consists of segmenting the 

actual object of interest from that background (Fig. 3, step 1). In technical terms, each 

pixel of the original image is labeled as either belonging to the piece of clothing or to 

the background. This step is necessary for computing a more detailed segmentation of 

the object into different zones later on (Fig. 3, step 5) and also provides the precise 

areas of the image where defects can be expected to be localized later on (Fig. 3, step 

6). There are several approaches which deal with this problem in different contexts, for 

example from the domains of image retrieval [15] or semantic scene description [16]. 

Some of them work best on photographs in which the clothing is worn by a person as 

they are based on detecting human features in a pre-processing step [15] while others 

are solely based on segmentation, such as the method by Borras et al. [16], and could 

therefore be applied in a more general setting. 

4.2 Landmark Detection 

In the second step, different semantic landmarks are detected (Fig. 3, step 2). Those are 

important image locations corresponding, e.g., to the end points of sleeves or of the 

collar. The output of this computation step is a list of detected landmarks – which may 

also correspond to only a subset of all known types of landmarks, depending on the 

type of garment and the specific view – and of their corresponding positions with 

respect to the image. The landmarks allow for a subsequent computation of 2D 

bounding geometry that then serves as guidance for the full semantic segmentation of 

the object (Fig. 3, step 5). Fashion landmark detection constitutes a very new area of 

research and has been introduced only recently by Liu et al. [17]. Their method employs 

deep neural networks and is robust regarding whether an image contains a person or 

not and whether the full item is depicted or only part of it (cf. Fig 4, second column). 

4.3 Skeleton Fitting 

In addition to the landmarks computed in step 2 which correspond to different extremal 

points of the pieces of clothing, further important key points can be derived using so-

called pose estimation algorithms which try to fit an approximate skeleton to person 

depicted in an image (Fig. 3, step 3). These skeletons consist of  a number of detected 

joints, connected by lines corresponding to different limbs (Fig.  4, third column). 

While those methods are originally used to determine the poses of  humans in 

photographs or videos they often work surprisingly well for images without people in 

them (cf. Fig. 4, row 1) as the underlying neural networks have learned to use clothing 

as an important feature. Specifically, we employ OpenPose [20] to gather the additional 

pose information when possible. This framework outputs a number of human joint 

locations with respect to the input image. When particular joints cannot be detected 

reliably, only the subset which is detected confidently is output.   
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4.4 Fitting of Bounding Boxes 

In the fourth processing step, the shape of the garment is approximated coarsely by a 

collection of two-dimensional boxes (Fig. 3, step 4). Fitting such so-called geometric 

proxies greatly simplifies the definition of rules to use by the semantic segmentation 

step following next. For example, in the case of an upper-body garment such as a shirt 

or jacket we first compute a box covering the torso region by fitting it to contain the 

four landmarks corresponding to the collar and the bottom of the torso. Boxes 

corresponding to the different defect zones within the torso region (Fig. 2) can then be 

derived from it: The zone III region typically corresponds to the lower 20% of the torso 

region while zone I covers 50% of the torso height and 70% of its width as it 

corresponds to the portion of the garment visible when folded and presented in a shop. 

To determine the height of the sleeves’ bounding boxes we use the sleeve-ends 

landmarks in combination with the detected shoulder joints from step 3, if applicable, 

and fall back to using the collar landmarks from step 2 otherwise. The width of the 

sleeve boxes is derived from the horizontal distance between the collar landmarks. 

Results for this step are shown in the fourth column of Fig. 4. 

4.5 Semantic Segmentation 

Given the coarse shape approximation from step 4, as well as a mask segmenting the 

item of clothing from the background (step 1), the derivation of a complete 

segmentation (Fig. 3, step 5) can be defined using a set of processing rules: Each pixel 

is assigned to the semantic part corresponding to the closest box. In case a pixel is 

contained in multiple boxes, precedence is given to boxes corresponding to higher 

severity and main boxes are preferred over boxes corresponding to sleeves or legs. The 

resulting pixel-wise labelling is used to derive the location of the defect can then be 

used to rate its severity. While there are previous methods to solve this segmentation 

problem sometimes also referred to as clothes parsing [18] many of them strictly require 

the garments to be worn by a person [15, 18] and none take the typical zone assignment 

used in textile quality checks into account. 

4.6 Anomaly Detection 

Before we can classify textile defects into different categories, it is useful to first 

determine the image region where the defect is located (Fig. 3, step 6). The 

classification following in step 7 can then be applied to a cropped image showing only 

that region which significantly simplifies the problem as the cropped images to be 

classified are more regular. Assuming that most items of clothing are largely 

homogeneous regarding the fabric they are made of, we can employ unsupervised 

learning methods [12-14] which detect statistical irregularities and output a bounding 

box around the anomaly which can be used to determine the region to crop. By limiting 

the detection to the garment, using the segmentation from step 1, we can avoid 

irregularities being detected outside of the actual product. 
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4.7 Defect Classification 

In the final image processing step (Fig. 3, step 7) we have to classify defects on an 

otherwise homogeneous image showing a textile patch. This problem has been 

previously tackled to automate visual quality checks of (raw) fabrics which constitute 

the feedstock for apparel manufacturing. There even is a standard benchmark, the 

TILDA dataset [21], which contains several hundred images of fabric patches with 

different defects and has been commonly used to assess different classification methods 

[22-24]. Those conventional methods are based on a two-step approach where first 

statistical features are computed in order to reduce the dimension of the input data (a 

patch of just 512 by 512 pixels with 3 color channels corresponds to a vector of 786,432 

components) and then a classification only based on these features is performed. 

However, recently, deep artificial neural network structures based on convolutional 

layers as the main computational units, called (deep) Convolutional Neural Networks 

(CNNs), have become very popular for various image processing and computer vision 

tasks [25]. In particular for classification tasks such as the annual ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) [27] they have outperformed more 

traditional methods by a wide margin. We therefore compare their performance for the 

task of textile defect classification to that of existing methods [22-24] in Sec. 5.2. 

4.8 Data Fusion 

After we have gathered information about the different possible defect zones with 

respect to the piece of clothing (Step 5), the location of the defect (Step 6) and its type 

(Step 7), we can output corresponding structured information (Fig. 3, Step 8) which can 

then be used to train more precise classifiers for PreQA. 

5 Results and Discussion 

In this section we present initial results for several steps of our processing pipeline, 

specifically, the computation of bounding boxes and the final classification step. 

5.1 Clothes Segmentation 

Using the publicly available implementations of OpenPose [20] as well as of the fashion 

landmark detection of Liu et al. [17] we implemented steps 2-4 of our pipeline. Fig. 4 

demonstrates the output of these steps for the case of four upper-body garments. Results 

are shown for both images with (Fig. 4, rows 2+3) and without humans (rows 1+4) and 

for the cases of both successful (rows 1+2) and unsuccessful (rows 3+4) pose detection. 
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Figure 4. Pipeline input (first column) and outputs of processing steps 2 to 4 (second to fourth 

column) of our pipeline (Fig. 3). For rows three and four no full skeleton estimation was possible 

and the fallback approach (Sec 4.4) was used. The sample images have been taken from the 

fashion landmark detection benchmark dataset [17]. 

Table 1. Metrics achieved on the test set. As we deal with a multiclass classification problem the 

values have been averaged across the (evenly balanced) classes. 

Metric Value 

Accuracy 90.1 % 

Precision 87.8 % 

Recall 87.6 % 
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5.2 Textile Defect Classification using Deep Learning 

 

Figure 5. Sample images taken from the TILDA dataset [21] for four of the eight available 

classes (columns) and two of the included representatives (rows). 

To evaluate the use of deep learning for textile defect classification, compared several 

popular network architectures from the ILSVRC contest [27], namely AlexNet [31], 

SqueezeNet [30] and GoogleNet [28]. We randomly split the TILDA dataset (cf. Fig. 5 

for samples) into 90% of training and 10% of test images. The original balanced ratio 

of the classes (each class contributes 12.5%) was maintained. As TILDA only 

comprises about 3200 images, which is several orders of magnitude less than for most 

common deep learning datasets, we augmented our training data by adding mirrored 

and rotated copies of the original images. While TILDA contains high resolution 

images in a 4:3 format, all compared network architectures expect quadratic input 

images of lower resolution. We therefore padded images with white and then down-

scaled them to the appropriate input resolution for each network. We first trained the 

candidate networks using the Adam solver [29] until their classification accuracy 

converged. As GoogleNet reached the highest initial accuracy, we selected it for further 

finetuning and increased the original drop-out rate to counteract potential overfitting to 

the small dataset, achieving an accuracy of 90% on the test set. A detailed evaluation 

using different common metrics is given in Table 1. This is on-par with values reported 

for competing methods [22] for which however no details, about whether a separate test 

set was used and which size it had, are given. 

5.3 Discussion 

The defect mining pipeline of Sec. 4 comprises eight steps, all of which constitute 

challenging problems by themselves. In the following, we discuss the current 

limitations of the most important steps and how these might be overcome in the future. 

 

Fashion Landmark Detection While the method by Liu et al. applied by us for the 

problem of fashion landmark detection already achieves detection rates of about 70% 

when accepting only small misplacements of landmarks [17] this particular detection 

problem is a fairly new area of research. Improved, more robust methods can be 
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expected to appear in the near future. This is also crucial for our defect mining approach 

as we use fashion landmarks as main guidance when constructing bounding geometry 

for different clothing zones. 

 

Figure 6. Two cases in which skeleton fitting failed for clothing-only images. The images shown 

are part of the fashion landmark detection benchmark dataset [17]. 

Skeleton Fitting We use skeleton fitting with OpenPose [20] as an additional input to 

help improve the subdivision of garments. While skeletons can sometimes also be 

derived for images where an item of clothing is not worn by a human (Fig. 4, first row), 

this cannot be expected to work in all cases. Fig. 6 shows two examples where skeleton 

fitting fails partially. Currently, we completely ignore the pose information in these 

cases. In future work, it might be useful to still extract available information for those 

parts of the skeleton that could be fit with significant confidence. For instance, for the 

left exemplar in Fig. 6, all joints but the ones corresponding to the left arm have been 

placed correctly and could have contributed information for fitting bounding boxes. 

 

Bounding Boxes At the moment, we use simple boxes as the geometric proxies for 

different zones on pieces of clothing. This is sufficient in many cases but there are cases 

where a box provides a poor fit to the actual shape of the object, e.g., in cases where 

the sleeves of a shirt are not shown straight but bent. In such situations the fitting could 

be improved either by using multiple boxes, one for the upper and one for the lower 

part of a sleeve, or by replacing the boxes by more complex shapes such as two-

dimensional generalized cylinders [26]. 

 

False Positive Anomalies We propose to use anomaly detection to spot locations of 

defects with respect to pieces of clothing. This assumes that their material is mostly 

homogeneous. While advanced detection methods also work for textured image 

regions, modern fashion sometimes uses defects such as holes or abrasion as design 

elements. Even for humans it is not always possible to decide with certainty whether a 

particular defect has been created voluntarily or not, unless additional exemplars of the 

same product are available to compare to. Consequently, it is debatable whether 

artificial intelligence can be expected to perform this kind of distinction more reliably. 
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6 Conclusion and Future Work 

In this paper, we have discussed the importance of detailed training data when applying 

machine learning for quality improvement of manufactured goods by means of 

predictive quality assurance and demonstrated how image data can become a significant 

part in it. The latter was achieved by presenting the first pipeline to mine detailed 

structured defect information from images of defective products. While this pipeline is 

currently still of prototypical nature, preliminary results for several of the 

computational steps show its potential. Future work will see a full implementation of 

the described approach as well as a transfer to additional application scenarios in 

different industries, such as furniture manufacturing, where analogous methods to 

realize the individual processing steps, e.g., segmentation or anomaly detection, already 

exist within different contexts in computer vision research.  
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