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Abstract. Online auctions are a viable alternative to conventional posted price 

mechanisms. Agrawal, Wang, and Ye [1] have proposed two primal-dual 

algorithms for revenue-maximizing multi-item allocation tasks. Although 

promising in terms of theoretical properties and competitive ratios, there is a 

lack of evidence regarding the real-world practicability of these mechanisms, 

for instance referring to online auction-based tickets sales. In this paper, we 

conduct an experimental study on both the One-Time Learning Algorithm 

(OLA) and the Dynamic Learning Algorithm (DLA) based on synthetic data, 

revealing the remarkable aptitude of the latter for non-trivial online auctions. 

Being robust to most input variations, the inherent dynamic update of dual 

thresholds achieves a superior balance with respect to the trade-off between 

objective function values and runtimes. We address critical sensitivities 

quantitatively and draft several small extensions by incorporating input 

distribution knowledge.  

 

Keywords: Online Auctions, Online Ticket Sales, Experimental Study 

1 Introduction 

Online auctions and auction-type mechanisms become increasingly popular for 

revenue-maximizing allocations of scarce resources. While display ad auctions and 

sponsored search are always based on bidders revealing their willingness-to-pay prior 

to the actual allocation, many B2C business models still rely on conventional posted 

prices. For instance, ticket sales for cultural events or sports competitions are often 

conducted with a fixed-price policy, occasionally replaced by concepts of revenue 

management or dynamic pricing. In this case, however, sellers have little knowledge 

on the willingness-to-pay or consumer surplus of the bidders, potentially preventing 

higher revenues. In contrast, auction-type allocations in an online fashion can enable a 

better absorption of buying power and hence a more efficient allocation. Recently, in 

the aviation or hotel industry it can be observed that companies experiment with their 

established pricing models by gradually substituting conventional posted price 
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mechanisms with online open auctions. Such auctions might also be of particular 

interest for ticket sales in order to reduce black market activity. Aside from the online 

arrival of bidders, however, ticket allocation problems often exhibit additional 

complexity as a result of excess demand, heterogeneous willingness-to-pay and short 

processing times, calling for performant and fast decision-making algorithms.  

We examine a notable contribution by [1] in the context of online resource 

allocation. Based on a primal-dual approach, the authors state theoretical properties 

and postulate a broad applicability of their two algorithms vis-a-vis auction-type 

allocations. As with many primal-dual frameworks, however, little is known about the 

implementation, real-world feasibility or practical challenges of these mechanisms. 

This paper seeks to examine this gap between theory and practicability by 

assessing the empirical applicability of both the One-Time Learning Algorithm 

(OLA), which calculates a single set of dual threshold prices, and the Dynamic 

Learning Algorithm (DLA), which continuously updates dual prices at geometric time 

intervals. Optimizing the revenue against a stationary bidding process, we perform 

numerical experiments on both algorithms based on synthetic data and compare the 

runtimes and objective values to three benchmarks. Furthermore, we examine 

reasonable parameter combinations and investigate the algorithms’ sensitivity with 

respect to their input parameters. We find a strong trade-off between outcome quality 

and runtime, whereas the DLA produces superior outputs while maintaining moderate 

runtimes for almost all cases. Our experiments provide evidence that the DLA is 

especially suited for complex allocation tasks with resource scarcity, heterogeneous 

bidders and limited ex-ante knowledge. Moreover, addressing the most critical 

sensitivity, we suggest several extensions utilizing priorly known input distribution 

information and thus improving the practical applicability for online auctions.  

The remainder of this paper is structured as follows. Section 2 begins by reviewing 

recent contributions in the online resource allocation literature. We also explain the 

algorithms of [1] in more detail. We present our implementation and experimental 

design in section 3.1. Section 3.2 provides the experimental observations and states 

key results. We discuss our findings with respect to extensions and put emphasis on 

enhancing the practicability. Section 4 concludes and suggests further research. 

2 Review of Literature and Research 

Optimizing the allocation of given resources with respect to revenue or social welfare 

is a core element of a variety of scientific contributions. A popular approach is to 

actively control the availability of resources, often referred to as revenue management 

[16]. Closely related is the concept of dynamic pricing, in particular dynamically 

adjusting posted prices for the purpose of revenue maximization. Comprehensive 

literature overviews for value-based pricing techniques are, for instance, provided by 

[12] or [16]. Although these concepts ultimately aim at exploiting differences in 

customer willingness-to-pay, one key drawback of such techniques is the failure to 

explicitly record willingness-to-pay and hereby enhance the producer surplus.  
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Another domain of resource allocation is auction theory. While other objectives 

such as efficiency or states of equilibria can certainly exist, revenue maximizations 

might also be pursued through auctions. Since bidders reveal their true willingness-to-

pay in incentive-compatible mechanisms, sellers might be able to absorb a larger 

proportion of the consumer surplus, thus increasing revenue. Traditional auction 

theory usually refers to a single point in time with comprehensive knowledge of 

demand and supply. However, an increasing number of digital markets are dynamic, 

meaning that bidders reveal their willingness-to-pay sequentially, requiring an 

immediate allocation decision by the auctioneer. The growing field of online auctions 

focuses – amongst others – on the algorithmic design for this class of problems. 

Examples include, for instance, [2], [14], and [17]. [13] specifically address the case 

of online ticket sales and design a fully stochastic and dynamic algorithm in order to 

compute an optimal online auction mechanism. [9] demonstrate that posted price 

mechanisms can indeed match competitive ratios of combinatorial auction principles, 

provided that stochastic information of the bidders’ valuations is available. 

Among a variety of algorithmic frameworks, one popular approach for online 

allocations is the utilization of dual threshold prices. Reasons for this include, for 

instance, a wide field of application, simple interpretability as well as the ease of 

implementation. In essence, this concept makes use of shadow prices of an ex-ante 

linear program as weights for subsequent decision-making. An incoming request can 

thus only be accepted if the weighted resource consumption is exceeded by the 

communicated willingness-to-pay. For instance, [8] investigate the AdWords problem 

within a similar framework as [1]. Under a random permutation assumption with 

known number of bidders and a specific right-hand side condition, they retrieve a 

(1 − ε)-competitive algorithm. In a similar manner, but assuming an i.i.d. input with 

unknown and changing distributions, [7] develops dual-based resource allocation 

algorithms for stochastic AdWords problems. In a series of interrelated contributions, 

[3-5] use primal-dual approaches to match and prove several competitive ratios for 

various kinds of online problems, for example ad-auctions. Other examples using dual 

approaches include [10-11] for display ads or [6] in a Bayesian auction setting.  

However, some contributions, for example those relating to the AdWords problem, 

do not permit multidimensional demand vectors, in particular the possibility to 

request several resources simultaneously, and are thus not directly applicable to ticket 

sales or similar B2C businesses. In contrast, the algorithms proposed by [1] explicitly 

refer to classical multi-item revenue maximization problems. The authors also 

demonstrate a superiority with respect to the theoretical competitive ratios compared 

to related online auction frameworks.  

In order to allocate resources in an online auction fashion [1] use online linear 

programming, where the constraint matrix and corresponding objective function 

coefficients are revealed column by column over time. The linear program is 

calculated based on the input received so far and without any information about future 

requests. However, all subsequent decisions are based on this solution. More 

precisely, consider the following linear program: 
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  maximize	∑ ./0/1/23  

  subject	to	 ∑ ;</0/ ≤ ><1/23    ? = 1, … ,C        (1) 

  0/ ∈ [0,1]    H = 1,… , I, 
where	C denotes the number of capacity constraints and I represents the number of 

columns. While ;</  stands for the requested items by bidder H regarding resource ? 
with capacity	><, the term ./  denotes the willingness-to-pay for the total package. In 

an online auction the coefficients (./ , JK) are revealed consecutively over time. The 

contribution of [1] is to compute the dual solution of a partial linear program and use 

it as a decision rule for future incoming bidders. The key idea is to set threshold prices 

L = (M<)<23,..,O for each resource ? equal to the dual prices of a linear program that is 

solved after a fraction of P	є	(0,1) columns are revealed. Subsequent incoming bids 

(./ , JK) will be compared to the current threshold prices	L. A bid will only be 

accepted if ./  exceeds LRJK and if no resource constraint is violated, meaning the 

problem remains feasible with	0/ = 1.  

 

OLA: DLA:                                                                  (2) 

maximize ∑ ./0/S/23  maximize ∑ ./0/T/23                                            

s. t. ∑ ;</0/ ≤ (1 − P) S1 ><S/23   s. t. ∑ ;</0/ ≤ (1 − ℎT) T1 ><T/23 													? = 1, … ,C 

0/ ∈ [0,1] 0/ ∈ [0,1]   																																															H = 1, … , V 

 

[1] present two algorithms: the so called One-Time Learning Algorithm (OLA) and 

the Dynamic Learning Algorithm (DLA). The respective partial linear programs for 

retrieving the sets of dual prices are denoted above. The OLA learns a single 

threshold price vector at time	V = 	PI, applicable to all following bids. All incoming 

requests until V	are only used to calculate the threshold prices and will always be 

rejected. Assuming that I is known and (./ , JK) arrive in random order, [1] show that 

the OLA exhibits (1 − 6P)-competitiveness against the ex-post optimum (XYZ) under 

the right-hand side condition	[ = min< >< ≥	 ^OT_`(1/b)bc .  

The DLA updates dual prices in geometric intervals at	PI, 2PI, 4PI, 8PI, …, in 

particular for each g = ⌈2iPI⌉ with the largest integer k such that g < H. The right-

hand side of the partial linear programs is modified by a factor	ℎT = Pm1
T  . The DLA 

is 1 − X(P) competitive given a milder condition	[ = min< >< ≥	OT_`(1/b)bn .  

Note that both algorithms are distribution-free. However, [1] need ex-ante 

knowledge about the size of I in order to calculate the learning fractions of the 

respective algorithm. Furthermore, [1] assume that the bids (./ , JK) arrive in random 

order. The latter assumption seems reasonable from a practical perspective, as the 

order of columns usually appears to be independent of the columns’ content. 
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3 Experimental Analysis 

3.1 Experimental Design 

The main contribution of [1] is the introduction and (theoretical) analysis of these two 

algorithms for solving online allocation problems. However, they do not feature any 

specific implementation or application. This paper intends to examine the implied 

allocation mechanism from a practical perspective and to analyze sensitivities. 

For this purpose, the algorithms are implemented and systematically tested in 

numerical experiments. In particular, all input parameters are varied in an orderly 

fashion to isolate important influencing factors on the algorithms' outcome and 

runtime. The treatment variables include the number of resources	C, resource 

capacities	>, initial learning fraction P	as well as number of bidders	I. Moreover, 

building on the distribution-free property of the algorithms, we examine the 

robustness with respect to different stationary input distributions or distribution 

parameters regarding the willingness-to-pay ./  and the item requests	;</ .  
Table 1. Parameters and Treatment Variables 

 Description Values and Distributions 

Parameters Simulations per Configuration 10 

 Permutations per Simulation 100 

 max	(;</) 5 

 ;3/ , ;p/ , ;q/ r(0.4, 0.3),r(0.5, 0.6),r(0.6, 0.9) 
 .3/,.p/ ,.q/ r(100,30),r(75, 20),r(50,10) 
   

Treatment  Resources C {1;2; x; 5; 10} 
Variables Capacity > {50;100; z{{;300;400; 500;600; 700; 

800;900; 1,000} 
 Fraction P {0.001;{. {|;0.02;0.03;0.04;0.05;0.075; 

0.1;0.125;0.15;0.2; 0.25} 
 Bidders I {200;400; 600;800;|, {{{;1,200;1,400; 

1,600;1,800;2,000;5,000;10,000} 
 

The treatments are analyzed with respect to runtimes as well as objective function 

values, i.e. the revenue generated from the allocation in percent of the ex-post 

optimum. We define a baseline treatment which serves as a reference point for the 

subsequent ceteris paribus variation of treatment variables. The values and ranges for 

each parameter and variable are summarized in Table 1. The respective baseline 

configuration (C = 3, > = 200, P = 0.01, I = 1,000) is highlighted in bold 

characters. All resources are assumed to have an identical capacity	>< = >. The 

parameter ;</  is required to be an integer value between zero and a pre-specified 

upper limit. In order to map distinct resource classes, the parameter ;</  follows a 

normal distribution with stepwise mean-variance-tuples. Similarly, the willingness-to-
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pay decrease over the different resources and are summed up to an aggregate	./ . 
Every bidder H is obligated to request at least one item. 

Each treatment variable is considered in an isolated fashion. Under the ceteris 

paribus assumption, each input parameter is varied according to Table 1 using the 

baseline configuration as a starting point. Hence, our experimental design comprises 

40 treatment combinations. For each configuration, 10 instances are created. Since 

[1] consider expected values over all permutations, each instance consists of 100 sub-

instances, representing different permutations of the set of bidders.  

Regarding the runtime evaluation, it should be noted that single permutations 

might be subject to noise distorting the measured runtimes. However, since averages 

are taken over a multitude of permutations, valid statements on general trends are 

ensured. Furthermore, we only intend to examine diverging runtime magnitudes and 

to identify common patterns. In order to explicitly exclude the possibility of invalid 

runtimes, we checked the results against larger problem instances. Essentially, we 

scaled the test configurations up by a factor of 100 (e.g.	> = 20,000, I = 100,000 

with 10 permutations and 5 simulations as the baseline treatment) and computed the 

respective ratios of runtimes. These ratios also took values of the up-scaling factor 

of	100, which we found to be consistent with our previous runtime analysis. Absolute 

runtimes should, however, always be handled with care according to [15].  

In order to evaluate the objective function values and runtimes of both the OLA 

and the DLA, several simple benchmarks have been implemented as alternative 

measures. The most simplistic mechanism would be to accept any incoming request, 

as long as no constraint is violated. This quick and easy allocation principle is referred 

to as Greedy Algorithm in our context. In contrast, a so-called Interval Learner 

updates dual prices at constant 10%-intervals with respect to the ex-ante known 

number of incoming bids	I. This benchmark is expected to always exhibit longer 

runtimes. The last benchmark, the Willingness-To-Pay (WTP) Learner, is based on 

the idea that it might be reasonable to update dual prices whenever the average over 

all bids per item changes by a certain magnitude, in our case by at least	5% in 

absolute terms. That is, if the pool of bidders appears to become more heterogeneous, 

different threshold prices might be deemed appropriate, calling for a re-calibration of 

dual prices. A fraction of	10% of the bids is used to calculate the initial dual prices. 

The simulations were implemented in Python 3.6. Linear programs were solved 

using the interface to Gurobi 8.0. All simulations were performed on an Intel Core i7 

7700K 4.20GHz quad-core machine with 32 GB of RAM. 

3.2 Results 

Starting with the baseline treatment, the well-known trade-off between 

approximation capabilities regarding the	XYZ	and average runtimes already becomes 

visible. The numerical results indicate that the DLA excels in terms of the objective 

function (93.68% of the	XYZ). Evidently, the frequent update of dual prices 

incorporated into the DLA generates considerably better objective function values as 

opposed to the simpler OLA (69.42%), at least given the input parameters at hand. 

Furthermore, in spite of several updating steps of dual prices, the DLA certainly 
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seems to be able to balance objective function output and runtime (126.47CV; 
OLA:	8.36CV) reasonably. In contrast, while the Greedy Algorithm 

(80.27%; 1.53CV) and the WTP Learner (86.25%; 97.31CV) are executed faster, 

they cannot provide comparable approximations of the XYZ	due to their naivety. 

Likewise, the Interval Learner may come closer to the DLA vis-à-vis the objective 

(88.96%), but requires significantly more runtime (405.35CV). The OLA only 

proves to be competitive for large problem instances. Most notably, its approximation 

ratio increases to 95.16% in the up-scaled control scenario, potentially because the 

number of bids PI used for learning the dual prices is bigger in absolute terms. 

Therefore, the calibrated thresholds might be more valid than in the small-scale case. 

Result 1. The DLA provides a superior balance between objective function values and 

average runtimes. While several re-calibrations of dual thresholds enable good 

approximations of the ex-post optimum, the geometric updating intervals shift the 

majority of computational intensity toward small-scale optimization problems. 

Under the ceteris paribus condition, a variation of the total number of resources C, 

each having a capacity of 200 units, does not significantly affect the approximation 

performance of either the OLA or the DLA, as can be seen in Table 2. Employing a 

very little or a very large number of resources does not deteriorate the outcome 

substantially, potentially since each added resource inevitably comes along with new 

demand, as guaranteed by the simulation specifics. The performance of the Greedy 

Algorithm, however, constantly drops with an increasing number of resources. Table 

2 also reports linear regression slope coefficients and adjusted ~² figures for the 

objective function and the runtime. Regarding these coefficients, note that the 

dependent variables are denoted in percent and milliseconds (CV), respectively. 

Moreover, a significance level of 1% is chosen. The negative linear objective 

function sensitivity of the Greedy Algorithm may be ascribed to growing 

heterogeneity among bidders as a result of more resources and hence more scope of 

simulation. Since more deliberate decisions are necessary for a diverse pool of 

bidders, the naïve Greedy Algorithm cannot sustain its approximation ratio. The 

runtimes for almost all mechanisms increase significantly and in a linear fashion once 

new resources are added.  

Because an increase in the number of resources goes hand in hand with newly 

generated demand, resource scarcity or abundance can better be reflected by changing 

the available capacities	>. As displayed in Table 3, the Greedy Algorithm, the DLA, 

and the OLA ultimately converge to the XYZ in terms of the objective function value 

when resources are excessively available. In particular, a 100%-approximation of the 

Greedy Algorithm indicates that all incoming bidders can be served. In this case, 

shadow prices may be close to zero and the other mechanisms exhibit a gap to the 

XYZ	mainly due to the initial calibration period, where all requests are rejected. When 

resources are scarce, however, the algorithms show significant discrepancies. As 

items need to be assigned with consideration, simple allocation mechanisms, as 

implied by the OLA or the Greedy Algorithm, produce below average results. The 

OLA, however, exhibits the steepest linear growth with increasing resource capacity. 

In contrast, the DLA already performs very well for limited availabilities. It also 
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exhibits a slightly quadratic relationship, i.e. performing a quadratic regression 

increases the	~Äp	from 86.45% in the linear case to 96.49% with the quadratic 

regression coefficient being statistically significant at the 1% level. That is, the DLA 

dominates all other benchmarks as long as resources are exposed to scarcity to some 

extent. It also exceeds the WTP Learner and the Interval Learner, where the first 

10% of the bidders will always be rejected. Changing > does not significantly affect 

the average runtimes aside from the OLA and the Greedy Algorithm. That is, if more 

resource capacities are available, more bidders can be served, leading to a consistent 

upward trend in runtime, albeit on a small level. For the other mechanisms, this effect 

does not become visible, as it is only a tiny proportion of the total runtime.  

The fraction P represents an interesting lever for training-based algorithms, 

determining the number of bids initially required for calibrating the thresholds. As can 

be seen in Table 4, the three benchmarks exhibit zero sensitivity, as they do not make 

use of this parameter. In terms of the objective function value, the DLA shows the 

greatest dependence with respect to	P. Generally speaking, the smaller this fraction is 

chosen, the more learning instances are executed by the algorithm, enabling a better 

approximation of the XYZ. For large P, the OLA produces better results than the 

dynamic mechanism, indicating that the DLA is considerably restricted by the 

modifying right-hand side factor postulated by [1], artificially increasing the dual 

prices at each re-calibration for too large fractions. At the same time, unlike the DLA 

exhibiting a linearly decreasing behavior, the OLA produces its best results for a 

medium	P = 0.05. Since it only learns dual prices at a single time, a very small 

fraction of the sample will not be representative enough and thus result in a poor or 

incalculable performance. Therefore, in order to produce a proper outcome, a certain 

minimum share of bids needs to constitute the training set. The OLA thus exhibits a 

significant quadratic relationship with an ~Äp of	85.69%. Furthermore, the tests reveal 

linearly increasing OLA runtimes, since the single optimization problems will 

encompass more elements with increasing	P. As evident from the numerical results, 

the shape of the DLA runtime function is rather serrated. Holding the total number of 

required optimization steps constant, the runtime would increase with growing P for 

the same reasons as the OLA. However, once P exceeds some threshold, one former 

optimization step is not feasible anymore, thereby reducing the total number of dual 

price updates and significantly decreasing the average runtime. 
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Table 2. Numerical Results for Treatment Variable ! 

Resources ! 1 2 3 5 10 " #$² 

DLA 91.06% 

118.20ms 
93.64%  

 165.96ms 

93.77% 

 209.76ms 

92.49%  

 291.21ms 

88.69%  

 503.05ms 

-  

42.43 

-  

99.96% 

OLA 70.21%   

9.49ms 
71.20%  

 12.78ms 

69.24%  

 14.45ms 

69.27%  

 18.05ms 

65.08%  

 27.70ms 

-  

1.95 

-  

 99.31% 

Greedy 

Algorithm 

87.65%  

1.07ms 

86.22%  

 2.19ms 

79.78%  

 2.68ms 

72.96%  

 3.35ms 

62.55%  

 5.40ms 

-2.85 

 0.444 

95.19%  

 95.57% 

Interval 

Learner 

84.24%   

361.09ms 

88.39%  

 517.65ms 

89.27%  

 662.04ms 

89.50%  

942.33ms 

87.89%  

 1675.44ms 

-  

145.33 

-  

99.99% 

WTP 

Learner 

83.33%  

42.10ms 

86.79%  

 146.69ms 

86.09%  

 160.14ms 

85.20%  

 221.53ms 

81.25%  

 439.07ms 

-  

40.83 

-  

 96.52% 

 
Table 3. Numerical Results for Treatment Variable & 

Capacities & 50 100 200 300 400 500 600 700 800 900 1,000 " #$² 

DLA 89.43% 

225.52ms 
91.78% 

221.24ms 

93.73% 

222.40ms 

94.70% 

221.65ms 

95.83% 

222.79ms 

96.52% 

223.30ms 

97.36% 

223.83ms 

97.78% 

224.49ms 

97.77% 

227.53ms 

98.59% 

226.07ms 

98.92% 

223.96ms 

0.00868 

- 

86.45% 

- 

OLA 67.56% 

14.97ms 
63.57% 

14.99ms 

70.42% 

16.18ms 

74.67% 

16.68ms 

79.92% 

17.52ms 

83.77% 

17.93ms 

86.90% 

18.70ms 

90.32% 

19.50ms 

92.21% 

19.86ms 

94.93% 

20.01ms 

96.96% 

20.19ms 

0.0351 

0.00595  

96.78% 

96.72% 

Greedy 

Algorithm 

73.40% 

2.54ms 

77.87% 

3.08ms 

79.73% 

3.59ms 

79.77% 

4.31ms 

83.10% 

5.00ms 

83.64% 

4.84ms 

87.27% 

4.97ms 

92.26% 

4.73ms 

95.79% 

5.54ns 

100.00% 

5.22ms 

100.00% 

5.46ms 

0.0278 

0.00274 

96.07% 

77.88% 

Interval 

Learner 

86.93% 

710.78ms 

88.03% 

696.32ms 

89.04% 

693.92ms 

89.53% 

689.87ms 

89.39% 

691.53ms 

89.47% 

689.57ms 

89.57% 

690.73ms 

89.70% 

693.39ms 

89.72% 

701.08ms 

89.89% 

690.55ms 

89.99% 

686.45ms 

0.00230 

- 

61.23% 

- 

WTP 

Learner 

80.73% 

176.46ms 

83.43% 

173.45ms 

86.34% 

174.65ms 

87.80% 

170.45ms 

88.23% 

175.35ms 

88.88% 

169.06ms 

89.25% 

172.63ms 

89.61% 

178.59ms 

89.59% 

176.45ms 

89.74% 

170.80ms 

89.99% 

172.75ms 

0.00784 

- 

69.40% 

- 
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Table 4. Numerical Results for Treatment Variable ' 

Fraction ' 0.001 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.125 0.15 0.2 0.25 " #$² 

DLA 94.54% 

109.82ms 
93.67% 

125.89ms 

92.48% 

123.25ms 

90.06% 

176.91ms 

88.53% 

120.06ms 

86.32% 

146.36ms 

80.84% 

108.35ms 

75.88% 

140.16ms 

70.36% 

85.01ms 

65.16% 

99.91ms 

56.39% 

129.10ms 

47.25% 

72.08ms 

-196.66 

- 

99.82% 

- 

OLA 76.12% 

8.35ms 
70.19% 

8.26ms 

76.47% 

9.12ms 

78.81% 

9.81ms 

80.47% 

10.63ms 

81.49% 

11.46ms 

80.87% 

13.38ms 

79.79% 

15.33ms 

76.26% 

17.25ms 

73.28% 

19.23ms 

65.87% 

23.20ms 

58.22% 

27.09ms 

-62.73 

77.39 

45.92% 

99.87% 

Greedy 

Algorithm 

80.67% 

1.54ms 

79.71% 

1.54ms 

80.26% 

1.53ms 

79.61% 

1.54ms 

79.88% 

1.54ms 

80.13% 

1.51ms 

79.91% 

1.53ms 

80.85% 

1.56ms 

79.14% 

1.54ms 

80.08% 

1.54ms 

80.02% 

1.54ms 

80.11% 

1.52ms 

-             

- 

-             

-  

Interval 

Learner 

88.97% 

404.87ms 

88.98% 

403.81ms 

89.15% 

403.80% 

88.76% 

404.97ms 

88.95% 

403.68ms 

89.07% 

404.70ms 

89.06% 

403.79ms 

89.10% 

404.57ms 

89.10% 

403.14ms 

88.82% 

404.58ms 

88.91% 

404.65ms 

88.83% 

404.70ms 

-             

- 

-             

-  

WTP 

Learner 

86.28% 

101.45ms 

86.39% 

100.35ms 

86.36% 

98.78ms 

86.11% 

97.56ms 

86.14% 

99.01ms 

86.45% 

98.01ms 

86.21% 

99.38ms 

86.48% 

97.96ms 

86.16% 

97.67ms 

86.14% 

99.96ms 

86.38% 

99.44ms 

86.32% 

97.07ms 

-             

- 

-             

-  

 
Table 5. Numerical Results for Treatment Variable ( 

Bidders ( 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 5,000 10,000 " #$² 

DLA 98.36% 

29.96ms 
95.30% 

54.14ms 

93.88% 

78.36ms 

93.64% 

102.48ms 

93.64% 

126.14ms 

93.56% 

150.63ms 

93.45% 

174.37ms 

93.18% 

198.78ms 

93.48% 

222.92ms 

93.42% 

247.69ms 

92.98% 

607.05ms 

92.54% 

1208.25ms 

-        

0.120 

- 

100.00% 

OLA 86.91% 

2.89ms 
77.39% 

4.18ms 

71.91% 

5.58ms 

70.33% 

6.94ms 

69.62% 

8.24ms 

68.74% 

9.56ms 

69.36% 

10.91ms 

69.32% 

12.19ms 

69.11% 

13.48ms 

69.22% 

14.83ms 

69.88% 

33.95ms 

69.83% 

65.72ms 

-    

0.00640 

-   

99.99% 

Greedy 

Algorithm 

100.00% 

0.47ms 

84.44% 

0.82ms 

81.01% 

1.09ms 

79.57% 

1.33ms 

79.84% 

1.55ms 

80.24% 

1.74ms 

81.25% 

1.95ms 

80.10% 

2.14ms 

78.94% 

2.32ms 

78.33% 

2.50ms 

71.80% 

5.03ms 

68.25% 

9.25ms 

-0.00194 

0.00087 

45.70% 

99.64% 

Interval 

Learner 

89.83% 

84.96ms 

89.23% 

166.57ms 

89.14% 

246.56ms 

89.11% 

325.99ms 

89.10% 

404.26ms 

88.75% 

484.82ms 

88.83% 

562.31ms 

88.35% 

641.81ms 

88.59% 

720.15ms 

88.44% 

800.69ms 

87.94% 

1987.33ms 

87.15% 

3973.44ms 

-0.00023 

0.396 

79.86% 

100.00% 

WTP 

Learner 

89.73% 

29.51ms 

87.88% 

49.00ms 

87.09% 

65.75ms 

86.59% 

82.25ms 

86.48% 

97.93ms 

85.83% 

114.43ms 

85.94% 

128.86ms 

85.23% 

150.19ms 

85.53% 

163.79ms 

85.24% 

182.18ms 

84.52% 

419.64ms 

84.32% 

828.72ms 

-      

0.0811 

-    

99.99% 
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Changing the number of stationary bidders ! competing for the fixed resource 

capacities, the DLA once again proves to be robust. This can be seen in Table 5. 

While it becomes increasingly difficult to select the ex-post optimal requests from a 

larger set of bidders, the drop in performance is not as significant as with other 

benchmarks. The Greedy Algorithm, for instance, cannot maintain its approximation 

ratio. The WTP Learner and the Interval Learner remain robust to a certain extent, yet 

never reaching the performance of the DLA. The OLA, in turn, is more sensitive 

towards changes in	!. With a growing number of requests, a single learning step is not 

sufficient due to the multitude of bidders arriving subsequent to the calibration. The 

average runtimes of all algorithms naturally increase with problem size. The 

functional relationship concerning the runtimes is linear for all mechanisms.  

We validated the observations of these ceteris paribus analyses with a multivariate 

parameter grid and were not able to detect major deviations. The results above might, 

however, also be contingent upon the distribution assumptions. In general, there are 

six levers to be tested with respect to the stationary input processes: mean and 

standard deviation of the willingness-to-pay #$  and of the requests	%&$ , given a 

normality assumption, as well as the underlying distributions of the simulated 

parameters themselves. As pointed out by [1], the DLA stands out due to its 

distribution-free property and thus robustness to all tuning parameters. Conversely, 

the Greedy Algorithm benefits from homogeneous pools of bidders, exhibiting major 

improvements for decreasing standard deviations of	#$ . It is also most sensitive to 

changes of the underlying distributions of #$ 	and	%&$ . The normality assumption 

appears to be most suitable for achieving little runtimes. If the distribution parameters 

fluctuate within a simulation run, the DLAs performance deteriorates, yet is still 

competitive to the benchmarks. 

Result 2. The DLA proves to be robust regarding changes of most input parameters. 

Its capability to produce near-optimal objective function values remains widely 

unaffected by changes in the number of resources, available resource capacities, 

number of bidders, or distribution assumptions. The DLA thus seems to be applicable 

to any kind of online auction configuration with a revenue maximization objective.  

Result 3. The average runtimes of the DLA depend linearly on the number of 

resources and bidders. They are stable with respect to resource capacities. These 

statements also apply to the OLA and more naïve benchmarks.  

Result 4. The initial learning fraction ' represents the most critical sensitivity for the 

DLA. Small fractions are necessary in terms of the objective function value, but come 

at the cost of more computing time. The indispensable refusal of the first '! bidders is 

a key drawback with respect to the practical applicability of the DLA. 

Given these experimental results, several interesting inferences can be drawn with 

respect to the practical applicability of the DLA. In terms of the approximation of 

the	()*, the findings above indicate that large capacities	+, small fractions	', 

reasonable numbers of resources	,, and few bidders ! favor the DLA. The positive 

discrepancy towards other mechanisms, however, seems to increase for smaller + and 

larger	!, i.e. conditions of resource scarcity and excess demand. Customer 
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heterogeneity, implemented through larger standard deviations for	#$ , also contributes 

to the superiority of this mechanism. In order to validate these statements, a modified 

baseline treatment is defined with the main purpose of making the DLA the most 

dominant algorithm. Here, excess demand (! = 2,000) together with a little learning 

fraction (' = 0.001) and more heterogeneous bidders (3456 = (60,40,20)	∀<) are 

selected, while all other input figures remain identical to the initial baseline treatment. 

In this configuration, the DLA distinctly outperforms all other benchmarks with a 

94.60%-approximation of the		()*. The Interval Learner follows with a ratio 

of		89.10%, but with more than thrice the runtime of the DLA. While the WTP 

Learner reaches	86.42%, the Greedy Algorithm and the OLA only produce 64.56% 

and	64.51%, respectively. Hence, the DLA excels in terms of ()*-approximation 

when the allocation is complex, e.g. if resources are scarce and bidders 

heterogeneous, and thus complies well with the nature of the generic online tickets 

sales problem. The average runtimes do not differ from our initial findings. 

Result 5. The DLA is especially suited for non-trivial online auction problems, in 

particular for scenarios with resource scarcity and excess demand by heterogeneous 

bidders. Its degree of optimality is highly contingent upon the choice of the initial 

learning fraction	'. Subject to these limitations, the exemplary case of online ticket 

sales appears to be a viable and expedient area of application.  

The key drawback of the DLA seems to be the unconditional refusal of the first '! 

bidders, as this fraction is required to learn the first set of threshold prices. Especially 

for large	', it might be advantageous to define initial threshold prices to not lose 

revenue from the learning fraction. Moreover, the right-hand side modifier introduced 

by [1] artificially increases the dual prices, leading to overly restrictive thresholds for 

very large	'. Early-arriving bidders might also feel discriminated due to their arbitrary 

rejection. Since limited computing power or other conceivable reasons might prohibit 

the employment of sufficiently small learning fractions, this downside needs to be 

addressed in order to improve the applicability of the DLA for practical use cases, for 

instance for online auction-based ticket sales.  

As explained by [1], the DLA is explicitly designed as a distribution-free 

mechanism. This seems a particularly useful property if no knowledge is available 

about the incoming bidders. If the allocation is repeated regularly, however, it might 

be possible to infer estimators for distribution parameters from historical data. In this 

case, one should define some initial threshold prices based on the given information 

about the stationary input processes in order to mitigate the problems associated with 

a big '. Therefore, a deterministic linear program (LP), in particular replacing 

stochastic variables with their expected values, might be utilized for estimating 

meaningful thresholds. Dual prices can be accessed after solving the LP with expected 

willingness-to-pay and item requests. These shadow prices should be good references 

points for initial thresholds as they mirror expected values. Because all bidders are 

homogeneous in expectation, the LP can be solved by accepting all requests as long as 

no capacity restrictions are violated, just like the Greedy Algorithm. Since two 

resources will still be available when the third one is exhausted due to our assumption 

of stepwise demands, only one dual price will take a positive value in our setting. 
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If the allocation problem has to be solved repeatedly with similar input features, it 

might also be reasonable to use an average over past dual prices as initial thresholds. 

In particular, when input distributions are known, several simulations can be executed 

prior to the actual allocation task. For each simulation run, the first set of dual prices 

after '! bidders is stored. The average over this set of shadow prices, in our case over 

10 simulations, can serve as initial thresholds for the actual allocation. 

Alternatively, more naïve initial threshold prices are the expected values of the 

known input distributions for the willingness-to-pay for each resource. All bids, 

exceeding these prices will be accepted as long as the problem remains feasible. 

Table 6. ()*-Approximations with Initial Thresholds 

' Baseline 

Treatment 

LP Thresholds Simulated 

Thresholds 

Expected Values 

of Distributions 

0.001 94.54% 94.41% 94.74% 94.44% 

0.01 93.67% 94.23% 94.84% 94.53% 

0.03 90.06% 92.86% 91.66% 93.49% 

0.05 86.32% 91.69% 91.10% 92.31% 

0.1  75.88% 87.33% 85.75% 89.44% 

0.15 65.16% 82.63% 77.95% 86.10% 

0.25 47.25% 74.93% 63.51% 80.85% 

The results of these different approaches for different ' are presented in Table 6. 

While the conventional DLA begins to rapidly deteriorate for	' ≥ 0.05, initial 

thresholds keep the performance on a higher level. In particular, using thresholds does 

not seem to be disadvantageous for any	'. Simulated dual prices appear to be too 

instance-specific, making it difficult to rely on a limited set of past thresholds for 

future allocations. Retrieving initial thresholds from solving a LP produces better 

approximations of the	()*. This especially applies to scenarios where large fractions 

' are chosen. Simply employing expected values of the distributions, however, further 

improves the approximation capabilities and should even be preferred to the more 

sophisticated alternatives. Again, it should be emphasized that this extension does not 

come along with any essential drawbacks. For small ' only few bidders are affected, 

whereas initial thresholds enable major gains for large fractions.  

The DLA together with well-defined initial thresholds can therefore be deemed 

appropriate for complex allocation tasks. It represents a viable alternative to online 

ticket sales or other multi-item B2C businesses, achieving superior approximations of 

the ()* while maintaining satisfactory runtimes at the same time. 

Result 6. Defining initial threshold prices by using available information on the input 

distributions mitigates the drawbacks of the DLA associated with very large learning 

fractions	'. Matching the thresholds with the expected willingness-to-pay until the 

first calibration of dual prices already aids in alleviating revenue loss. It can also 

improve on the perceived fairness in handling the bidders and thus enhances the 

practical applicability of the DLA substantially. 
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4 Conclusion 

Online auctions represent a promising alternative to conventional posted price 

mechanisms, potentially enabling a more effective exploitation of customer 

willingness-to-pay. Based on the notion of ticket sales, we conducted an experimental 

study on two seminal algorithms proposed by [1] and put special emphasis on the 

practicability of their underlying primal-dual framework. Both the OLA and the DLA 

were implemented for the purpose of simulation-based experimental testing, along 

with some intuitive benchmarks, ranging from a quick-and-easy Greedy Algorithm to 

a computationally intensive Interval Learner.  

There is a fundamental trade-off between the capability to approximate the ex-post 

optimal revenue and the average computational runtime. We ran extensive numerical 

experiments to discover dependencies and sensitivities of these opposing objectives. 

Through precisely defined re-calibrations of dual threshold prices, the DLA is able to 

approximate the ()* very well against a stationary process of bids. At the same time, 

it maintains reasonable runtimes, since dual updates occur more frequently at early 

stages of the allocation process. Our experiments illustrate that the DLA reacts robust 

to changes in many input parameters and proves to be extraordinarily dominant in 

situations of resource scarcity and excess demand. In this case, the decision rules 

implied by the DLA enable deliberate allocations through accurately determined 

thresholds.  

Addressing the problem of generally rejecting bids in the first learning phase, we 

drafted several extensions, making use of known distribution information and aiming 

at the definition of some initial thresholds that could be employed until the first 

ordinary calibration. While retrieving a set of dual prices from a deterministic linear 

model seems an elegant solution, simply using the expected values of the known input 

distributions as initial thresholds proves to be an easy and well-performing 

alternative. Initial threshold prices permit major enhancements with respect to the 

real-world applicability of the DLA. Together with its robustness regarding other 

treatment variables, the DLA can thus be viewed as an expedient alternative when it 

comes to online ticket sales or other revenue-maximizing multi-item allocation tasks. 

The basic idea underlying this research paper can be extended in various ways. An 

empirical validation with real-world data would, for instance, be desirable. Especially 

the context of online ticket sales seems to be a suitable use case. Furthermore, the 

algorithms have only been benchmarked with rather straightforward mechanisms. A 

more extensive experimental study with alternative sophisticated algorithms might 

provide useful insights into the applicability of different online auction mechanisms. 

Including risk considerations or non-monetary objectives would only be two possible 

extensions referring to the DLA. 
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