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Abstract. Course assignment is a widespread problem in education. Often 
students have preferences for course schedules over the week. First-Come First-
Served (FCFS) is the most widely used rule to assign students to courses in 
practice, but recent research led to alternatives with attractive properties. Bundled 
Probabilistic Serial (BPS) is a randomized mechanism satisfying ordinal 
efficiency, envy-freeness, weak strategy-proofness, and polynomial runtime. We 
report a first application of BPS in a large-scale course assignment application 
and discuss advantages over FCFS comparing a number of metrics such as the 
size, the average rank, the profile, and the popularity of the assignments. The 
exponential number of possible course schedules is a central problem in the 
implementation of combinatorial assignment mechanisms. We propose a new 
way to elicit preferences, which limits the number of parameters a student needs 
to provide. This yields a computationally very effective tool to solve course 
assignment problems with thousands of students in practice. 
 

Keywords: Course Allocation, Combinatorial Assignment Problem, 
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1 Introduction 

Course assignment is arguably one of the most widespread assignment problems where 
money cannot be used to allocate scarce resources. Those problems of assigning 
students to different courses or whole schedules of courses appear at most educational 
institutions. Matching with preferences has received significant attention in the recent 
years. While simple first-come first-served (FCFS) rules are still wide-spread, many 
organizations adopted matching mechanisms such as the deferred acceptance algorithm 
[1, 2] or course bidding [3, 4] to allocate scarce course seats. Although many course 
assignment problems are similar to the widely studied school choice problems with 
students private preferences for one out of many courses, other applications differ 
significantly. In particular, students are often interested in schedules of courses across 
the week. Assigning schedules of courses has been referred to as the combinatorial 
assignment problem (CAP) [5]. Similar problems arise when siblings should be 
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assigned to the same schools in school choice [6], or couples in the context of the 
hospital residency matching [7]. Overall, the CAP can be seen as a general form of a 
distributed scheduling problem. 

Although there is a huge body of literature on scheduling, the CAP is specific in a 
number of ways. First, we can only elicit ordinal preferences and no money must 
exchange hands. Second, students have private preferences over course schedules and 
we want to have mechanisms that incentivize students to reveal these preferences 
truthfully. Third, apart from efficiency, fairness of the allocation is an important 
concern in matching with preferences [8]. Fourth, the allocation of course schedules is 
a computationally hard (NP-hard) problem and for the problem sizes with hundreds of 
students, an exact solution might not be tractable. 

The need to assign course schedules rather than courses individually became 
apparent in an application of matching with preferences at the Technical University of 
Munich (TUM) that we will discuss. In the initial three semesters, there are large 
courses with hundreds of students (e.g. on linear algebra or algorithms). These courses 
include a lecture and small tutor groups. Students need to attend one tutor group for 
three to four courses in each semester and they have timely preferences over course 
schedules that need to be considered, which makes it a combinatorial assignment 
problem. These problems are widespread in academia. 

A first and seminal approach to address this challenging problem, the approximate 
competitive equilibrium from equal incomes mechanism (A-CEEI), was published by 
Budish [5]. In A-CEEI students report their complete preferences over schedules of 
courses, the mechanism assigns a budget of fake money to each student that she can 
use to purchase packages (or schedules) of courses. Then an optimization-based 
mechanism computes approximate competitive equilibrium prices, and the student is 
allocated her most preferred bundle given the preferences, budgets, and prices. A-CEEI 
is relaxing design goals such as strategy-proofness and envy-freeness to approximate 
notions, which makes it a remarkable and practical contribution to a fundamentally hard 
problem. The mechanism has been shown to be approximately strategy-proof, 
approximately envy-free, and Pareto efficient. Budish, Cachon, Kessler and Othman 
[9] reports the empirical results at the Wharton School of Business. In addition, Budish 
and Kessler [10] summarize the results of lab experiments.  

The work was breaking new ground, but the A-CEEI mechanism is also challenging. 
First, it is not guaranteed that a price vector and course allocation exists that satisfies 
all capacity constraints. This is not surprising given that prices are linear and 
anonymous. Second, the problem of computing the allocation problem in A-CEEI is 
PPAD-complete and the algorithms proposed might not scale to larger problem sizes 
required in the field [11]. Third, students might not be able to rank-order an exponential 
set of bundles, which is a well-known problem (aka. missing bids problem) in the 
literature on combinatorial auctions (with money) [12-14]. The latter is a general 
problem in CAP not restricted to A-CEEI, which we will discuss in much more detail 
below. 

Randomization can be a powerful tool in the design of algorithms, but also in the 
design of economic mechanisms. Nguyen, Peivandi and Vohra [15] recently provided 
two randomized mechanisms for one-sided matching problems, one with cardinal and 
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one with ordinal preferences for bundles of objects. The mechanism for ordinal 
preferences is a generalization of probabilistic serial [16] called Bundled Probabilistic 
Serial (BPS). Nguyen, Peivandi and Vohra [15] show that this randomized mechanism 
is ordinally efficient, envy-free, and weakly strategy-proof. These appealing properties 
come at the expense of feasibility, but the constraint violations are limited by the size 
of the packages. In course assignment problems the size of the packages is typically 
small (e.g., packages with three to four tutor groups) compared to the capacity of the 
courses or tutor groups (around 30 seats or more). There is no need for prices or 
budgets, and computationally the mechanism runs in polynomial time, which is 
important for large instances of the course allocation problem that can frequently be 
found. This makes BPS a practical approach to many problems that appear in practice. 

1.1 Contribution 

We report on a field study and address issues in the implementation of mechanisms for 
the combinatorial assignment problem that are beyond a purely theoretical treatment. 
In particular, preference elicitation is a central concern in combinatorial mechanisms 
with a fully expressive bid language. Theoretical contributions of assignment 
mechanisms largely focus on envy-freeness and efficiency as primary design 
desiderata. We also report on properties such as their size, their average rank, the 
probability of matching, the profile, and the popularity. These properties often matter 
in the choice of mechanisms beyond traditional ways to measure fairness and 
efficiency. For market designers it is important to understand the trade-offs. 

Overall, we report on the assignment of 1415 students in the summer term 2017 to 
67 tutor groups for four classes and the assignment of 1736 students in the winter term 
2017/2018 to 66 tutor groups for four classes at the TUM using BPS.1 For such a large 
application, we could not elicit preferences of students for BPS and let them participate 
in FCFS simultaneously. Instead, we simulated FCFS via a version of Random Serial 
Dictatorship that allows for bundles (BRSD), which is of independent interest as an 
assignment mechanism. 

Finally, we contribute an approach that is applicable in a wide array of CAP 
applications where timely preferences matter. We elicit a small number of parameters 
about breaks and preferred times and days of the week. Together with some prior 
knowledge about student preferences, this allows us to score and rank-order all possible 
packages 

2 The Combinatorial Assignment Problem 

Let us now define the combinatorial assignment problem (CAP) in the context of course 
assignment applications, desirable properties, and randomized mechanisms. 

 

                                                           
1 Not all students submitted a non-empty preference list. Therefore, we consider in our evaluation 

not all of the participating students (1439 in summer term, 1778 in winter term). 
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2.1 The Problem 

Assigning objects to agents with preferences but without money is a fundamental 
problem referred to as assignment problem or one-sided matching with preferences. We 
will use the term assignment or matching interchangeably. In course assignment, 
students express ordinal preferences, which need to be considered in the assignment. A 
one-sided one-to-many course assignment problem consists of a finite set of  students 
(or agents)  and a finite set of  courses (or objects)  with the maximum 
capacities  =  , , … , 𝑚 .  

In the combinatorial assignment problem in the context of course allocation, every 
student ∈  has a complete and transitive preference relation over subsets (or bundles) 
of elements of . A preference profile ≽ ∈ 𝓅| | is an -tuple of preference relations. 

We can model the demand of the students with binary vectors ∈ { , }𝑚, where =  if course  is included in . We define the size of a bundle  with =∑𝑚= , the number of different courses included in the bundle. Let  be the set of all 
feasible bundles . Let 𝑏 ∈ { , } be a binary variable describing if bundle  is 
assigned to student . Then we can model the demand and supply as linear constraints. 
The supply constraints make sure that the capacity of the courses are not exceeded, and 
the demand constraints determine that each student can win at most one bundle. ∑ 𝑏∈ 𝐼,𝑏∈ 𝐵  , ∀ j ∈ C, 𝑢  

∑ 𝑏𝑏∈𝐵 , ∀ ∈ ,  

Courses in our application are actually tutor groups and each tutor group belongs to one 
of ℓ classes. Students in our application can only select bundles with at most one tutor 
group in each of these classes. As a result, the possible size of a bundle  is ℓ ≪ . 

A deterministic combinatorial assignment (deterministic matching) is a mapping 𝑀 ⊂ ×  of students  and bundles  of courses . ℳ describes the set of all 
deterministic matchings. A matching is feasible if it is a feasible integer solution to the 
constraints (Demand) and (Supply).  

Random combinatorial assignments (random matchings) are related to fractional 
assignments with 𝑏  and random assignment mechanisms can be used to 
fractionally allocate bundles of course seats to students.   

For (non-combinatorial) assignment problems with single-unit demands the 
Birkhoff-von-Neumann theorem [17, 18] says that any random assignment can be 
implemented as a lottery over feasible deterministic assignments, such that the expected 
outcome of this lottery equals the random assignment. However, the Birkhoff-von-
Neumann theorem fails when students submit preferences for bundles of course seats.  
Nguyen, Peivandi and Vohra [15] generalize this result and show that any fractional 
solution respecting the (Demand) and (Supply) constraints can be implemented as a 
lottery over integral allocations that violate the (Supply) constraints only by at most ℓ −  course seats.  
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2.2 First-Order Design Desiderata 

Efficiency, envy-freeness, and strategy-proofness are design desiderata of first-order 
importance typically considered in the theoretical literature on deterministic assignment 
problems. For randomized mechanisms one has to reconsider these design desiderata 
and we will briefly introduce relevant definitions in this section. Stochastic dominance 
(SD) is the key concept among all of these definitions as it provides a natural way to 
compare random assignments. Let Δ describe the set of all possible random matchings. 
With  we refer to the assignment of student  in the random matching , and denote 
with 𝑏  the probability that student  gets allocated bundle . We will omit the subscript 
 when it is clear which student is meant. Given two random assignments , ∈  Δ, 

student  -prefers  to  if, for every bundle , the probability that  yields a bundle 
at least as good as  is at least as large as the probability that  yields a bundle at least 
as good as . More formally, a student ∈  -prefers an assignment ∈  Δ over ∈Δ, ≽ 𝐷 , if ∑ 𝑏′  𝑏′≽𝑖𝑏 ∑ 𝑏′𝑏′≽𝑖𝑏 , ∀ ∈ . In other words, a student  prefers 
the random assignment  to the random assignment  if  stochastically dominates . 
Note, that ≽ 𝐷 is not a complete relation. That is there might be assignments  and , 
which are not comparable with this relation. 

One desirable property of matchings is (Pareto) efficiency such that no student can 
be made better off without making any other student worse off. That is, a random 
assignment ∈ Δ is ex post efficient, if  can be implemented into a lottery over Pareto 
efficient deterministic assignments. A random assignment ∈ Δ is ordinally efficient, 
if there exists no random assignment  such that  stochastically dominates , i.e. ∈Δ: ∀ ∈ : ≽ 𝐷  and ∈ : ≻ 𝐷 . Ordinal efficiency comes from the Pareto 
ordering induced by the stochastic dominance relations of individual students. It can be 
shown that ordinal efficiency implies ex post efficiency [16]. 

Fairness is another important design goal. A basic notion of fairness for randomized 
assignments is the equal treatment of equals, i.e. students with identical preferences 
receive identical (symmetric) random allocations. Envy-freeness is stronger. A random 
assignment ∈ Δ is (strongly) -envy-free, if ∀ , ∈ : ≽ 𝐷 . We call  weakly 

-envy-free, if , ∈ : ≻ 𝐷 . -envy-freeness means that student  weakly 
-prefers the random matching she is faced with to the random assignment offered to 

any other student, i.e., a student's allocation stochastically dominates the outcome of 
every other student. For weak -envy freeness it is only demanded that no student's 
allocation is stochastically dominated by the allocation of another student. -envy-
freeness implies equal treatment of equals. 

A randomized assignment mechanism is a function 𝜓: 𝓅| | → Δ that returns a 
random matching ∈ Δ. The mechanism 𝜓 ≽ =  is ordinally efficient if it produces 
ordinally efficient allocations. In terms of fairness, one could aim for a matching where 
equals are treated equally. We call a randomized matching mechanism 𝜓 symmetric, if 
for every pair of students  and  with ≽ =≽  also = . This means that students 
who have the same preference profile also have the same outcome in expectation. A 
randomized mechanism is envy-free if it always selects an envy-free matching. 

An important property of a mechanism is strategy-proofness. This means, that there 
is no incentive for any student not to submit his truthful preferences, no matter which 
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preferences the other students report. A random assignment mechanism is (strongly) 
-strategy-proof if for every preference profile ≽, and for all ∈  and ≽′ we have 𝜓 ≽ , ≽− ≽ 𝐷 𝜓 ≽′ , ≽− .  
A random assignment rule 𝜓 is weakly -strategy-proof if for every preference 

profile ≽, there exists no ≽′ for some student ∈  such that 𝜓 ≽′, ≽− ≽ 𝐷 𝜓 ≽ , ≽− . We will omit the prefix  for brevity in the following. 
It has been shown that participants in strategy-proof mechanisms such as the Vickrey 
auction do not necessarily bid truthfully in practice. Therefore, there was a recent 
discussion about obvious strategy-proofness of extensive form games [19].  

Definition 1: OSP [19]. A strategy 𝜎 is obviously dominant if, for all other 
strategies 𝜎′, at any earliest information set where 𝜎 and 𝜎′ diverge, the best possible 
outcome from 𝜎′ is no better than the worst possible outcome from 𝜎. A mechanism is 
obviously strategy-proof (OSP) if it has an equilibrium in obviously dominant 
strategies. 

In section 4.1 we introduce a number of additional design goals that often matter in the 
practice and that we analyze empirically. 

2.3 Mechanisms 

A lot is known about assignment problems with single-unit demand. Random Serial 
Dictatorship (RSD) selects a permutation of the agents uniformly at random and then 
sequentially allows agents to pick their favorite course among the remaining ones. 
Gibbard [20] showed that random dictatorship is the only anonymous and symmetric, 
strongly -strategy-proof, and ex post efficient assignment rule when preferences are 
strict. Pycia and Troyan [21] prove that RSD is a unique mechanism that is obviously 
strategy-proof, efficient, and symmetric in mechanisms without transfers. However, 
RSD is not always ordinally efficient, only ex post efficient [16]. Zhou [22] actually 
showed that no random mechanism for assigning objects to agents could satisfy strong 
notions of strategy-proofness, ordinal efficiency, and symmetry simultaneously with 
more than three objects and agents. So, we also cannot hope for these properties in 
combinatorial assignment problems. RSD can also be applied to the combinatorial 
assignment problem. The Bundled Random Serial Dictatorship (BRSD) orders the 
students randomly and assigns the most preferred bundle, which is still available to 
each student in this order. Although the package preferences take some toll on the 
runtime, it is still very fast. 

First-come first-served (FCFS) can be seen as a serial dictatorship. Students login at 
a certain registration and then reserve the most preferred bundle of courses that is still 
available. Although the arrival process is not uniform at random, students have little 
control over who arrives first. While there is a certain time when the registration starts, 
hundreds of students log in simultaneously to get course seats and it is almost random 
who arrives first. We will simulate FCFS via BRSD and run the algorithm repeatedly 
to get estimates for performance metrics of FCFS. 
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Probabilistic Serial (PS) [16] produces an envy-free assignment with respect to the 
reported unit-demand preferences, and it is ordinally efficient, but it is only weakly -
strategy-proof. Bundled Probabilistic Serial (BPS) by Nguyen, Peivandi and Vohra [15] 
is a generalization of PS to the combinatorial assignment problem and computes a 
fractional solution to (Demand) and (Supply). The BPS mechanism is also ordinally 
efficient, envy-free, and weakly strategy-proof if preferences are strict. 

Informally, in BPS all agents eat their most preferred bundle in the time interval [ , ] simultaneously with the same speed as long as all included objects are available. 
As soon as one object is exhausted, every bundle containing this object is deleted and 
the agents continue eating the next available bundle in their preference list. The duration 
with which every bundle was eaten by an agent specifies the probability for assigning 
this bundle to this agent. After a fractional solution ∗ was found via BPS, it is 
implemented as a lottery over integral matchings satisfying the (Demand) and the 
relaxed (Supply) constraints, as described in [15]. 

3 Preference Elicitation 

The Department of Informatics has been using stable matching mechanisms for the 
assignment of students to courses since 2014 [2]. The system provides a web-based 
user interface and every semester almost 1500 students are being matched to lab courses 
or seminars via the deferred acceptance algorithm for two-sided matching or random 
serial dictatorship for one-sided matching problems.  

In the context of the study reported in this paper, the web-based software was 
extended with BPS, the lottery mechanism for decomposing fractional solutions, and 
BRSD. During the winter term 2017/2018, 1778 computer science and information 
systems students in their third semester participated in the matching and could choose 
bundles of tutor groups out of four classes. A computer science student could have more 
than 700,000 different bundles.2 

A naive approach would be to let the students rank bundles on their own by choosing 
the time slots they want to have in their preference list. This would take a lot of time 
and lead to a substantial missing bids problem. 

Budish, Cachon, Kessler and Othman [9] describe the preference elicitation used at 
the Wharton School of Business. Students could report cardinal item values on a scale 
of 1 to 100 for any course they were interested in taking. In addition, they could report 
adjustments for pairs of courses, which assigned an additional value to schedules that 
had both course sections together. Afterwards courses were scored and transformed into 
an ordinal ranking over feasible schedules. The authors argue that they felt that “adding 
more ways to express non-additive preferences would make the language too 
complicated”. Wharton also provided a decision support tool listing the 10 most-
preferred bundles, which allowed students to inspect top-ranked schedules and modify 
the cardinal values.  

                                                           
2 The computer science students need tutorials from all four classes < ⋅ ⋅ ⋅ ). 
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However, our course allocation problem has a more special structure such that we 
can allow preferences that are more complex without asking for different weights for 
the courses. We developed an algorithm that allows to rank-order all possible packages 
based on a few parameters that students need to specify. For this, we can leverage prior 
knowledge about timely preferences of students for schedules of tutorials and lectures. 

Students' preferences mainly concern their commute and the possibility to free large 
contiguous blocks of time (e.g., a day or a half-day) that they can plan for other 
activities (e.g., a part-time job). In larger cities such as Munich, the time that students 
spend for commuting is significant. Also long waiting times between courses are 
perceived as a waste of time as it is often hard for them to work productively in several 
one- or two-hour breaks without appropriate office facilities available. For example, if 
a student had a tutorial on linear algebra in the morning, a lunch break, and then the 
tutorials for algorithms and software engineering in the afternoon of the same day with 
the minimal time for breaks specified, this would be considered ideal. The desired 
length for breaks between tutorials and for the lunch break are considered parameters 
with default values in the preference elicitation. 

First, students choose the lectures and tutorials they are interested in. The selected 
lectures will be considered in the bundle generation as constraints, i.e. if a time slot of 
a tutorial overlaps with the time of a selected lecture, then it will no longer be 
considered in order to allow students to participate in the lecture. In a second step, the 
student marks available time ranges in a weekly schedule. The day is partitioned into 
weekdays and time blocks of 30 minutes from 8:00 AM to 8:30 PM. If a tutorial is 
selected, all time slots of this tutorial will be highlighted with a specific color. Thus, 
students learn when the tutorials and lectures of interest take place. 

A student can set a minimal amount of time for a lunch break and a minimal amount 
of time in-between two events (default value is 15 minutes). We also allow students to 
provide weights { , … , } for the different days. That is, the students can express 
preferences over the days. The main web page and the main steps a student had to take 
are summarized in Figure 1. 

The preferences elicited on this screen are input for an algorithm that uses prior 
knowledge about student preferences to rank-order all possible packages. The 
algorithm first generates bundles that satisfy all constraints and then ranks them. 
Finding the bundles that do not violate constraints (e.g., lectures to be attended) of the 
students can be cast as a constraint satisfaction problem. After the feasible bundles are 
generated, we rank these bundles. For this, we assign a score to each bundle that 
considers how many days a student needs to come to the university per week in total, 
the preference ordering over the days, the total time a student has to stay at the 
university each day, and the length of the lunch breaks between courses. 

On the ranking page, we display the 30 top rated pre-ranked bundles and the students 
can adapt this ranking manually, go back to the previous screen and adapt the input 
parameters, or just accept the ranking with a single click (see Figure 2).  
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Figure 1. Process to rank-order packages 

 

Figure 2. Page with top-ranked packages 
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Note that ≈ 9 % of the students received one of their top ten ranked packages and 
only a few students received a package with a rank less than 30. So, if a student inspects 
and confirms the ranking of the first 10-30 packages, this covers the most important 
quantile of the overall ranking list. We generated a ranking over 200 bundles for each 
student in advance based on the pre-specified parameters and further preferences only 
if necessary3.   

4 Results 

In Section 2.2 we have summarized first-order design goals for assignment problems: 
strategy-proofness, fairness, and efficiency. Now we introduce second-order design 
goals and respective metrics allowing us to compare the assignments of BPS and FCFS 
empirically and provide numeric results of our two matching instances. 

4.1 Metrics 

Apart from efficiency, fairness, and strategy-proofness, popularity was raised as a 
design goal. An assignment is called popular if there is no other assignment that is 
preferred by a majority of the agents. Popular deterministic assignments might not 
always exist, but popular random assignments exist and can be computed in polynomial 
time [23]. However, Brandt, Hofbauer and Suderland [24] prove that popularity is 
incompatible with very weak notions of strategy-proofness and envy-freeness, but it is 
interesting to understand the popularity of BPS vs. BRSD. In our empirical evaluation, 
we analyze whether BPS or FCFS are more popular. To measure popularity we first 
define the function 𝜙 , ′ : × → {± , } associated with the preference 
relations, where 𝜙 , ′ =  if ≻ ′, −  if ′ ≻  and  in any other case. 

 
Definition 2: Popularity. A random assignment ∈ Δ is more popular than an 
assignment , denoted ⊳ , if , >  with , = ∑ ∑ 𝑏 ⋅𝑏,𝑏′∈ 𝐵∈𝑏′ ⋅ 𝜙 , ′ . A random assignment  is popular, if ∈ Δ: ⊳ . 
 
Apart from popularity, the size and the average or median rank are of interest. The size 
of a matching simply describes the number of matched agents. The average rank is only 
meaningful in combination with the size of the matching, because a smaller matching 
could easily have a smaller average rank. We report the average rank, because it has 
been used as a metric to gauge the difference in welfare of matching algorithms in [9] 
and [25], two of the few experimental papers on matching mechanisms.  

The profile contains more information as it compares how many students were 
(fractionally) assigned to their first choice, how many to their second choice, and so on. 

                                                           
3 So far, we described the user interface for the winter term 2017/18. The user interface in the 

summer term 2017 required students to explicitly drag and drop the pre-ranked packages on 
a screen. This was considered tedious such that in the winter term the generated ranking was 
suggested to students right away without any drag-and-drop activities required and could be 
confirmed without much effort. 
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The profile of two matchings is not straightforward to compare. We want to compare 
multiple profiles based on a single metric, and decided to use a metric similar to the 
Area under the Curve of a Receiver Operating Characteristic in signal processing [26], 
which was already used by [27]. With  denoting the number of possible ranks and ∈

, the Area Under the Profile Curve Ratio (AUPCR) for matching 𝑀 can be defined 
as:    

 𝑈𝑃 𝑀 = ∑ |{ , ∈ 𝑀 ∣ , }|| |𝑟=    
4.2 Empirical Results 

Due to space constraints, we only analyze the results for the matching in winter term 
2017/2018. This application comprised 1736 students and 66 courses (see Table 1). 
Overall, we had a list of 20,845 different bundles. We simulated FCFS via BRSD on 
the preferences collected for the BPS. BPS is weakly strategy-proof and in such a large 
application, it is fair to assume that students do not have sufficient information about 
the preferences of others, which would be necessary to strategically misreport their 
preferences. To compare the result of BPS and BRSD we actually would have to run 
the BRSD for all permutations of the students. Note that computing probabilities of 
alternatives in RSD explicitly is #P-complete [28]. We ran BRSD 1000 to 1,000,000 
times with the same preferences but random permutations of the order of students and 
derived estimates for the different metrics. These estimates are close (see Table 1). 

For our data, BPS is more popular than BRSD(1000000). 754 students prefer BPS 
to FCFS, while 120 students prefer FCFS to BPS (see Table 2). A positive popularity 
score as described in Definition 2 means, that BPS is more popular than the BRSD 
outcome and the score for BPS is 3.41 (compared to BRSD(1000000)). 

Table 1. Summary statistics for the winter term 2017/2018. 

Metric BPS BRSD(1000) BRSD(1000000) 
exp rank 1.97372 1.9784 1.97873 
exp size 1603.01 1601.03 1600.84 

prob match (top 100) 0.923394 0.922253 0.922142 
AUPCR 0.889512 0.888184 0.888058 

weak envy 0 427 451 
strong envy 0 1050 1202 

Table 2. Popularity and stochastic dominance of BPS vs. BRSD. The syntax for the -
preference is the number of students preferring (BPS | BRSD(x)). 

Metric BRSD(1000) BRSD(1000000) 
popularity winter 1.93061 3.41499 

-prefer winter (690|299) (754|120) 
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Table 1 reports that for all metrics BPS achieves better results. In the BPS outcome 
89.047% of the students receive an assignment ranked in their top ten while in BRSD 
88.891% receive such an outcome (see Table 3 for BPS and 4 for BRSD with 1 mio. 
permultations of the students). The computation times were negligible for BRSD (0.013 
seconds per run). BPS required 0.382 seconds, but the lottery algorithm around 30 
minutes due to the high number of bundles generated in the winter term. 

Table 3. Rank profiles for BPS in winter term 2017/2018. 

Rank 1 2 3 4 5 6 7 8 9 10 

Prob match (%) 73.596 7.083 3.392 1.660 1.041 0.698 0.465 0.447 0.366 0.299 

AUPC in  (%) 73.596 80.678 84.070 85.730 86.772 87.470 87.935 88.381 88.747 89.047 

Table 4. Rank profiles for BRSD(1000000)in winter term 2017/2018. 

Rank 1 2 3 4 5 6 7 8 9 10 

Prob match (%) 73.452 7.046 3.382 1.673 1.040 0.704 0.486 0.443 0.358 0.307 

AUPC in  (%) 73.452 80.497 83.879 85.553 86.593 87.297 87.783 88.226 88.584 88.891 

 
Our experiments confirm the theoretical result that BPS is (strongly) envy-free. BRSD 
is neither weakly nor strongly envy-free. In the winter term 1202 students do not SD-
prefer their outcome over the outcomes of every other student, and 451 of those students 
even prefer an outcome of another student (see BRSD(1000000) in Table 1). 

4.3 Discussion of Differences 

The results from our field experiments and the survey reveal a number of interesting 
insights. Overall, BPS dominates BRSD on all metrics from our empirical evaluation 
in both field studies. It has a better average rank, a higher average size and a higher 
probability of matching, and it does not exhibit envy. However, the differences in 
average rank, average size, and the profile curve (AUPCR) are small, which is 
interesting given the fact that only a small number of preferences per student are 
considered via FCFS.   

There are a number of reasons that help to explain the close performance of BPS and 
FCFS in these metrics. First, Che and Kojima [29] find that random serial dictatorship 
and probabilistic serial become equivalent when the market becomes large, i.e. the 
random assignments in these mechanisms converge to each other as the number of 
copies of each object type grows, and the inefficiency of RSD becomes small. Our 
empirical results suggest that differences might also be small in large combinatorial 
assignment markets with limited complementarities.  

Second, ordinal preferences do not allow expressing the intensity of preferences. 
Suppose there are two students who both prefer course  to , each having one course 
seat only. No matter who gets course , the average rank and size of the matching as 
well as the profile will be the same even though one student might desperately want to 
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attend , while the second student only has a mild preference for . Without cardinal 
information about the intensity of a preference, the differences in aggregate metrics can 
be small. 

5 Conclusions 

We report two large field studies and show that BPS performs well on a number of 
additional criteria including average rank, average size, probability of a matching 
among the first 100 ranks, and the overall profile of ranks (in terms of AUPC of a 
specific rank) assuming a complete, truthful, and strict ranking of all packages. The 
matching based on BPS is also more popular than BRSD based on the preferences 
submitted for BPS. The level of envy in FCFS is significant, even though the size of 
the packages that can be submitted is limited to the number of classes (three to four 
groups per package).  

The assignment of tutor groups is specific as preferences are mainly about times of 
the week. The preferred time slots in a week are different from student to student. 
However, the way how tutor groups should be ordered within these time slots (e.g., 
time for breaks) can be described with a few parameters such that it was possible to 
generate packages according to a score. 

The paper highlights basic trade-offs in market design without money: FCFS can be 
seen as a version of serial dictatorship, which is ex post efficient, and obviously 
strategy-proof and treats students equally. It is also transparent and simple to implement 
and to understand for students. BPS is a new randomized mechanism that is only 
weakly strategy-proof, but envy-free, and ordinally efficient. Note that these properties 
hinge on the availability of strict preferences over all, exponentially many, bundles. 

Even if the missing bids problem can be addressed, two important problems remain: 
First, in contrast to FCFS the BPS mechanism is not obviously strategy-proof4. Second, 
the assumption of strict preferences is strong in the presence of exponentially many 
bundles. Unfortunately, extending PS or BPS to preferences with ties is not without 
loss. On the one hand, Katta and Sethuraman [30] extended PS to preferences with 
indifferences and showed that it is not possible for any mechanism to find an envy-free, 
ordinally efficient assignment that satisfies even weak strategy-proofness as in the strict 
preference domain. On the other hand, with indifferences and random tie breaking 
efficiency cannot be guaranteed. Our preference elicitation technique generates a strict 
and complete ranking of course bundles based on a few input parameters and is one 
way to address these issues. 

The key difference between BPS and FCFS is the absence of envy. The level of envy 
in FCFS is significant. Note, that it might be even more pronounced if students were 
allowed to pick larger packages. If envy-freeness matters, the elegant BPS mechanism 
has a number of attractive properties and is computationally much less expensive 
compared to A-CEEI. 

                                                           
4 Remember that our empirical comparisons are based on the preferences reported in BPS. A part 

of these preferences might not have reflected the true preferences of participants, and the 
comparison might be biased towards BPS. 
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