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Abstract: In railway scheduling, the planning of time supplements is crucial to 
the robustness of the resulting timetable. Time supplements as a means to accom-
modate for train delays are often distributed according to operation rules and 
based on experience. A part of the project for strategic schedule optimization at 
DB Netze aims at improving the supplements distribution through learning of 
structures of delay propagation and transmission from historical railway opera-
tion data. The work at hand focuses on delay transmissions between trains. It 
employs correlations and correlation network analysis to identify and analyze 
these knock-on delays and to develop logical precedence orders of trains at cer-
tain operation points which can in turn be used in a sequential calculation of sin-
gle train delay propagation. Furthermore, it endeavors to establish a basis to iden-
tify strongly connected groups of trains and stations, thus forming relevant sub-
nets for further analysis. 

Keywords: data analytics, correlation network analysis, delay management, rail 
transportation, railway timetabling 

1 Introduction 

The German railway network is with a total of about 38,000 track kilometers the largest 
in Europe. The complexity of the timetabling process arises from three conflicting ob-
jectives that need to be balanced out. First, the capacity on the infrastructure, that is, 
allocation of trains to tracks, is to be maximized. Secondly, trains should operate with 
reasonably tight schedules and thirdly, the timetable must be robust against minor dis-
ruptions. 

This paper contributes to a research project that aims at optimizing the third aspect, 
the robustness, meaning that the number of trains and also the traveling times are fixed. 
One way to cope with minor disruptions and hence improve robustness is to include 
slack in the timetable, that is time supplements. The trade-off between scheduling slack 
to achieve robustness against unforeseen events and the goal to realize a schedule as 
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efficient as possible and to operate as many trains as possible is evident. To improve 
upon this trade-off by identifying optimization potentials within the current distribution 
of supplements is the greater goal. 

The project this work is part of is structured in the following way: First, we analyze 
delay propagation through the network of train operations. Clearly, if a train is delayed 
at a certain station, then this delay might still have an impact on the amount of delay in 
its next operation point. Moreover, delay may also be transmitted from one train to 
another. This happens for manifold reasons, e.g. passenger transits, track blockage and 
so forth. We implement a correlation network to detect the most important inter-train 
interdependencies. Then, in the second part of the project, we model delay propagation 
probabilistically, but only within one train operation and through the formerly detected 
interdependencies between trains. This gives us the possibility to see what happens, if 
the probabilities for a delay change, e.g. if trains always depart on time and so on. Fur-
thermore, this model will be the basis of an optimization task, which will be the third 
and last part of our project. We will apply algorithms that modify the distribution of 
time supplements and check whether delays might propagate less, thus yielding a mar-
ginally increased punctuality. 

The work at hand contributes to this project in the following way: We develop and 
deploy a novel approach to modeling railway train interdependencies with respect to 
the propagation and absorption of delays. As [1] have presented in their comprehensive 
survey, railway data analytics can benefit from employing Big Data methods. With a 
focus on scalability for the included development task, our paper explores and selects 
procedures and tests them on an exemplary large data set from German railway opera-
tions. This enables us to detect which trains have a dependency significant enough so 
that it should be included in the delay propagation model. Furthermore, the delay net-
works approach yields us the crucial trains and stations where a delay has a huge impact 
on many other trains in the network. It will prove wise to first optimize the punctuality 
of these trains, for instance in an initial solution of a future optimization algorithm. 

The outline of this paper will be as follows. In Section 2 we introduce the data from 
railway operations and motivate our choice of data selection. We then give a brief in-
sight in how we clean our data with respect to outliers, missing values and seasonality. 
What is next, we present our model for delay transmission. More precisely, we analyze 
the influence of the absolute value of delays of one train to the change of delay of a 
succeeding train. In Section 3, we start by discussing two measurements of this influ-
ence, namely the Pearson and the Kendall correlation coefficient. This gives rise to a 
delay transmission network that utilizes these measurements as weights on the edges of 
a network graph model. Section 4 ends with an analysis of a select example and the 
validation of the overall results. Finally, we give a short conclusion in Section 5. 
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2 Methods 

We focus on the effects of the total delay of an arriving train on the ability of any 
departing train to reduce prior delay by using up time buffer or the necessity to build-
up additional delay. Figure 1 illustrates this idea. We denote the total delay upon arri-

val as d and the change in delay as ∆d. The suspected relationship can be expressed by 
∆dDep = f(dArr) := Θ · dArr, where Θ is an arbitrary function which yields a measure of 
association.  

2.1 Data Selection: Region and Traffic Type 

As an example, for our analysis, we choose the long-distance train network in the south 
western region of Germany where we deal with two major railway corridors. The first 
one is from Basel to Frankfurt and the other one from Stuttgart to Cologne. These cor-
ridors meet in Mannheim, where a transfer is possible as the different long-distance 
train lines are synchronized there. This synchronization is the first reason to choose this 
region as we expect interdependencies of the long-distance trains there. Furthermore, 
the two corridors are highly frequented so that the capacities are fully saturated, and an 
optimization of slack is helpful. We discretize the corridors by flag stops and omit sig-
nals which do not involve a regular stop. Accordingly, this study focuses on the south-
ern part of the first corridor with stations Offenburg (RO), Baden-Baden (RBB), Karls-

ruhe (RK), and Mannheim (RM), the latter two being the cities with the second and 
third largest population in Baden-Württemberg, whereas the former stations are stere-
otypical for smaller sized cities. A large variety of train types is moving along the Ger-
man railway network. We generally distinguish between regular and irregular and long- 
and short-range passenger trains and freight trains. Since this work’s approach is to 
analyze regular train encounters with a focus on temporal precedence, and since freight 

Figure 1. Model for delay transmission between two trains. Train A arrives with a delay dA 
and train B with dB. The change in delay upon departure of train B is ranged between buffer, 

where ∆d = −dB, no change, where ∆d = 0, and increase, in which case ∆d. 
Source: own compilation. 
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traffic behaves structurally irregular, this work will abstract from freight trains and 
solely consider regularly running passenger trains - both long and short distance. 

2.2 Data Cleaning: Outliers, Missing Data, STL 

Before the actual data analysis can be performed, data must be cleaned and, if neces-
sary, transformed1. The data preparation procedure for the work at hand comprises of 
the following key activities: outlier detection and removal, handling of missing data 

and, finally, correction for trend and seasonality. 
 
Outliers. The univariate distribution of the total delay of a train and the change in delay 
cannot generally be expected to be symmetric. Positive delays occur more frequently 
than negative ones. The latter would imply that a train runs faster than necessary to 
maintain punctuality, which is inefficient and generally unwanted, whereas positive 
delay is an unwanted though inevitable phenomenon. Analyses of train delays of pas-
senger trains in the Netherlands [2, 3] showed right-skewed distributions of delay 
across trains. In fact, delays for railway trains are commonly modeled as log-normal, 
exponential, Weibull, or gamma distributed random variables [4]. In our data, the same 
asymmetry can be observed (see Table 1). Accordingly, the empirical distributions of 
our random variables are skewed, and their location parameters and moments shifted 
unevenly. Hence, symmetrical outlier detection methods, like Tukey’s fences [5], will 
falsely classify extreme observations on the heavy tailed side of the distribution as out-

liers and fail to detect outliers on the steep side. For this, [6] used the medcouple (MC) 
measure to adjust Tukey’s fences for skewness. The medcouple, as proposed in [7], is 
a robust and efficient measure for skewness with a contamination breakdown barrier as 
high as 25%2. It can be calculated in O(n log n) time. Thus, MC is a best compromise 
between robustness, complexity and skewness detection performance. For un-skewed 
distributions, both the basic and adjusted method yield the same results. However, if 
the data distribution is skewed, then the adjusted boxplot method accounts for the skew-
ness, even in the case of contamination due to the presence of far outliers. 
Using this method 13.95% of all cases were marked as outliers caused by either of our 
interesting variables. Out of all observations for the delay upon arrival 5.87% and for 

                                                           
1  Technologies like bootstrapping exist, where these preparation steps are not necessary, how-

ever, we expect them not to scale well. 
2 In 8 the asymptotic breakdown point of an estimator T is derived as

, where ɛ is the amount of deviant (i.e. contami-
nated) data, b the bias function, and ɛ∗ the minimum level of for which the estimate bias be-
comes infinite. 

Table 1. Number of trains, which are either right-skewed, symmetrical, or left-skewed. The 
skewness S was measured by means of the medcouple, showing that the majority of trains 

show exhibit right-skewness or approximate symmetry for both d and ∆d. 
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change in delay 8.34% where marked as outliers both of which lie well within the 
breakdown range of MC. 

 
Missing Data. Based on expert knowledge, many occurrences of missing observations 
in the dataset have been rectified prior to the import into the RDBMS3. However, miss-
ing values for both variables persist. In order to decide upon the correct means of deal-
ing with missing values, first, the cause of their absence must be identified. In data 
mining, three mechanisms of missing data are distinguished: missing at random 

(MAR), missing completely at random (MCAR), missing not at random (MNAR) 
[9]. If the occurrence of missing values is completely unrelated to the manifestations of 
the variable itself and other observed data, the underlying mechanism is MCAR and 
can be considered as ignorable [10]. The occurrence of missing values in the data seems 
unrelated to other relevant variables in the data set and is due to the lack of contradicting 
evidence assumed to be caused by MCAR. MCAR with as low occurrence rates (3.26% 
of the values for delay upon arrival and 4.95% of the values for change in delay) as in 
the present data can be treated with the complete-case method, by which only complete 
observations will be regarded in the analysis4. 
 
Trend & Seasonality. We can identify systematic differences in delays and the delay 

differences between days of the week. On average, the total delay upon arrival at an 
operation point peaks on Fridays. Analogously, the ability to reduce delay seems to 

                                                           
3        Relational Database Management System: Maria DB (https://mariadb.org/). 
4    We have added binary dummies, representing missingness in the total delay and in the change 

in delay, and then checked, whether they are correlated with each other and with the original 
values. Furthermore, we have performed a pairwise contingency test for the dummies and 
cardinal variables (train type, source station), and only found evidence for a, though signifi-
cant, rather weak association between them (Cramér’s v ≤ .30). We found that missingness 
for the total delay and change in delay are strongly connected (ρ = .782). In most occurrences 
of missingness in either variable the other was missing as well, which supports the use of the 
complete case method. At the same time, missingness appears to be virtually unrelated to the 
absolute values of the delay variables. 

Table 2. Average total delay and change in delay by days of week. 
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decrease (see Table 2). The Wilcoxon rank sum test to compare medians of unpaired 
samples shows that the daily means are significantly shifted5. In addition, temporary 
rescheduling might lead to a-cyclical local and global trends, which must be addressed. 
To model the described trends and weekly patterns, we use an additive component 
model. The decomposition is achieved using a combined approach called seasonal-

trend decomposition procedure based on LOESS (STL), as presented in [11]. 

2.3 Data Engineering: Cumulated Delay, Train Encounters 

As the change in delay of a train after its departure shall be analyzed, data rows which 
constitute a departure process are merged in order to obtain the cumulated change in 

delay. Furthermore, as this study focuses on associations between train delays at spec-
ified operation points and at specific times, encounters of one train with another are 
obtained by matching the time of arrival of an incoming train with the time of departure 
the departing train at an operation point. Lastly, relevant and valid subsets must be 
selected with respect to the size of the resulting sub-samples. 

 
Cumulative Change in Delay. The process of a train arriving and departing at an op-
eration point is established as a sequence of events connected by activities called an 
activity-event network ([12, 13], similarly). A simplified version of such a network is 
depicted in Figure 2. The nodes in the graph represent signal passing events and links 
between event nodes indicate the transitions from one activity to the other, e.g. the train 
moving from signal to signal. Each transition can result in a change in delay ∆d. The 
total delay d of a train i upon arrival can be represented as the difference between its 
scheduled time of arrival tˆa

i and its actual time of arrival ta
i , at that time: di(tˆa

i ) = ta
i − tˆa

i This approach is rather straightforward and the resulting delay indiscriminately 
encompasses primary and secondary delays, which the train in question has accumu-
lated during its course up until arriving at the respective operation point. The change in 
delay during the train’s departure follows a slightly more complex pattern. As the reader 
can see in Figure 2, a change in delay can be the result of transitions (2) or (3) simulta-
neously. The delay change during one transition from tk to tj, ∆di(tk,tj), can be calculated 
as ∆di(tk,tj) = d(tk) − d(tj). For the work at hand, it is considered negligible which tran-
sition causes the build-up or decrease in delay, given that it is induced by the delayed 
arrival of another train. We accept the possibility for causes of the change in delay (e.g. 
passengers boarding and alighting), however, abstract from it. Because there is a sys-
tematic element in how the change in delay is distributed across phases, only the com-
bination of all phases is considered. For simplicity, in this work a linear combination, 
i.e. the sum, will be applied: , where n ∈ N ∧ n < 

k Putting the above equations together and simplifying yields the cumulated change in 

delay: ∆di(tk,tk−n) = d(tk) − d(tk−n). 

                                                           
5     As can be guessed from Table 2, the medians for Fridays and Saturdays as well as Wednesdays 

and Thursday are not significantly different. 
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Train Encounters. Extracting actual train encounters is an important preparatory step 
for the analysis. The following gives a concise definition of what is meant by the term 
encounter: For the purpose of this work, the arrival of one train i and the departure of 
a train j are considered an encounter, if the target operation point of i equals the start 
operation point of j, and, if the actual arrival time of , was less than 10 minutes 

before the time of departure of . Following this understanding, encounters imply 

temporal precedence, e.g. it is logically assumed that a train can only pass its delay on 
to trains, which depart at a later time, and never to trains that have already left the op-
eration point. This assumption generally holds, however, the opposite direction is not 
inconceivable, as the dispatcher may always take action to create a situation in which 
one train passes its delay on to a preceding train and thus works as a time forwarding 
transmitter. In the further analysis, this inversion does not constitute an encounter. 

Exclusion of Small Sub-Samples. For this paper, we consider only pairs of trains 
which have a minimum number of 30 encounters, using the method presented in [14] 
to determine exact sample sizes. These sizes depend on pre-estimated correlation coef-
ficients, which are determined either through expert knowledge or prior research. For 
this work, the overall correlation between the d and ∆d serves as an estimate for the 
expected magnitude of ρ and τ. 

3 Constructing the Delay Transmission Network 

3.1 Pearson’s Product-Moment Correlation Coefficient ρ 

For continuous variables which are at least interval-scaled Pearson s product moment 

correlation coefficient is a measure of choice. It gives the change in a random variable 
X which coincides with an increase or a decrease in another variable Y and vice-versa. 

Figure 2. In (1) the train leaves the section prior to the station and enters its area. The train then 
arrives at the platform/station track (2) and leaves the platform in (3). In (4) the train leaves the 
station area for the next section. Between events (2) and (3) the train dwells at the platform for 

boarding and alighting or a conductor change etc. Source: own compilation based on [13]. 
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The coefficient is defined for the interval [−1,+1] and measures the strength and direc-
tion of a linear association between two variables. A negative sign indicates an anti-
proportional relationship and a greater absolute value implies stronger association be-
tween the variables. If the coefficient is equal to 0, the two features do not exhibit any 
linear relationship. However, a non-linear function to describe their relationship might 
still exist [15]. The product-moment correlation coefficient for random variables X and 
Y is given by  where x and y are realizations 

of the variables. Thus, the interpretation of the calculated coefficients is rather straight-
forward: Let X = dk

ij denote the absolute delay upon arrival of a train i at a station k in 
an encounter with a train j. Furthermore, let Y = ∆dk

ij signify the change in delay of that 
train j in an encounter with the preceding train i. Then ρ(X,Y ) gives the amount of time 
by which ∆dk

ij would increase or decrease, if dk
ij were to be increased or decreased by 

one second. In other words, ρ is the extent to which the delay of train i proportionally 
influences the aggregate delay build-up (or reduction) of train j during dwelling and/or 
departure. ρ(X,Y) = 1 means that an increase or a decrease by one second of delay in 
train i fully translates into an increase or a decrease in the change in delay by that same 
amount and ρ(X,Y) = −1 means the exact opposite. 

3.2 Kendall’s Rank Correlation Coefficient τ 

For ordinal variables, Kendall s rank correlation coefficient is an appropriate measure. 
Its interpretation is very similar to Pearson’s coefficient, however, it does not measure 
the linear relationship between two features, but whether both variables share the num-
ber of discordances, instead. We use a modified version of the coefficient, tau-b, which 
accounts for rank ties. The rank correlation coefficient τb, corrected for the bilateral 
presence of ties is defined as  where TX and 

TY denote the number of ties in the rank pairs of X and Y (in adaptation of the formula 
given in [16]). In this paper, Kendall’s τ will serve as a verification instrument for Pear-
son’s coefficient, as it is non-parametric and, other than ρ, is resilient even in the pres-
ence of far outliers [17]. 

3.3 Graph Theory & Network Analysis 

This paper employs elements of graph theory and network analysis to further analyze 
relationships between trains. While a multitude of applications for network analysis in 
exploratory data analysis exists, if the network properties of the available data are evi-
dent [18], this toolbox has also found use in areas where graphical structures in the 
underlying data are less ostensible. Examples can be found in qualitative studies where 
covariates to an interesting outcome might exhibit multiple moderation effects [19], 
and, for some time now, in genetics where network-graphs are created based on corre-
lations as a similarity measure for gene-expression states ([20, 21]). The foundation of 
a network structure is a graph G which comprises of vertices and edges. If two vertices 
are connected by an edge, they are called adjacent. Hence, G can be represented by its 
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adjacency matrix AG = [aij] in which each aij represents the number of connections be-
tween two nodes i and j. Every graph H with vertices and edges from G restricted by the 
adjacency matrix AG is a subgraph of G. A network is a graph-based structure and its 
interpretation specific to the application-domain – the network graph. It is formed from 
nodes (vertices) which are connected through links (edges) and extends the graph 
model with additional attributes for vertices and edges. A typical addition in the net-
work context is the assignment of weights wij to each link. A weight matrix WG would 
have the same shape as the adjacency matrix of the underlying graph. A network, in 
which the links have weights of arbitrary value, is called a weighted network. If links 
in the network connect ordered pairs of nodes exclusively, then the network (graph) is 
directed [22]. 

3.4 Constructing the Delay Transmission Network 

The proposed network is based on a graph consisting of a set of vertices (vi ∈ V ) 
which each represent a respective train (number). Relationships between trains are ex-
pressed through a set of directed links eij ∈ E ∀ (vi,vj) ∈ (V,V ) in the network graph. 
These directed links represent the dependency of the target node’s change in delay from 
the source node’s total delay. Weights in the constructed network are based on the cor-
relation coefficients. In the constructed network graph, link weights are interpreted as 
similarities or the relative closeness between adjacent nodes. Hence, on the one hand, 
while negative weights are not generally inconceivable (for example [23]), they are 
implausible in the current application context. Negative values for the correlation co-
efficients, on the other hand, are very plausible, and must be dealt with prior to per-
forming the network analysis. Otherwise, the resulting negative and positive weights 
might bias weighted and distance-based network measures. The application of soft-
thresholding produces weights for the proposed network. In this work they are obtained 
based on the arithmetic means of the correlation coefficients γ: Let γ be the mean of 
the correlation coefficients ρ and τ and let exist an arbitrary number λ ∈ < then the 
weight wij for the link connecting the nodes i and j is given by . The 

resulting values fit the interval [0,1[, thus, preserving information on the strength of 
the respective correlation. Additionally, the exponent λ is included. Performing this 
operation from the Tukey-ladder of power-transformations [5] adds the ability to re-
duce tail weights in the coefficients’ distributions. 

3.5 Measuring Network Properties 

In this paper, we use the node strength as an indicator for the importance of a node. 
The node strength respects the strength of ties with other nodes in the network and 
calculates as the sum of link weights [24]. Of particular interest for this paper is the 
out-strength 𝐷𝑖 𝑝𝑘 = ∑ 𝑤𝑖𝑘  𝑖 ≠ 𝑘 and in-strength 𝐷 𝑝𝑘 = ∑ 𝑤𝑘𝑖𝑖≠𝑘  – analogous to 
the degree-measures. 

An adequate means to identify possible moderation-effects, which certain trains 
might have, is betweenness centrality (CB) as detailed in [25]. It can be considered a 
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measures of a node’s overall connectedness with the network6. The betweenness bij(pk) 
of a node k with respect to two other nodes i and j is defined as the ratio of the number 
of paths between i and j which contain k, and the number of all paths connecting i and 

 Betweenness Centrality (BC) is the sum of a node’s be-
tweenness for all node pairs formed from the n − 1 other nodes in the network: 

 

4 Evaluation 

In the following section, we take a look at some select examples and evaluate the ap-
proach. We have implemented it using GNU-R7. Furthermore, we have used Gephi and 
Inkscape for visualizations. 

4.1 Results 

In the subset around the four selected operation points, we can observe the following 
data as follows. 
 
Number of Trains by Operation Point. Figure 2 shows the number of trains arriving 

and departing at the respective operation points and the distribution of different train 
types. As was expected, Mannheim and Karlsruhe handle much more than twice as 
much traffic as the two smaller operation points. 
 

                                                           
6    The concept of betweenness was originally used as a measure of a person’s ability to influence 

a group. A high betweenness would mean that a person is able to control the flow of infor-
mation in the network. 

7    To name the central libraries: reshape2, RMySQL, dplyr, broom (data handling); robustbase, 
stlplus (outlier removal, detrending, de-seasonalization); igraph (network modeling); ggplot2 
(visualization). 

Figure 2. Number of trains arriving (A) at and departing (D) from the selected operation 
points. Source: own compilation. 
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Number of Encounters by Operation Point. Accordingly, we were able to extract 
encounters, as presented in Figure 3. The smaller operation points, RO and RBB, on the 
one hand, show a similar distribution having most trains being involved in well less 
than 1000 encounters. The larger operation points, RM and RK, on the other hand, ap-
pear to be very different. The Mannheim plot looks like a scaled version of that of the 

former two. At RK, most trains have even fewer encounters than in the smaller opera-
tion points, and at the same time, very few trains have a great number of encounters. 
This would appear to be a result of regular strong peaks in the number of arriving and 
departing trains. 

Correlation Coefficients. The Kendall and Pearson correlation coefficients’ distribu-
tions show similar patterns, with the median indicating a weak negative correlation. 
Both have a cluster in the weak to medium positive correlation range. In Figure 4, these 

train couples appear as outliers on the right side of the scale. However, Kendall’s τ 
doesn’t reach the extremes of the scale (−1,1) as much as ρ does. 

4.2 Examples 

To test the approach, the described network was constructed for the Mannheim opera-
tion point. As for the link weights, we regard only significant correlation coefficients 
for τ (with α = 0.05) and with maximum CI range of 0.3 for ρ. The resulting density 

Figure 3. Number of encounters by train at the selected operation points. Given is the count of 
all encounters a train is involved in (as both arriving and departing). Source: own compilation. 

Figure 4. Comparison of the two correlation measures. Source: own compilation. 
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distribution is almost Gaussian with a mean of −0.12. There are several strongly con-
nected trains for which an increase in delay upon arrival in one train coincides with an 
increase in the change in delay in the other. In Figure 6, the relationship between dif-
ferent trains is presented. There clearly exists a positive relationship between delay 

upon arrival and the change in delay. Figure 5 (a) plots the total delay of long-distance 
passenger train LR-A against the change in delay of another long-distance passenger 
train LR-B. Figure 5 (b) plots the delay of a regional train SR-A against the delay change 
of a long-distance passenger train LR-C. Both situations seem plausible. The trains’ re-
spective planned arrival and departure in each coupling are at least 7 minutes apart, 
qualifying as a connection. While the correlation between the trains in pair (a) is rela-
tively strong by comparison, that in (b) finds week support, as the dots are rather une-
venly distributed. It is possible, nonetheless, that the correlation in (b) is due to a feeder 
train relationship, i.e. that SR-A is a feeder for LR-C. Table 3 represents the network 
characteristics of our examples. The out-strength of all long-distance passenger trains 
is in the 3rd and 4th quartile (median: 0.32) of the strength distribution for Mannheim 

and can be considered as medium to highly influential for this operation point. Most 
trains, which exhibit strong outgoing links, are long-distance passenger trains as well. 
LR-A is also a highly influential train; however, it has incoming links. Yet, it is the only 
train with a link to LR-B, which is the target of only one incoming edge. This example 
is remarkable, as LR-B, on many days, has no change in delay, at all. On other days, it 
reduces delay, probably prompted by its own delays. However, its ability to decrease 
delay seems to be negatively related to the total delay of LR-A. Similarly, LR-C’s change 
in delay is correlated only with the total delay of SR-A. However, the latter exhibits a 
higher in-strength and little out-strength. In the respective figure, we can ascertain that 
the correlation is rather weak (ρ = .123 and τ = .195), yet significant. 

(a) LR-A on LR-B    (b) SR-A on LR-C 

Figure 5. Scatter plot for encounters of trains with positive correlation in Mannheim. 
LR:= long-distance train; SR:= regional train. Source: own compilation. 
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 Out-Strength In-Strength Out-Degree In-Degree Betweenness 

LR-A 0.68 0.48 3.00 2.00 0.00 

LR-B 0.51 0.30 2.00 1.00 0.00 

SR-A 0.16 0.57 2.00 2.00 0.00 

LR-C 0.65 0.16 2.00 1.00 0.00 

Table 3. Exemplary trains and their network characteristics. 

Betweenness values are generally very small. With means at .012 and .031 and max-
imum values at .17 and .005, moderation effects for the delay transmission appear neg-
ligible. This seems to be due to the fact, that the network is not well connected. The 
observable formation of cliques indicates that the transmission of delays is restricted to 
certain “areas” of times during the day. 

4.3 Validation 

To validate the results, we have extracted a sub-sample from the train encounters by 
randomly selecting 70% of all encounters of each pair of trains. This serves as the train-
ing set on which we perform the analysis, as described above. The remaining 30% serve 

as our test set. Figure 8 shows the distributions of differences at the four focal operation 
points. As can be seen, the larger operation points Mannheim and Karlsruhe exhibit 
slightly higher errors for all train pairs (i.e. lower accuracy) and higher variance in 
means than the smaller ones. However, the means are kurtotically centered around a 
gravity center close to zero. The overall mean squared error (MSE) for the predicted 
∆d is 149,999.59 (vs. 265,952.12 with mean values). Many of the individual models 
perform very poorly, however, some perform well - with the best R2 of 70.70%. 

Figure 8. Boxplots for the distribution of differences for predicted vs. observed ∆d for each 
pair of trains at the respective stop (10%-trimmed). Predictions were obtained by multiplying 

the total delay of the incoming trains with the estimated Pearson correlation coefficients. 
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5 Discussion & Conclusions 

As was stated, as of now, no distinction is made between secondary and primary delays. 
This is simply due to the fact, that recognizing true secondary delay build up, would go 
beyond the scope of the research task completed in this work. Discerning primary and 
secondary delays requires additional modeling, an approach that is discussed further in 
this section. Furthermore, our understanding of negative correlation coefficients is 
somewhat inconclusive. A working hypothesis is that negative correlations indicate dis-
continuities in the development of the change in delay, such as train order swaps; such 
that up to a certain arrival delay, transmission occurs until a threshold is reach, when 
transmission decreased towards 0. The correlation coefficient might then be negative. 
In addition, further sophistication in the data preparation process or just broadening the 
data selection might consolidate interpretability and facilitate a better understanding. In 
the work at hand, an approach for the analysis of train delay propagation was demon-
strated. As a result, train interactions can be determined for selected railway networks. 
These will be used as inputs at subsequent project stages, where we plan to use these 
inputs to retrieve a computation order for a by-train-optimization of time supplements. 
Further validation and verification will be part of further project stages. This involves 
expert evaluations and the inclusion of information on passenger movements, which 
has not been available to us, so far. 
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