

Jo
ur

na
l o

f t
he

 A
ss

oc
ia

tio
n

fo
r I

nf
or

m
at

io
n

Special Issue

U. Yeliz Eseryel
University of Groningen
u.y.eseryel@rug.nl

Open innovation is increasingly important for researchers and practitioners alike. Open innovation is closely
linked to knowledge creation in that, with open innovation, knowledge inflows and outflows are exploited for
innovation. In the information systems field, open innovation has been closely linked to open source software
development teams. However, the literature has not yet identified how open source software development
teams use information technologies to create knowledge to bring about open innovation. This study fills in this
gap by asking the following research questions: RQ1) How do innovative open source software development
teams create knowledge?, and RQ2) What types of information technologies do innovative open source
software development teams rely on for enabling knowledge creation? I answer these research questions with
a revelatory case study. The findings contribute to the knowledge management theory by identifying how three
of the four knowledge creation modes identified by Nonaka and Takeuchi (1995) manifest through different
behaviors in the IT-enabled open innovation setting compared to behaviors observed in the organizational
setting. The findings also contribute to information systems theory by identifying the role of information
technologies in enabling knowledge creation for open innovation. This study further provides researchers and
practitioners with ways of identifying knowledge creation by analyzing information technology artifacts, such as
mailing lists, issue trackers, and software versioning tools.

Keywords: Open Innovation, Open Source Software, Knowledge Creation, Knowledge Management, Case Study.

Volume 15, Special Issue, pp. 805-834, November 2014

IT-Enabled Knowledge Creation for Open Innovation

* Lorraine Morgan was the accepting senior editor. This article was submitted on 5th August 2013 and went
through two revisions.

Volume 15 Special Issue

Abstract

 IT-Enabled Knowledge Creation for Open Innovation

1. Introduction
Innovation is as an idea, practice, behavior, or artifact that is perceived as being new by the adopting
unit (Daft, 1978; Damanpour, 1987; Tushman & Nadler, 1986; Zaltman, Duncan, & Holbek, 1973).
The literature identifies two types of innovations: 1) product innovations, which involve the
development of new technologies, products, and services; and 2) process innovations, which involve
a change in the way a product is made or a service is provided (Robey, 1986; Zmud, 1982). Product
or process innovations can be disruptive by replacing similar products or outperforming traditional
ways of working, consequently giving the innovators a competitive advantage (Barlow & Li, 2010).
While the term innovation usually brings to mind disruptive innovations that change markets,
innovations can also be incremental in nature (Barlow & Li, 2010). Incremental innovations represent
cumulative changes in a process or product in the form of "minor improvements or simple
adjustments in current technology" (Dewar & Dutton, 1986, p. 1423). Orlikowski (1991, p. 5) suggests
that "new versions of a particular computer software constitute incremental innovations as they
enhance or extend existing features and capabilities" (as opposed to a new software design and
architecture as in the case of IBM's database product DB2, which moved to a relational database
structure from a hierarchical one). Thus, for the purposes of (open source) software, the development
of new features constitutes an example of incremental innovation.

Open innovation is the process of systematically encouraging and exploiting a wide range of internal
and external knowledge sources for accelerating innovation (Chesbrough, 2003; Conboy & Morgan,
2011). External factors such as technology explosion, shortening of technology development cycles,
and the globalization of technology change how companies organize their research and development
activities (Trott & Hartmann, 2009). Specifically, there has been a move towards increasing openness
in innovation strategies stemming from shorter innovation cycles, industrial research, and the rising
costs of development (Gassmann & Enkel, 2001). Various authors define openness is defined as the
number of different sources of external knowledge that a firm draws on in its innovative activities
(Conboy & Morgan, 2011, p. 537).

In the software development context, open innovation often brings to mind open source software
development teams. This is perhaps because teams developing the Linux operating system and the
Apache server (among others) have been wildly successful in exploiting knowledge that is spread
around the world. They are able to tap into globally distributed knowledge to create high-quality
software that competes against high-profile commercial software. Open source software development
teams are teams of individuals who collaborate from around the world using information technologies
to develop software, the source code of which is available to be viewed and changed. Von Hippel and
von Krogh (2003) identify open source software development as a unique compound of private
investment and collective action models of innovation. They call the open innovation model provided
by open source software development teams as “private-collective innovation model” and define it as
a model where participants “use their own resources to privately invest in creating novel software
code…and choose to freely reveal it as public good” (Von Hippel & von Krogh, 2003, p. 213). The
movement towards openness in software development is seen either in the form of traditional
companies such as IBM increasingly utilizing open source software or companies such as Nokia
incorporating the open innovation practices of open source software teams into their proprietary
methods (e.g., Conboy & Morgan, 2011; Dinkelacker, Garg, Miller, & Nelson, 2002; Fitzgerald, 2006;
Gurbani, Garvert, & Herbsleb, 2010). There is an ever-increasing movement towards using either
open source software teams or their technology-intensive practices that foster open innovation
(Dinkelacker et al., 2002; Gurbani et al., 2010; Morgan, Feller, & Finnegan, 2011; Wesselius, 2008).
This trend can be explained by the fact that innovation and creativity are at the core of software
development (Brooks, 1995; Carayannis & Coleman, 2005; Cougar, 1990).

In understanding how open source software development teams provide open innovation, we can use
Nonaka and Takeuchi’s (1995) approach to investigating innovation, which they used to examine
Japanese companies’ innovation processes. Nonaka and Takeuchi identify knowledge creation as the

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 806

Eseryel / IT-Based Knowledge Creation for Open Innovation

source of innovation (Figure 1) and they explicate the innovation process of the Japanese companies
by studying their knowledge-creation processes.

Figure 1. Knowledge as the Source of Innovation (Nonaka & Takeuchi, 1995)

They identify that innnovative Japanese companies continuously innovate by bringing in external
knowledge, sharing it widely within themselves, and using it to develop new technologies and products.
Innovative Japanese companies also share this knowledge back with those outside the company.

Knowledge is the most valuable resource for software development (Robillard, 1999) and a key
ingredient of open innovation. Critical problems faced in software development may be addressed by
improvisation and innovation (Brooks, 1995) using different types of knowledge. Innovative activities
play a key role in all aspects of development starting from requirement definition through to program
design (Cougar, 1990), which are all areas that require specialized knowledge. Innovation is required
because rapidly evolving technology changes the software development in that it influences which
resources should be utilized and how. Increasingly, software development requires more-complex
solutions (Cougar, 1990).

There is a lack of understanding about how different methods and technologies can facilitate
innovation in software development in general (Conboy & Morgan, 2011). As reflected in open
innovation’s definition (Chesbrough, 2003), internal and external knowledge transfer across
boundaries is the core enabler of open innovation. While the IS field treats knowledge management
and open innovation as separate literature streams, open innovation depends heavily on knowledge
creation, knowledge sharing, and knowledge management. Therefore, the information systems theory
should contribute to the open innovation theory by explicating how information systems enable
knowledge creation in open innovation teams. To this end, I pose the following research questions

RQ1: How do innovative open source software development teams create knowledge?
Specifically:

RQ1a: What type of knowledge-creation modes and behaviors exist in

innovative open source software development teams?

RQ1b: How do the developers and users contribute to knowledge creation in

innovative open source software development teams?

RQ2: What types of information technologies do innovative open source software

development teams rely on for enabling knowledge creation?

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

807

Eseryel / IT-Based Knowledge Creation for Open Innovation

To answer these research questions, I conducted a revelatory case study a highly innovative open
source software development team.

2. Literature
Companies find knowledge sharing an important strategic goal, albeit one that is highly challenging
(Davenport, 1996; Davenport, 1997; Orlikowski, 1993). According to the KPMG Consulting (2000), 80
percent of U.S. corporations reported having knowledge management initiatives (which are
technology or process initiatives) that aim to improve knowledge creation and sharing in and outside
themselves. Ambrosio (2000) reports that at least half of all knowledge management initiatives fail.
Open source software development teams provide an ideal case of knowledge creation and sharing
among developers and users1. Research organizations, governments, and corporations increasingly
want to emulate the open innovation model presented by open source software development teams
(Chesbrough, 2003; Davenport, 1997; Goldman & Gabriel, 2005; Morgan et al., 2011).

In order to emulate the open innovation model of open source software development teams, first, the
types of knowledge creation that happens in these environments need to be identified. Second,
researchers point out to the need to identify how different internal and external members contribute to
knowledge creation. For example, Agerfalk and Fitzgerald (2008) find it crucial to understand the
differences in the knowledge contributions of different types of developers (Agerfalk & Fitzgerald,
2008). Other researchers suggest that, in order to create open innovation communities similar to
open source software development teams, companies need to engage in and harvest external
knowledge by outside contributors (von Krogh, Spaeth, & Lakhani, 2003; West & O'Mahony, 2005).

Yet, the types of knowledge-creation processes and behaviors that contribute to open innovation to
innovate and the role of information technologies in enabling such knowledge creation are not known.
Because knowledge creation lies at the heart of open innovation, in Section 2.1, I discuss a prominent
theory on knowledge creation. I use this theory to identify the knowledge-creation behaviors in open
innovation settings and how information technologies enable them.

2.1. Knowledge Creation
While there are various definitions of knowledge (see Eseryel, Eseryel, & Edmonds, 2005 for a
summary), I define it in this paper as applied information that actively guides task execution, problem
solving, and decision making (Liebowitz & Beckman, 1998). I use this definition because it highlights
two aspects of knowledge: 1) that it is processed information; and 2) that it guides action. Nonaka and
Takeuchi (1995) argue that knowledge creation occurs first at the individual level, and then, over time,
this knowledge becomes organizational knowledge.

At the epistemological level, Nonaka and Takeuchi (1995) identify two types of knowledge: tacit2 and
explicit. Tacit knowledge is difficult to codify and articulate because it arises out of experiences. In
contrast, explicit knowledge can be documented and passed on from an individual to others with
relative ease. In this study, in line with Nonaka and Takeuchi (1995), I operationalize knowledge
creation as a movement between tacit and explicit knowledge.

1 In this paper, I use the term “developers” to refer to the core team members in an open source software development team. Users
are the peripheral members who are not part of the core team. Yet, users make contributions in the form of bug reports, and from
time to time small fixes. In open source software, developers very typically also use their own software (Agerfalk et al., 2008). The
distinction between developers and users is not based on whether or not an individual uses the software. Rather, the distinction is
based on whether an individual is part of the core development team (i.e., playing a developer role) or not. It is possible to use core
versus periphery to indicate this relationship; however in this paper, following Agerfalk et al. (2008), I use “developer” versus “user”.

2 While the conceptualization of Nonaka and Takeuchi is often cited, and also used in this paper, Polanyi (1966) coined the term
tacit knowledge.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 808

Eseryel / IT-Based Knowledge Creation for Open Innovation

Table 1. Modes of Knowledge Creation (Adapted from Nonaka and Takeuchi, 1995)
Knowledge creation-

mode
Knowledge creation

(from to)
Strategies for knowledge creation in this mode

Socialization Tacit tacit
Socialization refers to shared-experience via
observations, imitation, and practice in a specific
context (e.g., apprentice-master model).

Externalization Tacit explicit
Externalization refers to collective reflection. This
happens by sequential use of metaphors, analogy, and
modeling.

Combination Explicit explicit

Combination refers to reconfiguration of existing
information. This happens by sorting, adding,
categorizing, combining existing information found in
written documents (e.g., reports, memos, e-mail, books,
etc.) and verbal exchanges. Knowledge management
technologies support creation of knowledge in this
mode.

Internalization Explicit tacit

Internalization happens via self-reflection and
documentation such as verbalizing or diagramming new
personal experiences and knowledge into documents,
manuals, and oral stories.

Nonaka and Takeuchi (1995) identify four modes of knowledge creation that transfers knowledge
among the individuals resulting in organizational knowledge creation (Table 1). The modes of
knowledge conversion include socialization (from tacit to tacit knowledge), externalization (from tacit
to explicit knowledge), combination (from explicit to explicit knowledge), and internalization (from
explicit to tacit knowledge).

2.2. Open Innovation and Knowledge Creation in Open Source Software
Development Teams

Open source software development teams are open innovation teams that use a private-collective
innovation model; that is, participants use their own resources to privately create novel software code
and they share this code for free (von Hippel & von Krogh, 2003). In open source software projects,
the developers create most of the innovation because the developers, rather than the software
manufacturers, are the ones who make most of the contributions (von Hippel & von Krogh, 2003, p.
214). von Krogh et al. (2003) emphasize the importance of setting up structures that enable
knowledge contribution. I discuss the open source software team structure and how it is set up for
knowledge creation below.

We can summarize the open source software team structure as developers at the core and active
users at the periphery (Crowston & Howison, 2006). While the developers at the core play a key role
in designing and initially developing software, the users at the periphery contribute notably to software
development and the sharing of relevant knowledge at open source software teams (AlMarzouq,
Zheng, Rong, & Grover, 2005; Cox, 1998; Crowson & Howison, 2005; Gacek & Arief, 2004; Mockus,
Fielding, & Herbsleb, 2002). The users at the periphery contribute their time and innovativeness to
improve the product quality (Setia, Rajogopalan, & Sambamurthy, 2012). Users contribute to open
innovation by infusing new ideas to improve the software (Chesbrough, 2003; Setia et al., 2012). Von
Hippel and von Krogh (2003) typically identify the “novel software code” as the innovation provided by
the open source software teams. They find that the cost to the innovator of freely sharing their
software code is very low. The rewards, in return, include reputation and reciprocity (Lerner & Triole,
2000; von Krogh, 2002).

Setia et al. (2012) find that the peripheral participants (users) contribute to software’s quality and its
popularity. For example, with Linux, the users at the periphery generate patches and they report

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

809

Eseryel / IT-Based Knowledge Creation for Open Innovation

software bugs (Lee & Cole, 2003) and thereby contribute their knowledge to the innovation process.
Developers at the core then evaluate these contributions and provide suggestions for the work in
progress to encourage improved variations in the new product development process (Lee & Cole,
2003). An important future research area identified by Setia and colleagues (2012) is whether
information technologies can further facilitate more effective contributions from peripheral users,
which may contribute to increased innovation.

At the core of open innovation is knowledge creation. For example, Lee and Cole’s (2003)
community-based knowledge-creation model includes an innovative process. They suggest that the
community-based knowledge creation involves rules and structures that encourage members to
critically evaluate existing knowledge, innovate, and rapidly eliminate error. Presence of knowledge
creation in open source software teams can be evidenced by the existence of bountiful learning
opportunities (Hars & Ou, 2001; Hermann, Hertel, & Niedner, 2000; Himanen, Torvalds, & Castells,
2001; Kohanski, 1998) and various practices for socialization (Crowston & Annabi, 2005; Weber,
2004), and product and process documentation.

An important aspect of knowledge creation in open source software development teams is providing
criticism and correcting errors (Kogut, 2000; Lee & Cole, 2003). In most of the open source software
development literature, error correction and criticism refer to the ability of the developers to: 1) review
the source code that is submitted by other team developers, and 2) criticize and correct the code as
needed (Lee & Cole, 2003). Lee and Cole (2003) observe that the peer review process meets a key
condition for knowledge growth. The information technologies that are archived and publicly available
allow developers to rapidly exchange knowledge, compare facts, search, and discuss changes (Lee &
Cole, 2003).

3. Research Method
In this section, I discuss how I identified the context, selected the case, sampled the archival data,
developed a content analysis schema, and analyzed the data with this schema.

3.1. Context and Case Selection
For this study, I selected an open source software development team in the Apache Software
Foundation because Apache provides a revelatory setting for successful open source software
development (Thomas & Hunt, 2004) and for successful open innovation. Secondly, Apache Software
Foundation has managed to transfer the successful open innovation practices of the Apache Web
server team to more than a hundred other open source software development teams. Understanding
these open innovation practices are important for organizations for emulation purposes.

Because I wanted to identify the knowledge creation activities in innovative open source software
development teams, I selected a highly successful and innovative team in the Apache Software
Foundation based on informal conversations with Board Members of the Apache Software Foundation.
These Board Members follow all Apache projects. Apache Lucene (referred to shortly as “Lucene”) is
a high-performance, full-featured text search engine library written in Java (http://lucene.apache.org)
that’s suitable for applications that require full-text search. Lucene provides Java-based indexing and
search technology, spell checking, hit highlighting, advanced analysis, and tokenization capabilities.

Lucene exhibits both product and process innovation as explicated to me by the team’s founder as
follows. The team innovates at the product level by “using a very novel architecture by using a
scalable indexing method, which permits incremental changes. Furthermore, by being object oriented,
Lucene enables the developers to easily extend and customize its functionality”. Furthermore:

Lucene is one of the earliest search systems using open source model of software
development. This model enables our customers to easily build search into their
applications without contracts and licensing fees, arguably also influencing the business
model in the long run.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 810

Eseryel / IT-Based Knowledge Creation for Open Innovation

The process Lucene used is an example of the “private-collective innovation model”, in which
participants “use their own resources to privately invest in creating a novel software code…and chose
to freely reveal it as public good” as defined by von Hippel and von Krogh (2003, p. 214). Apache
Lucene is used by more than 4,000 organizations worldwide. Due to the success of Lucene, in 2008,
Lucene developers received a major startup funding, and a quarter of the developers founded the
company Lucid Imagination based on the Lucene technology. The founder of Lucene acts as the
company’s advisor. The company’s members still contribute to the development of the open source
software. In 2010, Lucid Imagination became a finalist for the Red Herring 100 North America Award,
which recognizes the 100 most innovative private technology companies, which are determined
based on multiple criteria including technology innovation (Market Wire, 2010). This study focuses on
the Apache Lucene team developers and their activities as reflected in the archival Apache Lucene
data. I analyzed the activities of Lucid Imagination members only to the extent that they contributed to
the Apache Lucene development, and I did not capture their activities outside of the Apache Lucene
team (or the activities of non-Lucene members who contributed only to Lucid Imagination).

In identifying the case, I needed to find a team with sufficient interaction that enables the observation
of knowledge creation and exchange. For that reason, I selected an active project with many
members. Lucene’s team has 7 developers and 132 users who develop the software and collaborate
with each other on a daily basis. This level of interaction gave me the opportunity as a researcher to
observe how they created knowledge. Furthermore, during the period of data collection, the team was
at the development stage (Helfat & Peteraf, 2003) (as opposed to the founding or maturity stages),
which means the team had organized itself with some stability in its membership, with clear norms
and roles even though change in membership was still a possibility. The team had a stable version of
the software and a common goal. Software development teams at the development stage present an
active and dynamic software development environment, with much novel software development
activity (i.e., open innovation activities, as defined by von Hippel and von Krogh (2003)) and much
communication; they therefore provide the potential for a researcher to identify the knowledge
creation activities.

3.2. Introduction of the Data
I used archival data to observe the developers’ and users’ knowledge-creation behaviors. For many
organizational studies, archival data provide limited additional data to complement other main data
sources. Yet, the situation is quite the opposite for open source software development teams: open
source software developers communicate, coordinate their activities, and share their work mainly
through information technologies. The archival data provide almost complete archive of behaviors of
all team members (with the exception of bi-annual conference meetings) in the same way the team
members exhibit them and in the same way the other team members observe them. Therefore,
archival data enable an objective analysis of the full range of knowledge creation and exchange
activities both among team members (developers) and between developers and users.

For identifying and coding knowledge, I used four sources of evidence from four information technologies:
developers’ email listserv (mailing list) for tracking knowledge exchange among the developers; users’
email listserv for capturing the inflow and outflow of knowledge between the team and the individuals
outside of the team (users); issue trackers, which capture the quality improvement and new ideas for
innovation as Setia et al. (2012) mentions; and software version control tools that capture the contribution
process to software development. I describe these four archival data sources next.

The developers’ mailing list (developers’ listserv) is the main communication forum for teams
according to the Apache website. The discussions related to development activities and general
strategic discussions that affect the teams take place on this forum.

Issue tracker (JIRA) was used to track software bugs and improvement plans. Analyzing the changes
in the issue tracker was important because it captured teams’ coordination of novel software
development and related communication, thus providing valuable information about knowledge
creation. Issue tracker stores the following information on each issue: the type of software issue or

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

811

Eseryel / IT-Based Knowledge Creation for Open Innovation

problem, its URL, the project name, software version and the project component that the issue
pertains to, the reporter of the issue, the person assigned to the task, and the issue’s priority. Issue
tracker allowed developers and users to type in their comments, to assign the issue to themselves or
to others, and to change the status of the issue to “resolved”. Developers often communicated and
shared information using the issue tracker in a way that is similar to exchanging emails in the
developers’ listserv. The project team set JIRA issue tracker to forward changes in JIRA to
developers’ listservs in the form of a message with the same subject line. Thus, changes to the issue
tracker could be observed in the form of JIRA message threads, which were similar to email threads.
Figure 2 shows a sample JIRA message from an Apache team that was automatically sent to the
listserv. This automatic forwarding of JIRA changes allowed project team members to follow software-
related decisions and changes as soon as they occurred. For the purpose of this study, I referred to
each instance of a JIRA issue as a “message” or a “JIRA message” and content analyzed it as I
would an email.

Figure 2. A Sample JIRA Issue, which Reflects a Comment on a Previous JIRA Bug Solution

A software version control system (Subversion; SVN) is the most reliable tool for tracking team
members’ software code contribution behaviors, a form of knowledge contribution (Morner & von Krogh,
2009). All changes to the software were made in SVN and it was possible to see the exact software
code changed by each person. The Lucene team set up SVN to send an email to a separate listserv
each time there was a change in the source code. This enabled all team members to follow changes to
the software code immediately as they happen. Figure 3 presents a sample SVN message.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 812

Eseryel / IT-Based Knowledge Creation for Open Innovation

Figure 3. Sample SVN Message

A users’ listserv is a mailing list that enables users to ask technical and other questions and get
answers and support from core team members (developers). In this sense, users’ listserv captured
the communication between users and developers. As a result, users’ listserv was an excellent data
source for capturing knowledge inflows and outflows between the software developers that made up
the team and the users, who were the beneficiaries and peripheral contributors to the team’s work.
While open source software developers also made great use of social media, their use typically
signified their efforts to get to know each other at a personal level and to stay in touch as friends.
Since the open source software developers did not use social media for developing software or
communicating about their software development ideas and efforts, this data source was not relevant
to this study on knowledge creation.

3.3. Archival Data Collection and Reduction: Sampling of Threads
The archival data (from two listservs, JIRA issue tracker and SVN) consisted of individual messages.
To capture and meaningfully analyze the knowledge creation activities of open source software
developers and users, I analyzed individual messages in the context of threads. Based on inspection
of messages (emails, JIRA messages or SVN messages), I identified that the team was disciplined
about keeping each thread on topic, and changing message subjects only when the subject is
uniquely different. I removed single-email threads from analysis because they did not present
opportunities for analyzing how knowledge creation activities unfold.

Instead of sampling the threads randomly over the life of the project, I collected the data from the time
period just preceding the identification of Lucene as an innovative open source project because the
innovativeness of the team may change over time. I based this identification on informal
conversations with several Apache Software Foundation Board members, who followed all of the
Apache projects and actively participate in a number of these projects. Based on these conversations,
I identified that two types of contributions were relevant to knowledge creation: 1) members’ ongoing
regular contributions, and 2) their contributions to the crucial events (such as by fixing a major bug

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

813

Eseryel / IT-Based Knowledge Creation for Open Innovation

that blocks the release of a software). The crucial events referred to highly memorable contributions
(bug fixes, features, etc.) or events (such as a release or a decision) that the team members deemed
to be highly important to the success of the project.

I identified and analyzed a total of 522 messages using the following data sampling method. To
capture regular contributions, I used the following sample identification method. At the beginning, I
analyzed five threads from each of the four different sources of data (developers’ listserv, users’
listserv, SVN, JIRA). When unique codes emerged that added to the theory, I added a new sample of
five threads from each of the four data sources. After repeating this procedure four times, I
determined that theoretical saturation was reached because adding new data did not contribute
further to the theory (Morse, 2004). Therefore, I stopped adding new threads 20 threads per archival
data type. This sampling resulted in a total of 80 regular contribution threads.

Table 2. Archival Data Analyzed (Total of 522 Messages)

 Regular contribution threads Crucial event threads

Developers’ email threads (communication) 20 3

Users’ listserv email threads (communication) 20 7

JIRA threads (coordination) 20 12

SVN messages (work) 20 17

Total (522 messages) 80 39

I identified crucial events first by filtering the (JIRA) issue trackers for “major” issues (an important
problem, which still allowed the users to use the software), “critical” (an important issue, which
allowed a minor release, but not a major one), or “blocker” issues (an issue that blocked all releases).
I selected crucial events only during the six months preceding the regular contribution threads in
order to keep the collected data in the same time frame where I knew the team was innovative. A key
informant member of the Lucene development team then reviewed and shortlisted these issues.
Once I determined the crucial issues using the SVN system, I used the technical terms and the issue
numbers and names to identify all relevant discussions on the developers’ and users’ mailing lists.
Table 2 provides the resulting number of message threads. With this sampling strategy, I identified
522 messages (119 threads).

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 814

Eseryel / IT-Based Knowledge Creation for Open Innovation

Table 3. Steps of Data Analysis

 Process and analysis Outcome

1. Data reduction
1.1 Collection and sorting of archival data into

threads.
1.2 Importing data into Atlas-Ti.

Data is ready to be analyzed with
Atlas-Ti.

2. Data display and
analysis

Content analysis schema development

2.1 Adaptation of the Nonaka and Takeuchi model

to the open source team settings to develop
content analysis schema.

2.2 Independent content analysis by two analysts to
further develop the content analysis schema.

2.3 Establishment of content analysis schema
reliability with sample data by two analysts.

Content Analysis

2.4 Analysis of the 522 messages by the author

based on the reliable coding schema.
2.5 Tabulation of frequency tables.

Content analysis schema
development outcome
Reliable coding schema is ready for
use.

Content analysis outcome
All 522 messages are coded using
the reliable content analysis
schema.

3. Conclusion drawing

3.1 Written synthesis of the findings after sense
making in light of the preliminary field study.

3.2 Comparing the findings with the extant
literature.

Findings and discussion of the
findings.

3.4. Content Analysis Schema Development & Content Analysis: Adapting the
Knowledge Creation Framework to the Open Innovation Setting

Table 3 summarizes the steps of data analysis, which include data reduction, data display and
analysis, and conclusion drawing (Miles & Huberman, 1994). Following the data reduction process,
this section describes how I adapted Nonaka and Takeuchi’s (1995) knowledge creation framework to
the open innovation context.

In adapting the knowledge creation framework (Table 1) to the open innovation setting, I describe
below the descriptions and examples given by Nonaka and Takeuchi (1995) as sources of deductive
reasoning. These descriptions and examples helped me discern the intricate meaning of each
element in the framework. The descriptions further helped us identify behaviors to support the same
goal in the open innovation setting used in this study, thereby leading to the development of the
coding schema. I describe the behaviors that make up the coding schema (see Table 4) for the
identified open innovation setting below in the same way Nonaka and Takeuchi (1995) describe them
in their book. I provide relevant examples in Section 3.4. Thus, I do not repeat them here.

3.4.1. Socialization
Nonaka and Takeuch i (1995) define socialization as a knowledge-creation mode, where tacit
knowledge of one person becomes the tacit knowledge of another person through shared experience
such as the one that happens in an apprentice-master model. They suggest that individuals can
acquire technical skills directly from others by observation, imitation, and practice without using
language. The authors give the example in which the staff of Matshushita Electric Industrial Company
tried to mechanize the dough-kneading process. To gain the tacit knowledge of the master bakers, the
head of software development volunteered to apprentice with the Osaka International Hotel’s head
baker. As a result of this socialization, she learnt that the baker not only stretches the dough but also
twists it, a significant and previously non-described knowledge, which she then applied to the
machine’s design.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

815

Eseryel / IT-Based Knowledge Creation for Open Innovation

Table 4. Content Analysis Schema

Knowledge-
creation mode

Knowledge creation-
behavior Description

Socialization
(tacit to tacit)

Report bugs or improvement
needs

Software bugs (problems) that are identified in JIRA issue
tracker or logs of general requirements for the software to
be improved.

Submit patch
The patches (fixes to the software to improve the software
functionality or fix a problem) that are submitted in either
JIRA or developer’s listserv.

Commit patches
This code marks when the developers commit their
patches or test (potentially change) and commit others’
patches in the SVN.

Externalization
(tacit to explicit)

Contribute to problem
resolution by providing
information

This code identifies the information that individuals provide
in helping developers and users solve a problem they have
during software development or software use. The
information typically helps the individual troubleshoot or
resolve their own issue. This may be information on how
the software works that helps the others develop a better
solution.

Make suggestions and
troubleshoot for the
developers and users

This code captures the discussions on the developers’ and
users’ listservs, where the individuals support the software
development issues of developer or users by either
troubleshooting the source of their problems or making
clear suggestions on how to solve the issue.

Explain logic behind
suggestions

This code identifies discussions on the developers’ listserv
where a person provides extended explanations to justify
their suggestions to the other members.

Ask questions related to
someone’s suggestion

This code captures situations where an individual
evaluates somebody’s suggestion and asks probing
questions to ensure that the individual who made the
original suggestion has thought all relevant aspects
through.

Mentor and guide others
This code refers to situations where a person mentors
others by teaching them the norms of working in the team,
clarifying good software development approaches that are
adopted by the team.

Combination
(explicit to explicit)

Communicate issue
resolution

This code refers to cases where individuals come back to
JIRA to communicate how an issue is resolved. This
provides closure to the issue to those who may not have
followed the SVN.

Communicate patch commit

This code refers to situations where individuals come back
to JIRA and communicate that they have committed a
patch and provide details about it. They may have
developed the patch, or a user may develop it. Developers
who commit user patches may provide details about it such
as how they may have tested and/or updated the patch.

Refer the users to other
knowledge sources

This refers to cases where the developers share project-
based knowledge with users. They may refer the users to
earlier discussions, project webpage, wiki, or external
resources about the project. They usually provide links or
exact location of the information.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 816

Eseryel / IT-Based Knowledge Creation for Open Innovation

Table 4. Content Analysis Schema (cont.)

Knowledge-
creation mode

Knowledge creation-
behavior Description

Internalization
(explicit to tacit)

Document changes

This code refers to software documentation that is written
to describe the change in the software or the use of the
software. This documentation is written for developers or
users of the software.

Write tests This code refers to the tests that are written in order to test
the changes in the software.

Develop webpages This code refers to the documentation effort that includes
developing or updating a webpage for the project.

Contribute to wiki This code refers to the documentation effort that includes
developing or updating a wiki page for the project.

Socialization occurred in the open source context through users participating in an apprenticeship by
reporting bugs and submitting patches to fix these bugs, and the developers testing, correcting (as
needed), and committing these user patches (Ducheneaut, 2005). While the developers did not get a
chance to see each other while developing software code, the transparencies provided by information
technologies allowed the developers to inspect the changes that are made their team members.

Morner and von Krogh (2009) suggest that email and source code constitute data in the OSS team
context. Here, data refers to observations coded into numbers, language, texts, or pictures (Willke,
2003). Yet, when email and source code data are integrated into a fitting context of experiences, they
turn into knowledge (Willke, 2003). Based on this, when a user reads and classifies the content of email
or software source code based on their existing knowledge, this user creates new tacit knowledge
(Morner & von Krogh, 2009). Such sharing of tacit knowledge through shared artifacts such as software
source code is hinted by early open source software development research (Haefliger & von Krogh,
2004). Individuals gain from others’ tacit knowledge embedded in the source code by examining which
algorithms others use and how they structure the source code (Morner & von Krogh, 2009). Morner and
von Krogh (2009) explain that, due to the availability of the different releases of the software on the
Internet, users can closely examine the source code’s development by studying it at the different
versions at different developmental stages. Moreover, software code does not make all of the
knowledge (such as the vision of the developer, the general architecture, etc.) and the problem-solving
mechanisms used by the developer immediately apparent (i.e., fully explicit) to any reader. In order to
decipher the knowledge that is embedded in the source code, individuals need to have a certain level of
intellectual engagement with the source code by questioning it, such as by asking: why is a certain
problem-solving logic used in the source code instead of another possible method? How does this piece
of code relate to the rest of the code (other modules, the general architecture)? What does the code
developer aim at with this code? A more specific potential question in the context of a search engine,
such as Lucene, may be: how did the developer make the search algorithm work faster with this code?
In this sense, the code developed by a software developer may be likened to the move of a chess
player. While the move/solution seems visible (explicit) to the outsider, the thought process preceding
the move, the future moves that this move will enable, and the other alternatives that were considered
and rejected by the player are not made explicit. Thus, observing the moves of a chess-master and
learning from (i.e., transferring the tacit knowledge of) the chess-master requires an observer's intense
intellectual engagement with the move.

Bringing the example back to the software development context, as a result of the process of users
interacting with the software code (explicit knowledge), the "explicit knowledge can ‘convey’ tacit
knowledge despite the fact that the tacit knowledge has never been shared and the different
participants have never met in person" (Morner & von Krogh, 2009, p. 443). While the software code
is explicit knowledge (Haefliger, von Krogh, & Spaeth, 2008; Morner & von Krogh, 2009), as explained
previously, "the way it is structured and built conveys more tacit knowledge" (Morner & von Krogh,

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

817

Eseryel / IT-Based Knowledge Creation for Open Innovation

2009, p. 443). The idea that an artifact of explicit knowledge can relay tacit knowledge could be
understood better by seeing explicit and tacit knowledge not as "two separate entities, but rather as
mutually complementary and based on the same continuum" (Nonaka & von Krogh, 2009, p. 640).
Jha (2002) suggests that these two forms of knowledge are not competing but oscillating on a
continuum to mutually enhance each other. According to Nonaka and von Krogh (2009), while explicit
knowledge is being shared among the individuals, the knowledge gets internalized by losing its
explicitness and increasing its tacitness. This happens as the acquirers of the knowledge act on the
knowledge through action, practice, and reflection. Thus, activities that require an individual’s
intellectual engagement with the software bring about knowledge transfer: the tacit knowledge
embedded in the software gets transferred to the minds of the individuals who are engaged with the
software. The first level of intellectual engagement with the software (also the first step of socialization
of the users towards being developers) is testing the software and reporting bugs (Ducheneaut, 2005;
von Krogh et al., 2003). When a version of the software is bundled, this version is tested shortly
before and after the release and the bugs are reported. The bug-reporting process represents the use
and testing of the software, which is a process of engaging with the software that brings about
learning from the developers through the boundary object, which is the software. Again, this learning
happens through the apprentice’s engagement with the software code, rather than any explicit
explanation by the developer. Therefore, this learning represents a tacit-to-tacit knowledge transfer.
Bug reporting is followed by submitting patches, which requires the individuals to learn the tacit
knowledge embedded in the software and codify their own, which, according to Cowan, David, &
Foray (2000), is a knowledge-creation form that, at the same time, enhances the actors’ knowledge.
The practice of identifying technical problems (i.e., bugs) and developing software code to resolve it
are two key behaviors of socialization because they are central to successfully joining an OSS project
(Ducheneaut, 2005; von Krogh et al., 2003). In Lucene, the developers with access to the source
code directly test and commit their own patches (i.e., they incorporate their changes to the source
code). Yet, the users do not have the commit-rights; therefore, they submit their patches, which are
then tested, altered as needed, and committed by a developer. In this process, not only does the
developer learn from the tacit knowledge of the user by their inspection of the patch, but the user
gains additional knowledge from the developer’s feedback on the user’s work. The learning of the
users and the transfer of tacit knowledge from developers to users as the developers test and correct
user patches can be likened to students learning from their corrected assignment papers (therefore
using socialization to transfer a master’s tacit knowledge).

3.4.2. Externalization
Nonaka and Takeuchi (1995) define externalization as a process of articulating tacit knowledge into
explicit concepts, and they suggest that writing is an act of converting tacit knowledge into articulable
knowledge. They suggest that the externalization mode of knowledge creation is typically triggered by
dialogue and collective reflection. As an example to this process, they point out to how Mazda and
Honda created the right design concepts as part of their new car design/development process.
Nonaka and Takeuchi (1995) point out to the use of metaphors and analogies as tools to trigger
shared understandings, dialogue, and collective reflection. I went through six months of archival data
for both regular and critical events, yet I did not observe metaphors or analogies in this setting. In the
software development process, the externalization of tacit knowledge becomes very clear in the
problem-resolution process, where individuals share the inner workings of the software as inputs to
other people’s decision making. Hemetsberger and Reinhardt (2006) identify conceptualizing
problems and new ideas an important knowledge-creation process in open source software
development teams. Based on their investigation of the KDE open source software development
project, they found that this kind of knowledge creation occurred mostly on the project team’s mailing
lists, where the members explained, evaluated, rejected, corrected, or defended an opinion
(Hemetsberger & Reinhardt, 2006). This type of knowledge creation identified by Hemetsberger and
Reinhardt (2006) meets the requirements of Nonaka and Takeuchi’s (1995) externalization
knowledge-creation mode, which refers to creating shared understandings, dialogue, and collective
action by explicating tacit knowledge. As part of the content analysis schema development effort, I
identified the following externalization behaviors, which are similar to those mentioned by
Hemetsberger and Reinhardt (2006).

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 818

Eseryel / IT-Based Knowledge Creation for Open Innovation

When developers had issues that they could not resolve, they brought these to the developers’
mailing lists, which resulted in three types of knowledge exchange. First, the developers provided
relevant information, such as by explaining how the existing algorithm worked, and thereby explicated
the tacit knowledge embedded in the software code to enable the developers to solve their own
issues. Second, individuals helped troubleshoot these problems and made very specific suggestions,
and hence shared their tacit knowledge on how to solve such problems. Furthermore, in an effort to
justify their suggestion, they also explained their logic and thought processes, and thereby explicated
their knowledge further. Tuertscher, Garud, & Kumaraswamy (forthcoming) observed the same
justification behavior in their study of the development of Atlas, a complex technological system
developed at the European Organization for Nuclear Research (CERN). They found that participants
provided this kind of justification each time they proposed different technological options. These
explanations resulted in the creation of interlaced knowledge, a partial overlap of knowledge across
team members (Tuertscher et al., forthcoming). The evaluation process mentioned by Hemetsberger
and Reinhardt (2006) happened at Lucene after developers or users made suggestions. Each
suggestion was followed by questions from others, such as “Have you considered this other option?”
or “How does your solution impact (another part of the code)?.” These questions ensured that the
individual who came up with the suggestion thought through important dependencies in the software.

This externalization process enables both the participants and the observers to learn. Observers and
participants of this troubleshooting process learn from others’ explicated knowledge on how to
troubleshoot their own problems, and they improve their understanding of how the software is built.

Lastly the developers mentor and guide others on how to more effectively participate in the project,
and therefore explicate their knowledge about the (software development) team and implicit norms on
how they work together.

3.4.3. Combination
Combination is the process of organizing concepts into a knowledge system (Nonaka & Takeuchi,
1995). Nonaka and Takeuchi (1995) describe how knowledge is exchanged through documents,
meetings, and conversations (such as by phone, using information technologies, etc.). They suggest
that reconfiguring existing information through sorting, adding, combining, and categorizing explicit
knowledge may lead to the creation of new knowledge. The open source software developers
manifested knowledge combination in two ways. First, they referred the users to knowledge sources
that resided elsewhere, and thereby combined and systemized knowledge in one location for other
readers. Secondly, the developers close the loop on previous discussions on an issue or a patch by
communicating how an issue was resolved, and how a patch was committed including the description
of the changes in the patch. This information was already available to the careful follower of all
mailing lists and all software commits. However, this communication (responding to an earlier JIRA
issue that is open on the subject matter) systemized the knowledge, and created a database that can
be queried. For example, one could do a search in JIRA (issue tracker) for all the issues that may
block a new release of the software.

3.4.4. Internalization
Internalization is the converting of explicit knowledge into tacit knowledge through "learning by doing"
(Nonaka and Takeuchi, 1995). Documentation (i.e., the process of verbalizing and/or diagramming
knowledge into documents and manuals) is the main means of internalization by these researchers.
According to Nonaka and Takeuchi (1995, p. 69) "documentation helps individuals internalize what they
experienced, thus enriching their tacit knowledge". Indeed, writing to learn (i.e., enriching one's tacit
knowledge) is not a new concept. Writing is used in academia both in earlier formative years of
education, and later on specifically in software engineering education. Writing/documenting enables the
writer/documenter to "recall, clarify and question what they know about a subject and what they still
wonder about with regard to that subject matter" (Knipper, 2006, p. 462). Teachers use writing as a tool
for students to learn because writing "engages students, extends thinking, deepens understanding, and
energizes the meaning-making process" (Knipper, 2006, p. 462). Indeed, “considering a topic and then
writing about it requires deeper processing than reading alone entails" (Fordham, Wellman, & Sandman,
2002, p. 151). In software development, knowledge construction involves testing and documentation

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

819

Eseryel / IT-Based Knowledge Creation for Open Innovation

(Kautz & Thaysen, 2001) to the extent that proponents suggest their integration into the computer
science and software engineering curricula (Jansen & Saiedian, 2006). Documentation required
individuals to experiment and engage with the system, to recall what they knew about it, to play with the
system to learn more about it, and to test what they knew. Writing and/or executing test scripts were
also tasks that enabled individuals to further play with the system and learn about the procedures
embedded in the system. To sum up, documentation brought about a deeper level of engagement with
the subject matter that enabled meaning making, and hence created tacit knowledge in the minds of the
documenters. Furthermore, "documents and manuals facilitate the transfer of explicit knowledge to
other people, thereby, helping them experience the experiences of others indirectly (i.e., "re-experience"
them)" (Nonaka and Takeuchi, 1995, p. 69). Taking these literature streams as a basis, my content
analysis schema development effort pointed to four types of internalization. These types included writing
documentation, developing tests for the software that can be used to understand and test the software,
developing webpages, and developing wiki pages for the project.

Thus far, I have discussed the content analysis schema development by adapting the knowledge
creation framework to open source software development (Step 2.1 in Table 3). Prior to data analysis,
along with an independent analyst, I established the reliability of the content analysis schema. After I
discussed the general framework, we (the analyst and I) coded 10 threads together to create shared
understandings on the content analysis schema and approach. Subsequently, we independently
coded and compared a second sample of 10 threads; we resolved inconsistencies of our coding
through discussion. Each time we drew a new sample of 10 threads and independently coded until
we reached an agreement rate of 86 percent on the coding schema, which is considered very good
according general coding standards (Neuendorf, 2002). Through this process, we established the
content analysis schema reliability (Step 2.3 in Table 3), after which I coded the previously identified
522 messages using the reliable content analysis schema. Lastly, I drew conclusions about the
observed codes based on calculating frequencies and contrasting findings with the literature.

4. Findings
In this section, I answer the two research questions. In Sections 4.1 and 4.2, I identify the type of
knowledge-creation modes and behaviors used (RQ1a) and how developers and users contributed to
knowledge creation (research question 1b) in order to answer the RQ1: “How do innovative open
source software development teams create knowledge?”. In Section 4.3, I identify the type of
information technologies used for knowledge creation.

4.1. Knowledge-Creation Behaviors in Open Innovation Context
The coding identified 401 instances of knowledge-creation behaviors. Table 5 presents the
knowledge-creation behaviors for each of the knowledge-creation modes based on this coding. I
discuss these findings below. I identified fifteen types of knowledge-creation behaviors that fell into
the given knowledge-creation modes (Table 5) of socialization (three behaviors), externalization (five
behaviors), combination (three behaviors), and internalization (four behaviors).

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 820

Eseryel / IT-Based Knowledge Creation for Open Innovation

Table 5. Knowledge-Creation Modes and Behaviors in Open Source Software

Knowledge-creation mode Knowledge-creation behavior

Socialization
(tacit to tacit)

Report bugs

Submit patch

Commit patches

Externalization
(tacit to explicit)

Contribute to problem resolution by providing information

Make suggestions and troubleshoot for the developers and users

Explain logic behind suggestions

Ask questions related to someone’s suggestion

Mentor and guide others

Combination
(explicit to explicit)

Communicate issue resolution

Communicate patch commit

Refer the users to other knowledge sources

Internalization
(explicit to tacit)

Document changes

Write tests

Develop webpages

Contribute to wiki

Table 6 presents these four knowledge-creation modes and the frequency of their use based on the
archival data analysis.

Table 6. Four Knowledge-Creation Modes and the Frequency of Their Use

Knowledge-creation mode Frequency of observation in the
archival data Percentage of all observations

Socialization 94 23%

Externalization 227 57%

Combination 47 12%

Internalization 33 8%

Total 401 100%

In Section 3.4, I describe each of these six knowledge-creation modes along with how they apply to
the open source software development team setting by identifying the behaviors through which the
knowledge-creation modes manifested.

4.1.1. Socialization3
Socialization was the second most frequently used mode of knowledge creation with 23 percent of
the coded knowledge-creation behaviors falling into this category. Socialization has originally been
defined as a way of transferring tacit knowledge through dialogue, observation, imitation, or guidance.
Reporting bugs and later on submitting patches were some of the first steps of socialization for the
users. Hence, I identified that socialization at open source software development teams manifested
through the key software development tasks of reporting bugs (problems in the software code),

3 This section only presents findings. Readers who may have questions on why the specific behaviors constitute knowledge-
creation behaviors should refer back to Section 3.4.1, which discusses why socialization behaviors are knowledge-creation
behaviors and how they are operationalized in this context.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

821

Eseryel / IT-Based Knowledge Creation for Open Innovation

submitting patches, and committing patches. While only the developers with commit rights were able
to commit software patches, all three software development tasks indicated knowledge creation
based on the individuals' tacit knowledge. These actions created opportunities for others to observe
and learn from. Bug reports and patches cannot immediately transfer explicit knowledge. To learn
from them (i.e., to transfer tacit knowledge), developers had to engage in sense making by inspecting
the software code and understanding the changes and the knowledge behind the changes.

4.1.2. Externalization4
Externalization was the most often used knowledge-creation mode identified in the data: 57 percent of
all observed knowledge-creation behaviors in the archival data fell into this category. This indicated
that the externalization of tacit knowledge to explicit knowledge made up more than half of the
knowledge-creation behaviors of the Lucene team. Externalization occurred mostly in either the
problem-resolution process, or when individuals supported others, such as the team members and
the users of the software.

The problem resolution process in the software development appeared complex, with many variables
to consider. In the email exchanges among the members, many ways of accomplishing a task were
often discussed, and the team tried to determine the best way to execute a particular task. For
instance, in an effort to resolve a bug, members made suggestions as to which approach to use by
saying, for example, “Should we deprecate this method?”. When they made suggestions, they often
clearly explained the logic behind their suggestions, such as by saying, “This makes the archetype
simpler, because now it’s just doing configuration and reporting on the test modules.” Others
contributed to the problem resolution by providing information, such as other aspects to consider, or
by sharing the details of how the software code was originally developed as we can see in the
following example:

The code right now takes two paths: if you pass a field, it just calls QP via super. If you
don't pass a field, it loops through each of the fields it has, which I suspect is usually
what one wants. But in this loop, it also calls super, which means you don't get a chance
in your derived class to override it again. I think it would make more sense to not call
super in the loop case. So derived classes can get access to the call both when no field
is passed and when each field is passed.

This problem-resolution process of making a suggestion and explaining the logic underlying it led
other developers to provide either information or more suggestions. In trying to justify that their
suggestions were appropriate ways of solving a problem, individuals explicated their tacit knowledge,
and therefore transferred their knowledge to others. In turn, this knowledge transfer enabled others to
come up with more suggestions by creatively building on new knowledge and thus creating
opportunities for enrichment. This problem resolution process thus enabled the team to possibly find
better and more innovative solutions to a given problem.

The archival data provided evidence for how developers were mentoring others both by helping them
with the software-based knowledge and by showing them how to contribute to the team in general.
For instance, archival data showed how one developer mentored a new member who was trying to
submit new code and had problems during the process by telling to the member:

You have sent a lot of code—but that doesn't mean it's clear what you are doing, or
what you expect—particularly since we can't see your data. If you are still having trouble,
then you can send a self-contained example of the problem that anyone can run (JUNit
test case) so that we can help you further.

4 This section only presents findings. Readers who may have questions on why the specific behaviors constitute knowledge-
creation behaviors should refer back to Section 3.4.2, which discusses why externalization behaviors are knowledge-creation
behaviors and how they are operationalized in this context.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 822

Eseryel / IT-Based Knowledge Creation for Open Innovation

Lastly, the data indicated how developers externalized their tacit knowledge during user support:
developers troubleshooted, solved user problems, and provided information to enable users to
troubleshoot their own problems. With these behaviors, developers codified their tacit knowledge and
made it clear and explicit to the users and other readers of the messages. In this setting, outsiders
also made contributions, and users also supported other users or contributed to the problem-solving
process, and therefore made untapped tacit knowledge explicit and available for all to learn from.

4.1.3. Combination5
Combination refers to sorting, adding, and categorizing existing information that is already made
explicit. Twelve percent of the observed knowledge-creation modes fell into this category. Individuals
communicated issue resolution or patch commits in JIRA, and thereby created redundancies (in JIRA)
with the information that was already available in SVN for code commits. These redundancies
enabled all team members and external parties to see the resolution of the issue in one location
(JIRA), which eliminated their need to search for it.

Lastly, combination activities occurred in the form of individuals providing either information about the
project or external knowledge sources, such as websites, or concepts for the users. While these
behaviors were conducted in an effort to share relevant knowledge with the users that they needed at
the time, they also provided the side-benefit of keeping information resources related to a topic at one
place for others to also benefit from.

4.1.4. Internalization6
Internalization refers to individuals converting explicit knowledge into tacit knowledge by means of
reflection, which happens while they create documents, manuals, or stories based on new knowledge.
Writing documentation, such as documenting changes, writing tests, developing webpages and wikis,
were the ways that some of this team’s members internalized others’ knowledge. These documents
and tests, when read and used by others, also enabled these third parties to internalize knowledge.
About 8 percent of the knowledge-creation behaviors fell into this category. Internalization occurred
through contributions to websites and wikis, which were all submitted through SVN.

5 This section only presents findings. Readers, who may have questions on why the specific behaviors constitute knowledge-
creation behaviors, should refer to Section 3.4.3, which discusses why combination behaviors are knowledge-creation behaviors
and how they are operationalized in this context.

6 This section only presents findings. Readers, who may have questions on why the specific behaviors constitute knowledge
creation-behaviors, should refer to Section 3.4.4, which discusses why internalization behaviors are knowledge-creation behaviors
and how they are operationalized in this context.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

823

Eseryel / IT-Based Knowledge Creation for Open Innovation

4.2. Developers’ and Users’ Contributions to Knowledge Creation

X

Figure 4. The Number of Knowledge-Creation Behaviors By Developers & Users During the
Regular Period (X-Axis)

This section describes the findings on how developers and users contributed to the knowledge based
on the regular contributions followed by the contributions of the developers and users during crucial
events. Seven developers and 132 users participated in knowledge creation. Analysis of regular
events showed that. while developers made up only 5 percent of all participants, they contributed 52
percent of all regular knowledge-creation activities (Figure 4).

Figure 5. The Percentage of Overall Contribution to Knowledge Creation By Developers &

Users During the Regular Periods (X-Axis)

While each user contributed very little to knowledge creation, when all users’ knowledge-creation
behaviors were combined, this amounted to knowledge creation that was roughly (quantitatively)

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 824

Eseryel / IT-Based Knowledge Creation for Open Innovation

equal to that provided by the developers. Archival data analysis showed 144 instances (52%) of
knowledge creation by developers and 133 instances (48%) by the users. This shows that, while each
user created little new knowledge, the sheer number of users made a difference in the amount of new
knowledge created.

Figure 5 shows how the team’s knowledge-creation behaviors were split between the developers and
users during the regular period. The developers and users created roughly equal amounts of
knowledge. Developers provided 45 percent of socialization behaviors (25 instances out of 36), 53
percent of combination behaviors (16 instances out of 30), and 47 percent of internalization behaviors
(8 instances out of 17).

Figure 6. The Number of Knowledge-Creation Behaviors By Developers & Users During the

Critical Events (X-Axis)

Figure 6 provides a dramatic contrast to Figure 4. While in regular events, users and developers
created roughly equal amounts of knowledge, in critical events, users created only 21 percent of the
new knowledge. Users contributed only 33 percent of all socialization, 20 percent of externalization,
12 percent of combination, and 6 percent of internalization knowledge-creation behaviors (Figure 7)
during the critical events. This difference in activity of developers and users may be explained by the
challenging nature of the critical events. While in the regular events many users could contribute to all
aspects of the knowledge creation, the number of users who could contribute to critical events may
have been limited by the knowledge and expertise required. In the few instances, users who had
expertise in the key issues contributed with bug identification and patches (therefore contributing to
socialization) and by making inputs to problem resolution process (thereby contributing to
externalization). Then, the developers followed up with testing and committing user patches,
documenting these issues, and communicating the resolution in JIRA (combination). Thus, even
though users contributed to 33 percent of all socialization, their contribution to other modes of
knowledge creation was much fewer for the critical events.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

825

Eseryel / IT-Based Knowledge Creation for Open Innovation

Figure 7. The Percentage of Overall Contribution to Knowledge-Creation Behaviors By

Developers & Users During Critical Events

4.3. Information Technologies Used to Enable Knowledge Inflows and Outflows
In answering the second research question, I identified six types of information technologies for
knowledge creation. Table 7 presents the frequency with which these technologies were used for
knowledge-creation purposes. The developers’ listserv and JIRA were the most frequently used tools
for knowledge creation, making up 32.5 percent (133 instances out of 409 instances of knowledge
creation) and 31.3 percent (128 instances) of the overall technology use, respectively. Users’ listserv
and SVN follow these information technologies in terms of frequency of use with 20.5 percent (84
Instances) and 13.7 percent (56 instances). Wikis and websites, which are keys to knowledge
management in some companies, were used very little for knowledge creation at 1.5 percent (6
instances) and 0.5 percent (2 instances), respectively.

Table 7. The Frequency of Information & Communication Technologies Use for Knowledge
Creation in Open Source Software

Information & communication technologies Usage (%) for knowledge creation

Developers' listserv 32.5% (133 out of 409 instances)

JIRA 31.3% (128 out of 409 instances)

Users’ listserv 20.5% (84 out of 409 instances)

SVN 13.7% (56 out of 409 instances)

Wiki 1.5% (6 out of 409 instances)

Website 0.5% (2 out of 409 instances)

Total 100.0%

Next, I discuss the use of information technologies in enabling each knowledge-creation mode. Table 8
shows the distribution of these knowledge-creation behaviors among various information technologies.
Each knowledge-creation mode was enabled with at least two different information technologies. Most
of knowledge-creation modes depended on one technology more heavily than the others.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 826

Eseryel / IT-Based Knowledge Creation for Open Innovation

Table 8. The Distribution of Information & Communication Technology Use For Each
Knowledge-Creation Mode

Knowledge-
creation
modes

Information & communication technologies
used for expressing the knowledge-creation behaviors

Developers'
listserv

Users'
listserv JIRA SVN Website Wiki Total

Socialization 76% 24% 100%

Externalization 58% 29% 13% 100%

Combination 40% 60% 100%

Internalization 100% 6% 18% 124%(*)

(*) The total of internalization row is more than 100% because, while all internalization knowledge-creation modes used SVN,
two knowledge-creation behaviors required the use of websites or wikis in addition to SVN.

For instance, socialization and combination were most dominantly enabled by JIRA, externalization
by developers’ listserv, and internalization by SVN. Internalization provided a small exception in that
the team made all changes to all documentation (including websites and wikis) through SVN so that
changes to these were traceable. Most of the socialization-based knowledge creation was done with
JIRA (76%) followed by SVN (24%). The socialization mode of knowledge creation included
individuals using information technologies to contribute to the work of software development. This
created opportunities for others to benefit from the tacit knowledge that went into this work. Because
everyone used JIRA for reporting and updating status of code changes due to bug fixing and feature
adding activities, it allowed the team members to gain knowledge on the status of the development.

The developers used the concurrent versioning system (SVN) to submit code. SVN enabled multiple
individuals to work on same or different parts of the code at the same time and commit software
changes. SVN and JIRA together allowed individuals to work on software development, a complex
task with many interdependencies, in the most independent way possible.

The externalization mode of knowledge creation depended mostly on listservs (namely, the
developers’ listserv (58%), the users’ listserv (29%), and to a smaller extent JIRA (13%)) to explicate
and communicate the developers’ tacit information for the other developers and users. This indicates
that communication through listservs created a major outlet for converting tacit knowledge to external
knowledge. Some of this knowledge got used for software development at the socialization
knowledge-creation mode; hence, individuals communicated the relevant information later through
JIRA or SVN.

The combination mode of knowledge creation mainly depended on the issue tracker JIRA (60%), which
was open to use by both team members and users. Part of this information was also available to those
who follow the SVN to see which patches were committed. However, SVN provided access to only tacit
information, which required sense making to learn from and may have been difficult for those who do
not have the knowledge to make sense of a given tacit knowledge. While the SVN provided tacit
knowledge transfer, individuals still logged the changes in the SVN and the details of the changes to
JIRA, which created more opportunities for combining the different knowledge that had previously been
externalized to be combined and shared with others in an organized manner. The developers’
dependence on users’ listservs in 40 percent of the combination mode of knowledge indicated a more
ad-hoc way of knowledge creation. This was less systematic, and, while searching the whole listserv
was always a possibility, the knowledge shared may have been more difficult to find later on.

The internalization mainly happened through documentation and all changes to documentation were
controlled through SVN. However, the documentation itself already utilized different types of
information technologies such as web technologies and wikis.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

827

Eseryel / IT-Based Knowledge Creation for Open Innovation

5. Discussion
This paper bridges the literatures on open innovation and knowledge creation, and contributes to
open innovation theory by opening the black box of how knowledge creation occurs in innovative
open source software development teams. Specifically, this study addresses: 1) the knowledge-
creation modes, activities, and behaviors in open source software development teams; 2) how
developers and users contribute to knowledge creation; and 3) how various information technologies
are used to enable knowledge creation. In Sections 5.1 to 5.3, I discuss the theoretical and practical
contributions of these findings.

5.1. Contributions to Theory
As I discuss in Section 1, various organizations increasingly want to emulate the open source
software development teams’ innovation model. However, emulation requires the understanding of
the types of knowledge creation and how various participants contribute to knowledge creation as
recommended by Agerfalk and Fitzgerald (2008). Earlier research suggests that the users contribute
specifically to software quality improvement by generating patches and reporting bugs (Setia et al.,
2012). This research also shows the existence of such contributions in the form of the socialization
knowledge-creation mode. Indeed, the 132 users combined contribute 46 percent of the knowledge
created through socialization. This suggests that each users’ small contributions to knowledge
contributions matter when the number of users is large because the total contribution adds up to be
significant. In this sense, this study’s findings support researchers’ recommendation to engage and
harvest outside contributors’ external knowledge (von Krogh et al., 2003; West & O'Mahony, 2005).
However, this study identified the importance of having few high-quality developers (rather than large
numbers of users) in ensuring continuity of the project, a finding that differs from past research that
does not differentiate the quality and complexity of contributions. In the face of critical events (which
tend to include complex and challenging tasks), users’ level of knowledge contribution is much lower.
This finding also suggests a potential difference in the contribution quality by users and developers,
which should be further analyzed.

Secondly, this paper contributes to knowledge management theory by adapting Nonaka and
Takeuchi’s (1995) knowledge creation framework to the open source software development setting.
Table 4 provides the results of this adaptation, which other researchers can use as a content analysis
schema in future research. While Nonaka and Takeuchi’s (1995) framework provides a general
understanding of the four types of knowledge creation, the content analysis schema provided here
enables the operationalization of these concepts to open innovation settings, which is a uniquely
different setting than Nonaka and Takeuchi studied. Despite the abundance of literature that follows
Nonaka and Takeuchi, actual empirical operationalization of their knowledge-creation modes is rather
rare (e.g., Nonaka, Byosiere, Borucki, & Konno, 1994), which is perhaps due to the difficulty of
extrapolating the knowledge-creation modes to other contexts. This research did just that.

In the IT-enabled open innovation setting, three of the four knowledge-creation modes identified by
Nonaka and Takeuchi manifested through different behaviors than those observed in the
organizational setting. Researchers have previously found face-to-face interaction and physical
activities as key to sharing tacit knowledge (Nonaka, Reinmoeller, & Senoo, 2000). Yet, this study
identified that intellectual engagement with knowledge-embedded information technology artifacts
such as software code enabled such knowledge transfer without requiring face-to-face interaction.
Thus, tacit-knowledge embedded IT artifacts resides at the core of socialization in the IT-enabled
open innovation settings.

Nonaka and Takeuchi (1995) found that innovative Japanese companies they studied used
metaphors and analogies to develop shared understandings; Hemetsberger and Reinhardt (2006)
also observed these metaphors and analogies in the KDE project. Despite my specific search for
metaphors and analogies, I did not identify them in this study as elements explaining the
organizational-knowledge creation. This is also in line with a previous study by Nonaka, Byosiere,
Borucki, and Konno (1994), who studied 105 managers in Japanese firms. Instead of metaphors and
analogies, the data from this study suggest that the developers used a very straightforward way of

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 828

Eseryel / IT-Based Knowledge Creation for Open Innovation

explicating their knowledge through clear suggestions and justifications. Especially during the process
of supporting developers and users in their development and use, the explication of tacit knowledge
by participants became clearer. My study shows that metaphors and analogies were not the only
means to sharing understandings. The developers used an iterative approach to explicate their tacit
knowledge using a combination of questions, troubleshooting, suggestions, and justifications as part
of problem resolution and software development. We can hypothesize that information technologies
both require and enable the use of clear messages rather than messages subsumed in metaphors
and analogies. This is especially clear in the case of mentorship behaviors that explicate norms,
which are tacit knowledge in the form of implicit standards and values (Schein, 1992).

Lastly, the combination behaviors manifested in the open source software development contexts as
behaviors aiming at better communication and coordination. The intentions of the developers were
not to combine different types of knowledge. When individuals came back to JIRA and provided the
information on the work they have just done, they made JIRA a queryable resource. Moreover,
because JIRA was always up to date, participants could also follow which tasks were open, so they
could participate more easily by picking an open task.

Among the four knowledge-creation modes, internalization was the one that was operationalized in
exactly the same way in both innovative companies and IT-enabled open innovation setting.

5.2. Contributions to Practice
This paper contributes to practice by explicating how innovative open source software development
team members create knowledge. For information systems managers and practitioners who
incorporate open source software development teams into their organizational practice, this study
suggests that they need to: 1) support existing users and encourage them to stay involved to keep the
number of external knowledge contributors high, and 2) keep a small number of highly skilled
developers who can deal with critical events and, at the same time, support the external users. These
points may inform which skills organizations focus on when recruiting and training team members
(such as written communication skills, ability to logically justify suggestions, problem resolution skills,
and ability to work under pressure).

Setia et al. (2012) suggest the importance of information technologies in facilitating effective
contributions from peripheral users. Practitioners can benefit from how the innovative team described
in this case used information technologies to enable users and developers to independently
contribute despite the many interdependencies presented by the complex software development task.
In selecting the information technologies to support their company, practitioners should invest in
multiple technologies. In creating an information technology infrastructure for open innovation,
managers should set up IT infrastructures for open innovation, which enable each of the four types of
knowledge-exchange models. Our recommendation is to allow the open innovation participants to
have an input on how new information technologies can be adopted to support a variety of processes
they use for innovation. The identified information technologies further may need to be tailored over
time as practices may change.

Furthermore, this study adapted the four modes of knowledge creation to the open innovation team
setting: 1) socialization, 2) externalization, 3) combination, and 4) internalization. In addition, this
study explicated how information and communication technologies support each knowledge-creation
mode. The transparency provided by using information technologies may change the nature of
knowledge creation: these technologies enable all users, developers, and non-participants to observe
and learn from the tacit and explicit knowledge created in the team, which thus creates opportunities
for the socialization mode of knowledge creation for all observers even without face-to-face
interaction. In comparison, in many settings that lack such transparencies, knowledge creation
through socialization is limited to the few individuals who observe each other during work, which
therefore excludes other team members and observers. To sum up the most unique aspect of the
knowledge creation in IT-enabled open innovation setting: while my results suggest that information
technologies enable all four knowledge-creation modes for open innovation, the nature of knowledge

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

829

Eseryel / IT-Based Knowledge Creation for Open Innovation

creation, and what constitutes knowledge creation, differs in the open innovation context from
knowledge creation in organizational settings where collaborators are co-located.

5.3. Limitations and Future Research
This paper presents findings from a revelatory case study. One of this study’s limitations is the fact that it is
a single case study. However, its findings can be generalized to similar contexts where the task is highly
technical and knowledge-intensive and where the team is distributed globally and highly dependent on
information technologies. The findings of this study can also be generalized to the companies that are
using open source practices inside the environment of a company (i.e., inner sources).

In this paper, I define the open source software team that is conducive to knowledge creation and
transfer as a community-based project, (Wasserman, 2009) which is organized in a team structure
(Crowston & Howison, 2006). Of course, I acknowledge that not all open source software are
developed the same way or by using the same team structure. There are certainly many open source
software that are developed by only a single developer. The findings of this study do not apply to
open source software development projects with only one member.

Case studies are an excellent way to obtain in-depth knowledge about a context. Yet, this study
should be validated with additional case studies from both open source software development
contexts, and other open innovation contexts. Furthermore, for statistical generalization to different
settings, this study can be followed up with quantitative studies.

While the specific company I studied here had a spinoff company that was built on the Lucene
software, according to Apache norms, the contributors to the Lucene project were expected to
participate as individuals and represent themselves as individuals rather than representing their
companies. Indeed, Apache software teams represent a community-based team under the structure
of a non-profit organization; this is one of the four types of open source software development teams
that Wasserman (2009) identifies. Accordingly, this study’s findings can be generalized to the same
type of community-based open source teams. Since all open source software development is not the
same, the study should be replicated in other settings. Specifically, because leadership is crucial for
the success of open source software (Eseryel & Eseryel, 2013), identifying how individuals with
leadership roles and different formal or informal roles contribute to knowledge creation is crucial for
the practitioners who aspire to lead such knowledge-creation efforts. Future research may need to
distinguish between the knowledge contributions of leaders, developers, and users to provide more
precise recommendations for IT-enabled open innovation team leaders.

In this study, I did not analyze social media data because social media does not allow team members
to observe each other’s work. However, social media (such as Twitter, Facebook, and LinkedIn) are
used by open source software development team members, and they may help with knowledge
preservation, as observed in the case of Drupal (Wang, Kuzmickaja, Stol, Abrahamsson, & Fitzgerald,
2014). Researchers may be interested in analyzing the role of social media in knowledge creation for
open innovation purposes.

Lastly, this study analyzed knowledge-creation behaviors at the development stage of the software
based on a single time period. While the findings illuminate the nature of knowledge creation in this
context, the nature of open source software development may change in the software’s lifecycle.
Similarly, knowledge-creation behaviors that are most frequently observed and the participation of
different internal and external groups in knowledge creation may change over the life of the team.
Therefore, longitudinal studies are needed in order to understand how members of IT-enabled open
innovation teams create knowledge over time.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 830

Eseryel / IT-Based Knowledge Creation for Open Innovation

References
Agerfalk, P. B., & Fitzgerald, B. (2008). Outsourcing to an unknown work- force: Exploring

opensourcing as a global sourcing strategy. MIS Quarterly, 32(2), 385-410.
AlMarzouq, M., Zheng, L., Rong, G., & Grover, V. (2005). Open source: Concepts, benefits, and

challenges. Communications of the Association for Information Systems, 16(37), 756-784.
Ambrosio, J. (2000). Knowledge management mistakes. Retrieved from

http://www.computerworld.com/industrytopics/energy/story/0,10801,46693,00.html
Barlow, A., & Li, F. (2010). Disruptive technologies and applications. In K. Grant, R. Hackney, & D.

Edgar (Eds.), Strategic information systems (pp. 77-102). Hampshire, UK: Cengage Learning.
Brooks, F. P. (1995). No silver bullet: Essence and accidents of software engineering. Computer,

20(4), 10-19.
Carayannis, E., & Coleman, J. (2005). Creative system design methodologies. Technovation,

25(3), 831-840.
Chesbrough, H. M. (2003). Open innovation. Boston, MA: Harvard Business School Press.
Conboy, K., & Morgan, L. (2011). Beyond the customer: Opening the agile systems development

process. Information and Software Technology, 53(5), 535-542.
Cougar, J. (1990). Ensuring creative approaches in information system design. Managerial and

Decision Economics, 11(2), 281-295.
Cowan, R., David, P. A., & Foray, D. (2000). The explicit economics of knowledge codification and

tacitness. Industrial and Corporate Change, 9(2), 211-253.
Cox, A. (1998). Cathedrals, bazaars and the town council. Retrieved Jan 10, 2012, from http://

slashdot.org/features/98/10/13/l423253.shtml
Crowson, K., & Howison, J. (2005). The social structure of free and open source software

development. First Monday, 10(2).
Crowston, K., & Annabi, H. (2005). Effective work practices for FLOSS development: A model and

propositions. Paper presented at the In Thirty-Eighth Hawaii International Conference on
System Science, Kona, HI.

Crowston, K., & Howison, J. (2006). Hierarchy and centralization in free and open source software
team communications. Knowledge, Technology & Policy, 18(4), 65-85.

Daft, R. L. (1978). A dual core model of organizational innovation. Academy of Management Journal,
21(2), 193-210.

Damanpour, F. (1987). Organizational innovation: a meta-analysis of effects of determinants and
moderators. Academy of Management Journal, 34(3), 555-590.

Davenport, T. H. (1996). Knowledge management at Hewlett-Packard, early 1996. Retrieved from
http://www.bus.utexas.edu/kman/hpcase.htm

Davenport, T. H. (1997). Knowledge management at Ernst & Young. Retrieved from
http://www.bus.utexas.edu/kman/e_y.htm

Dewar, R. D., & Dutton, J. E. (1986). The adoption of radical and incremental innovations: An
empirical analysis. Management Science, 32(11), 1422-1433.

Dinkelacker, J., Garg, P. K., Miller, R., & Nelson, D. (2002). Progressive open source. Paper presented
at the Proceedings of the International Conference on Software Engineering, Orlando.

Ducheneaut, N. (2005). Socialization in an open source software community: A socio-technical
analysis. Computer Supported Cooperative Work, 14(4), 323-368.

Eseryel, D., Eseryel, U. Y., & Edmonds, G. S. (2005). Knowledge management and knowledge
management systems. In M. D. Lytras & A. Naeve (Eds.), Intelligent learning infrastructures
for knowledge intensive organizations: A semantic web perspective (pp. 105-145). Hershey,
PA: IDEA Group Publishing.

Eseryel, U. Y., & Eseryel, D. (2013). Action-embedded transformational leadership in self-managing global
information technology teams. The Journal of Strategic Information Systems, 22(2), 103-120.

Fitzgerald, B. (2006). The transformation of open source software. MIS Quarterly, 30(3), 587.
Fordham, N. W., Wellman, D., & Sandman, A. (2002). Taming the text: Engaging and supporting

students in social studies readings. The Social Studies, 93(4), 149-158.
Gacek, C., & Arief, B. (2004). The many meanings of open source. IEEE Software, 21(1), 34-40.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

831

Eseryel / IT-Based Knowledge Creation for Open Innovation

Gassmann, O., & Enkel, E. (2001). Towards a theory of open innovation: three core process
archetypes. Retrieved June 24, 2013, from http://www.alexandria.unisg.ch/Publikationen/274

Goldman, R., & Gabriel, R. P. (2005). Innovation happens elsewhere: Open source as business
strategy. San Francisco: Morgan Kaufmann.

Gurbani, V. K., Garvert, A., & Herbsleb, J. D. (2010). Managing a corporate open source software
asset. Communications of the ACM, 53(2), 155-159.

Haefliger, S., & von Krogh, G. (2004). Knowledge creation in open source software development. In
H. Tsoukas & N. Mylonopoulos (Eds.), Organizations as knowledge systems (pp. 109-129).
New York: Palgrave.

Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software. Management
Science, 54(1), 180-193.

Hars, A., & Ou, S. (2001). Working for free?—Motivations of participating in open source projects.
Proceedings of the 34th Hawaii International Conference on System Sciences.

Helfat, C. E., & Peteraf, M. A. (2003). The dynamic resource-based view: Capability lifecycles.
Strategic Management Journal, 24(10), 997-1010.

Hemetsberger, A., & Reinhardt, C. (2006). Learning and knowledge-building in open-source
communities: A social-experiential approach. Management Learning, 37(2), 187-214.

Hermann, S., Hertel, G., & Niedner, S. (2000). Linux study homepage. Retrieved from
www.psychologie.uni-kiel.de/linux-study/writeup.html

Himanen, P., Torvalds, L., & Castells, M. (2001). The hacker ethic. New York: Random House.
Jansen, D. S., & Saiedian, H. (2006). Test-driven learning: Intrinsic integration of testing into the

CS/SE curriculum. Paper presented at the 37th SIGCSE technical symposium on Computer
science education, Houston, Texas, USA.

Jha, S. R. (2002). Reconsidering Michael Polanyi’s philosophy. Pittsburgh: University of Pittsburgh Press.
Kautz, K., & Thaysen, K. (2001). Knowledge, learning and IT support in a small software company.

Journal of Knowledge Management, 5(4), 349-357.
Knipper, K. J. D. T. J. (2006). Writing to learn across the curriculum: Tools for comprehension in

content area classes. Reading Teacher, 59(5), 462-470.
Kogut, B. (2000). The network as knowledge: Generative rules and the emergence of structure.

Strategic Management Journal, 21(3), 405-425.
Kohanski, D. (1998). Moths in the machine. New York: St. Martin's Griffin.
KPMG Consulting. (2000). Knowledge management research report. Retrieved from

http://www.kpmgconsulting.co.uk/research/othermedia/wf_8519kmreport.pdf
Lee, G. K., & Cole, R. E. (2003). From a firm-based to a community-based model of knowledge

creation: The case of the Linux kernel development. Organization Science, 14(6), 633-649.
Lerner, J., & Triole, J. (2000). The simple economics of open source (NBER Working Paper No. 7600).
Liebowitz, J., & Beckman, T. (1998). Knowledge organizations: Why every manager should know.

New York: St. Lucie Press.
Market Wire. (2010). Lucid imagination is a finalist for the 2010 red herring 100 North America award

(press release). Retrieved July 28, 2013, from
http://www.reuters.com/article/2010/06/17/idUS111990+17-Jun-2010+MW20100617

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). Thousand Oaks, CA: Sage.
Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software

development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3), 309-346.

Morgan, L., Feller, J., & Finnegan, P. (2011). Exploring inner source as a form of intraorganisational
open innovation. Paper presented at the 2011 ECIS, Helsinki, Finland.

Morner, M., & von Krogh, G. (2009). A note on knowledge creation in open-source software projects:
What can we learn from Luhmann's theory of social systems? Systemic Practice and Action
Research, 22(6), 431-443.

Morse, J. M. (2004). Theoretical saturation. In M. S. Lewis-Beck, A. Bryman, & T. F. Liao (Eds.),
Encyclopedia of social science research methods (Vol. 1-3, pp. 1122-1123). Thousand Oaks,
CA: Sage.

Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks, CA: Sage Publications.
Nonaka, I., Byosiere, P., Borucki, C. C., & Konno, N. (1994). Organizational knowledge creation

theory: A first comprehensive test. International Business Review, 3(4), 337-351.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 832

Eseryel / IT-Based Knowledge Creation for Open Innovation

Nonaka, I., Reinmoeller, P., & Senoo, D. (2000). The art of knowledge. In G. von Krogh, I. Nonaka, &
T. Nishiguchi (Eds.), Knowledge creation: A source of value (pp. 89-109). New York: St.
Martin's Press.

Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies
create the dynamics of innovation. New York: Oxford University Press.

Nonaka, I., & von Krogh, G. (2009). Tacit knowledge and knowledge conversion: Controversy and
advancement in organizational knowledge creation theory. Organization Science, 20(3), 635-652.

Orlikowski, W. J. (1991). Radical and incremental innovations in systems development: An empirical
investigation of case tools. Boston, MI: Massachusetts Institute of Technology.

Orlikowski, W. J. (1993). Learning from notes: Organizational issues in groupware implementation.
Information Society, 9(3), 237-250.

Polanyi, M. (1966). The tacit dimension. Garden City, NY: Doubleday and Co.
Robey, D. (1986). Designing organization (2nd ed.). Homewood, IL: Irwin.
Robillard, P. (1999). The role of knowledge in software development. Communications of the ACM,

42(10), 87-92.
Schein, E. H. (1992). Organizational culture and leadership. San Francisco: Jossey-Bass Publishers.
Setia, P., Rajogopalan, B., & Sambamurthy, V. (2012). How peripheral developers contribute to open-

source software development. Information Systems Research, 23(1), 144-163.
Thomas, D., & Hunt, A. (2004). Open source ecosystems. IEEE Software, 32(1), 89-91.
Trott, P., & Hartmann, D. (2009). Why “open innovation” is old wine in new bottles. International

Journal of Innovation Management, 13(4), 715-736.
Tuertscher, P., Garud, R., & Kumaraswamy, A. (Forthcoming). Justification and interlaced knowledge

at ATLAS, CERN. Organization Science.
Tushman, M., & Nadler, D. (1986). Organizing for innovation. California Management Review, 27(3), 74-92.
von Hippel, E., & von Krogh, G. (2003). Open source software and the “private-collective” model:

Issues for organization science. Organization Science, 14(2), 209-223.
von Krogh, G. (2002). The communal resource and information systems. Journal of Strategic

Information Systems, 11(2), 85-107.
von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and specialization in open

source software innovation: A case study. Research Policy, 32(7), 1217-1241.
Wang, X., Kuzmickaja, I., Stol, K.-J., Abrahamsson, P., & Fitzgerald, B. (2014). Microblogging in open

source software development: The case of Drupal and Twitter. IEEE Software, 31(4), 72-80.
Wasserman, A. I. (2009). Building a business of open source software. In C. Petti (Ed.), Cases in

technological entrepreneurship (pp. 107-121). Salento, Italy: Edward Elgar Publishing.
Weber, S. (2004). The success of open source. Cambridge, MA: Harvard University Press.
Wesselius, J. (2008). The bazaar inside the cathedral: Business models for internal markets. IEEE

Software, 25(3), 60-66.
West, J., & O’Mahony, S. (2005). Contrasting community building in sponsored and community

founded open source projects. Paper presented at the 38th Annual Hawai'i International
Conference on System Sciences, Waikoloa, Hawaii.

Willke, H. (2003). Auf dem Weg zur intelligenten Organisation: Lektionen für Wirtschaft und Staat. In
N. Thom & J. Harasymowicz-Bimbach (Eds.), Wissensmanagement im privaten und
öffentlichen Sektor: Was können beide Sektoren voneinander lernen? (pp. 77-98). ETH
Zurich: vdf Hochschulverlag.

Zaltman, G., Duncan, R., & Holbek, J. (1973). Innovations and organizations. New York: Wiley.
Zmud, R. (1982). Diffusion of modern software practices: Influence of centralization and formalization.

Management Science, 28(12), 1421-1431.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014

833

Eseryel / IT-Based Knowledge Creation for Open Innovation

About the Author
U. Yeliz ESERYEL is an Assistant Professor of Information and Communication Technologies at the
University of Groningen, Department of Innovation Management & Strategy. Her research informs the
theory and practice on the novel and global forms of organizing through information technologies to
increase performance, innovation, global competitiveness, and economic prosperity. She has
investigated the divergent patterns of leadership, decision making, communication and coordination
in innovative global teams through the use of information technologies. Her research has been
published in high-quality journals such as the Journal of Strategic Information Systems (JSIS), IEEE
Transactions on Professional Communications, Journal for the American Society of Information
Science and Technology (JASIST), Information and Software Technology Journal, and the Journal of
Leadership and Management. Her industry background includes business & strategy consulting and
IT project management, in the areas of ERP implementations, enterprise architecture, change
management, project management and IT governance. She has been teaching internationally on
these topics at the corporate, executive, master’s, and undergraduate levels since 2004.

Journal of the Association for Information Systems Vol. 15, Issue 11, pp. 805-834, November 2014 834

	RA-JAIS-13-0160.R2_cover v1.1.pdf
	RA-JAIS-13-0160.R2_text v1.1.pdf
	1. Introduction
	2. Literature
	2.1. Knowledge Creation
	2.2. Open Innovation and Knowledge Creation in Open Source Software Development Teams

	3. Research Method
	3.1. Context and Case Selection
	3.2. Introduction of the Data
	3.3. Archival Data Collection and Reduction: Sampling of Threads
	3.4. Content Analysis Schema Development & Content Analysis: Adapting the Knowledge Creation Framework to the Open Innovation Setting
	3.4.1. Socialization
	3.4.2. Externalization
	3.4.3. Combination
	3.4.4. Internalization

	4. Findings
	4.1. Knowledge-Creation Behaviors in Open Innovation Context
	4.1.1. Socialization
	4.1.2. Externalization
	4.1.3. Combination
	4.1.4. Internalization

	4.2. Developers’ and Users’ Contributions to Knowledge Creation
	4.3. Information Technologies Used to Enable Knowledge Inflows and Outflows

	5. Discussion
	5.1. Contributions to Theory
	5.2. Contributions to Practice
	5.3. Limitations and Future Research

	References
	About the Author

