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Group-purchase institutions, a type of Internet shopping website, allows consumers to aggregate their demands 
for a product to gain discounts in purchase price. Modeling consumers’ bidding behavior in this institution using 
the economic perspective of constraint, expectation, and preference interactions, we study two group-
purchase mechanisms (i.e., conditional purchase and information cue) on a buyer’s purchase choice across 
competing group-purchase alternatives. Using a conditional purchase mechanism, a buyer is not obliged to 
commit to the purchase if the best price is not met (i.e., the final offered price is greater than the best available 
lowest price). Through the information cue, a buyer could obtain information on the current number of orders 
collected. We analyzed a set of laboratory experimental data based on a group-purchase institution using the 
stated choice method. We find that a buyer is more likely to buy through group-purchase when a conditional 
purchase mechanism is provided. However, providing more information does not necessarily alleviate buyer 
uncertainty and inertia. The presence of information cue does induce them to choose a riskier but cheaper 
group-purchase option. In such cases, the choice elasticity of a risky group-purchase option is more sensitive to 
the information cue than to the conditional purchase mechanism. 
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 Stated Choice Analysis of Conditional Purchase and 
Information Cue Effects in Online Group Purchase 

1. Introduction 
Group-purchase institutions (GPI), specialized Internet-enabled shopping institutions, enable 
consumers to aggregate their demands for identical products to obtain attractive deals in the form of 
highly discounted prices (Geoffrion & Krishnan, 2003). In recent years, business analysts have 
increasingly expressed concern about the group-purchase industry’s low-entry barriers and 
intensifying rivalry to compete for buyers (Bosker, 2011). At their core, GPI work on the basis that they 
need to attract people with sufficient aggregated commitment to a purchase (i.e., to buy products in 
sufficient volumes to obtain a discounted price) (Azfar, 2001). However, buyers may not come to a 
common action such as committing to a specific product purchase for everyone’s collective benefit of 
getting a lower price (Sandler, 1992). Thus, other than examining GPI sellers’ profitability (Grewal et 
al., 2011), an important way to examine GPI, which prior studies have largely ignored, is via 
implementing mechanisms or marketing-mix policies that can influence the viability of such GPI 
websites (Kumar & Rajan, 2012). 
 
Various commercial GPI implementations exist, but two types are prominent. The first type allows 
online consumers to aggregate their similar product purchases through either a fixed price with 
quantity threshold (i.e., minimum number of orders before a group-buying deal is established); in 
contrast, the second type uses a staggered pricing scheme (i.e., the transaction price decreases as 
the number of orders increases). While championed and popularized by Groupon, the first type is a 
simplified version of group-purchase. The second type is a more sophisticated yet flexible version of 
group buying in which a buyer is first assured of a price ceiling (i.e., the maximum price payable for a 
product) and subsequently enjoys a lower price should the higher order-quantity threshold be met1 
(Anand & Aron, 2003; Chen, Chen, Kaufman, & Song, 2009a; Chen, Kauffman, Liu, & Song, 2009b; 
Kauffman & Wang, 2001). In this research, our focus is on the second type of group buying. 
 
In a typical group-buying setting, buyers thinking about whether other buyers have similar purchase 
inclinations can trigger uncertainty in their mind, which can lead the buyers to not commit to a 
purchase or to choose an option that is of lower price uncertainty2 (Anderson, 2003; Dhar & Nowlis, 
1999). As such, we need a good understanding of the interactions among GPI buyers and their 
behavioral decisions in the face of uncertainty. As a result, we ask:  
 

RQ: What are the kinds of mechanism that GPI can implement that can encourage prospective 
buyers, who may be uncertain over whether the lowest purchase price can be attained, to 
place orders? 

 
To answer this question, following Manski (2000), we conceptualize that there are constraint, 
expectation, and preference interactions among buyers in GPI. Moreover, we propose that, to address 
such interactions, GPI needs to afford two mechanisms; namely, 1) information cues to facilitate 
observational learning among buyers, and 2) conditional purchases to alleviate potential negative 
economic outcomes should the best available price in GPI not materialize. The information cue 
mechanism, which comes from the information provision paradigm (Charness & Villeval, 2009; Sandler, 
1992), displays information on the latest number of orders collected during the decision time. This 
increased transparency could allow buyers to assess the probability of the best price being met. The 
conditional purchase mechanism, on the other hand, allows buyers the opportunity to forfeit a purchase 
without incurring any monetary penalty (Bendor & Mookherjee, 1987; Giebels, De Dreu, & Van de Vliert, 
2000) and, thus, serves as an “exit” option (Bendor & Mookherjee, 1987; Giebels et al., 2000).  

1 For instance, a typical group-buying retail situation of this latter form could entail two purchase options for an identical camera. 
Option A lists $450 as the base price (i.e., price ceiling) and accepts $400 (i.e., best price) if a low order-quantity threshold of three 
or more orders is received. Option B has $450 as the base price and $350 if a high order-quantity threshold of at least 6 orders is 
received. This example illustrates a more general pricing mechanism with two prices as compared to the former group-buying form 
exemplified by Groupon where a product deal is only available at one price when the number of committed buyers crosses a 
predetermined minimum threshold. 

2 Possibly symptomatic of this problem, an update in the industry by Forrester Research estimates that only about 30 out of the 140 
million (less than 22%) of Groupon subscribers have ever purchased through Groupon (Bosker, 2011). 
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This study, by empirically validating the influence of conditional purchase and information cue on 
buyers’ GPI decision to order, adds to the literature in at least two ways. First, we introduce the 
economics perspective of constraint, expectation, and preference interactions among buyers to the 
GPI literature (Manski, 2000). We conducted experimental research and econometric modeling of 
such interactions in GPI by allowing individuals in GPI to observe others’ behavior through the 
information cue feature and then make decisions. Furthermore, we allowed purchase commitments in 
GPI to be reversible (i.e., not honor the order should the best price be not met). Second, we consider 
both information cue and conditional purchase features to be valuable because many prior 
information systems (IS) studies have predominantly focused on the information provision mechanism 
and its impact on user interactions. Prior work on information provision advocates that making 
information available reduces the asymmetry among individuals and, thus, should lead to improved 
overall welfare (Ba & Pavlou, 2002). Our results indicate that it is only when the potential of suffering 
from non-cooperative outcomes in GPI emerges, through conditional cue, will the information cue 
mechanism in GPI be able to achieve what it is supposed to resolve. 

2. Theoretical Foundations 
We can view multiple buyers’ involvement in achieving a specific economic objective (i.e., whether to 
purchase from a GPI) as a form of economically driven social interaction (Manski, 2000). Such 
interactions in the context of GPI refer to interaction activities such as initiating a purchase or 
responding to others’ actions when making purchase decisions (Suh, Couchman, & Park, 2003). 
Manski (2000), in studying the economic paradigm of social interaction, highlights the importance of 
considering the social interactions among a sampled population of economic interest (e.g., 
consumers) in a given setting. We can also view buyers in GPI as engaging in a process of 
economically driven interaction but such that it involves multiple buyers whose purchase outcomes 
depend on the cooperative, aggregated decisions of two or more buyers (Chen et al., 2009a). 
 
As Section 1 notes, Manski (2000) conceptualizes social interaction in economic settings along three 
channels: constraints, expectations, and preferences. We assume economic agents to be decision 
makers who are endowed with preferences (written as formal expressions in utility functions), form 
expectations (proxied through subjective probability distributions), and maximize their utility subject to 
specific constraints. In the GPI context, we elaborate below how constraint, expectation, and 
preference interactions among buyers in GPI are relevant to our discussion. 
 
First, in the GPI market, there are typically constraints in both the demand and supply of the products 
transacted. The decisions of the consumers and the GPI firm in response to the demand and supply 
of products transacted collectively determine the price of products sold as a result of the order-
quantity constraints in the GPI. In the case of positive constraint interactions (i.e., the more that some 
buyers choose a product on GPI, the more available it is to all), the product’s sufficient demand meets 
the order-quantity threshold, which leads to a lower price level for all buyers. In contrast, for negative 
constraint interactions, the product’s insufficient demand results in it costing the default (higher) price 
for all interested buyers. 
 
Second, a buyer evaluating a decision will form expectations about what outcomes will result from 
their choosing different actions. A buyer establishing expectations may also seek to draw lessons 
from observing others’ actions and these actions’ associated outcomes. For example, a potential 
buyer in GPI may form expectations such as “Am I getting a really good cheap price for this item 
since many people are also buying this?”, or “Is there a problem with poor quality of this item since no 
one is buying it through the GPI?”. As such, observational learning generates expectation interactions 
in market institutions such as GPI.  
 
Third, preference interactions occur when a buyer’s preference for a product depends on others’ 
actions, a concept that is central to non-cooperative game theory (Manski, 2000). Thus, a buyer’s 
preference ordering on the alternative options in their choice set depends on other consumers’ 
actions. Such preference interactions could occur in GPI when a potential buyer is contemplating the 
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purchase of a product that exhibits product network effects or individuals’ self-presentation effects 
(Leary & Kowalski, 1990).  
 
To understand GPI’s information cue and conditional purchase features better, we anchored on the 
prior GPI literature even though most studies do not explicitly consider these two mechanisms (see 
Table 1). Indeed, prior works have examined GPI mainly from two perspectives (see Table 1): 
revenue generation for sellers and the GPI itself (Anand & Aron, 2003; Chen, Chen, & Song, 2007; 
Chen et al., 2009a; Jing & Vie, 2011; Kumar & Rajan, 2012) and buyers’ bidding response to price 
and order quantity (Chen et al., 2009b; Kauffman & Wang, 2001; Li, Chawla, Rajan, & Sycara, 2004). 
These previous studies are mostly analytical in nature except Kauffman and Wang (2001). 
 
Table 1. Prior Key Studies on GPI 

Authors and year Key research question(s) Key variables Consideration of GPI 
mechanism? 

Analytical 
Anand & Aron (2003) What is the optimal group-

purchase schedule if a firm 
decides to participate in a 
purchase and how does the 
performance differ from that 
of the posted offer 
institution? 

Price, number of orders, 
and seller’s revenue 

No: the focus is on 
justifying the value of GPI 
against the benchmarking 
posted offer institution. 

Chen et al. (2007, 2009a) Can GPI generate more 
profit than the fixed pricing 
mechanism? Under what 
situations does the GPI 
perform better? 

Price, revenue and profit No: the focus is on 
comparing the GPI and 
fixed pricing institution. 

Chen et al. (2009b) What are the optimal 
buyers’ bidding strategies? 

Price, valuation, bid No: the focus is on bidding 
strategy. 

Jing & Xie (2011) When and how a seller can 
gain from group buying 
compared with individual 
selling strategies and 
referral reward programs? 

Information/knowledge gap 
between expert and novice 
consumers, interpersonal 
information sharing, 
product valuation, firm 
profit 

Not explicitly, though 
information sharing is 
considered. 

Kumar & Rajan (2012) Are social coupons 
profitable for businesses? 
Can businesses influence 
social coupon profitability? 
How can businesses 
recover the shortfall in 
profits from the coupon 
launch? How long will it take 
for businesses to recover 
the shortfall in profits from 
the coupon launch? 

Firm profitability, coupon 
discount rate, percentage 
of existing customers using 
coupons, number of new 
customers and percentage 
retained, business types 

No: the focus is on firm 
profitability. 
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Table 1. Prior Key Studies on GPI (cont.) 

Authors and year Key research question(s) Key variables Consideration of GPI 
mechanism? 

Empirical 
Kauffman & Wang (2001) How does the price 

threshold affect buyer 
behavior? How does the 
number of existing orders 
influence the number of new 
orders? 

Number of orders and price No: the focus is relating 
price to orders. The 
analysis is based on 
secondary data from 
Mobshop.com. 

Li et al. (2004) What types of GPI 
mechanism could promote 
coalition stability and 
incentive compatibility 
(efficiency) of an economy 
with incomplete information? 

Private valuation 
information (reservation 
price), number of buyers, 
efficiency 

No: the focus is on buyer 
coalition formation. The 
analysis is through 
simulation. 

Our research What are the kinds of 
mechanism that can be 
put in place in GPI which 
can encourage 
prospective buyers, who 
may be uncertain over 
whether the lowest 
purchase price can be 
attained, to place orders? 

Conditional purchase and 
information cue 

Yes: we explicitly 
consider two GPI 
mechanisms to induce 
purchases. The data is 
based on an experiment 
that followed the 
principles of 
experimental economics. 

2.1. Conditional Purchase 
Since GPI outcome is contingent on buyers’ constraint interactions and aggregated purchase 
decisions, buyers will face decision uncertainty when evaluating their own purchase in a GPI. Pavlou, 
Liang, & Xue (2007) define buyer’s decision uncertainty as the extent to which the buyer is unable to 
fully ascertain the consequence or outcome of making a purchase. Payne and Bettman (1992) 
explain decision uncertainty in more detail in terms of guessing the consequences of the actions or 
decisions made now and guessing the subsequent actions or decisions arising from these 
consequences. A buyer may face uncertainty due to the product (e.g., a product under consideration 
might be of low quality) (Dimoka, Hong, & Pavlou, 2012), the price (e.g., whether the price of a 
product is reasonable) (Mehta, Rajiv, & Srinivasan, 2003), and even the seller (e.g., if the seller might 
delay product delivery) (Pavlou et al., 2007). In the case of GPI, a buyer’s decision uncertainty may 
stem from the unconfirmed purchase decisions of other buyers who might be interested in a product 
but are not yet committed to the purchase (i.e., uncertainty due to negative constraint interactions). As 
Azfar (2001) notes, the need for a cohort of people with sufficient aggregated commitment on a 
decision (e.g., choosing the same GPI purchase option) could be a challenge because each 
individual’s propensity to coalesce on a common action may not coincide with those of the rest of the 
cohort (Sandler, 1992). For an individual, the expectation of whether others will take a similar action 
could trigger uncertainty and lead the buyer to not commit to a purchase or to choose an option with 
lower uncertainty (Anderson, 2003; Dhar & Nowlis, 1999). Providing features that afford sufficient 
incentives to motivate buyers to commit to purchase decisions early could somewhat address the 
issue of GPI buyers not committing to eventual GPI purchases. To this end, a way to alleviate 
negative constraint interactions and, thus, the decision uncertainty in GPI purchases is to implement 
a conditional purchase feature in GPI, which essentially sets a ceiling as to how high a buyer would 
be expected to pay for a product.  

2.2. Information Cue 
Prior research has traditionally advocated the importance of facilitating information sharing to resolve 
the issue of information asymmetry (Healy & Palepu, 2001). Information asymmetry refers to a state in 
which an economic agent has imperfect information about an item to be transacted or the transacting 
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party (Shapiro, 1982). To examine the support for information sharing, prior experimental studies on 
auctions have indicated that sequential (versus simultaneous) bidding (i.e., one buyer makes a bidding 
decision after seeing another doing so) could facilitate the signaling of the buyers’ preferences 
(Klemperer, 1999). Sequential bidding in auctions typically leads to an advantage for the sellers since 
there tend to be more aggressive biddings as a result of the increase in the extent to which preferences 
are revealed (Hausch, 1986). This long-held notion of reducing information asymmetry in markets 
through increasing support of information sharing (i.e., display number of bids received) is, however, 
questionable because, for example, in relation to GPI, Kauffman and Wang (2001) observed the herding 
effect, price drop effect, and cycle-ending effect3 in research based on secondary data collected from a 
GPI website. This research highlights that buyers in GPI may delay making purchase decisions until the 
final price can be clearly determined (i.e., when sufficient buyers have committed to the purchase). We 
contend that the effect of information cue in GPI could be determined by the GPI buyers’ expectation 
and/or preference interactions, which we validate in this research. 

3. Hypothesis Development 
We consider two GPI mechanisms; namely, (1) the conditional purchase mechanism, which allows a 
decision maker to reduce the outcome dependency; and (2) the information cue mechanism, which 
allows a decision maker to influence others to purchase (thus reducing information asymmetry in GPI). 
We argue that the former mechanism alleviates the extent and consequences of decisional 
uncertainty arising from the economic outcome of the GPI purchase and that the latter mechanism 
addresses information asymmetry in GPI such that it can potentially increase (or decrease) the 
propensity among buyers to purchase through GPI depending on the nature of social interactions (i.e., 
in the form of constraint, expectation or preference interactions) among buyers in GPI.  

3.1. Conditional Purchase 
Compared to a non-GPI website such as Amazon.com in which buyers can only buy products based 
on fixed offered prices, GPI provides buyers with opportunities to obtain substantially discounted 
prices from the offered prices based on aggregated demand. Indeed, this is the benefit of positive 
constraint interaction in GPI such that the more that buyers choose a product on GPI, the cheaper it 
is to all. However, when a buyer’s decision outcome is dictated by the aggregated actions of other 
buyers as in GPI, the buyer is likely to expend considerable effort on understanding the situation and 
to develop expectations about other buyers’ probable behaviors (Arriaga & Rusbult, 1998). The GPI 
mechanism of conditional purchase addresses this issue by offering the opportunity for buyers to 
benefit from positive constraint interactions in a GPI and yet mitigate the potential loss due to 
negative constraint interactions. Specifically, the conditional purchase mechanism shares the same 
underlying principle of conditional cooperation (Bendor & Mookherjee, 1987) and the opportunity to 
terminate a bargaining session in negotiation research (Giebels et al., 2000).  
 
In the GPI setting where conditional purchase is not provided, a buyer would need to honor the 
purchase at the final offered price regardless of whether this price is equal to the best available 
lowest price or not. When a buyer is not provided with the conditional purchase option, the individual 
is aware that any decision will result in an irreversible consequence (i.e., honoring the purchase even 
at a high price). This situation could lead to a cognitive tension that could prompt buyers to choose 
the “safer” option—not to purchase a product in GPI, which is in accordance with inaction inertia 
theory in the decision uncertainty literature (Dhar, 1997). 
 
However, in the presence of the conditional purchase mechanism, a buyer only honors or commits to 
a purchase should the final offered price equate to the best available lowest price offered with a 
sufficient number of buyers crossing the order-quantity constraint and, thus, reaps the benefit of a 
positive constraint interaction in GPI. The GPI mechanism of conditional purchase could reduce the 
impact of detrimental consequences associated with negative constraint interactions in GPI (i.e., an 
insufficient number of buyers committed to a GPI), leading to a lack of supply of the good to be 
procured at the desired price in GPI. Thus, we hypothesize: 

3 The cycle-ending effect refers to the phenomena of more orders being received towards the end of a product sale period. 
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H1a: Providing the conditional purchase in a GPI will elicit a buyer’s higher propensity 
for purchasing through the GPI compared to not providing it. 

 
Prior research indicates that offering buyers with the flexibility to “quit” (e.g., not honoring the 
purchase should the final offered price be higher than the best available lowest price in the case of 
GPI’s conditional purchase mechanism) can reduce worries and concerns with respect to the 
plausible consequences of a decision (Giebels et al., 2000). When a buyer has the ability to quit 
without suffering from a negative consequence (Giebels et al., 2000), one might be more willing to 
choose the riskier competing purchase option (Jonas, Graupmann, & Frey, 2006). This case refers to 
an option that may expose a buyer to a chance of greater loss or gain compared to another less-risky 
choice. To illustrate, a buyer may be given two mutually exclusive competing options; namely, (1) a 
high quantity threshold constraint but a low best price, and (2) a low quantity threshold constraint but 
a high best price4. The former is a riskier choice because it requires more buyers to select the option 
before the low best price (that endows the buyer with a high consumer surplus) is reached (i.e., the 
minimum satisfying condition to achieve positive constraint interactions has been raised or made 
more difficult to achieve). Nevertheless, we conjecture that a buyer presented with the conditional 
purchase mechanism in GPI will have a higher tendency to choose the first option, which is riskier, 
because a conditional purchase mechanism enables the individual not to honor the transaction if the 
best possible price is not reached (i.e., mitigating the potential risk or loss from a negative constraint 
interaction in GPI). Hence, we hypothesize: 
 

H1b: When a buyer has decided to purchase through GPI, providing the conditional 
purchase will elicit the individual’s higher propensity to choose a riskier option 
when presented with competing alternatives (i.e., favoring an option with a high 
quantity threshold requirement but a low best price rather than one with a low 
quantity threshold but a high best price). 

3.2. Information Cue 
We operationalize information cue as numeric information about the number of buyers who have 
committed to a purchase in the GPI, which is similar to the way in which auction experiments are 
conducted (Klemperer, 1999).  
 
In the absence of an information cue, the buyers have no source of reference to determine other 
buyers’ response (i.e., whether and how many buyers have committed to a purchase in the GPI). 
Thus, providing information cues addresses the problem of information asymmetry (Charness & 
Villeval, 2009; Payne & Bettman, 1992). Decision uncertainty arising from information asymmetry can 
be addressed through various forms of IT-enabled features such as providing informative displays 
(Mahoney, Roush, & Bandy, 2003). This focus on addressing information asymmetry also echoes 
Kelley et al. (2003), who suggest that information availability about buyers’ actions could influence 
one’s or others’ expectations or preferences in making purchase commitments. 
 
Information cues (e.g., cues that disclose the number of orders received) could facilitate cooperative 
behavior by reducing the uncertainty associated with GPI purchase decisions (Azfar, 2001; Kelley et 
al., 2003). Thus, a buyer could use information cues to learn about the actions of other potential 
buyers and follow the decisions of these individuals. Indeed, humans have a tendency to conform and 
make decisions by inferring from others based on information that is available (Bikhchandani, 
Hirshleifer, & Welch, 1992). Further, in the absence of information, people may behave in diverse 
manners that can result in, for example, market volatility (Lee, 1998). In a similar vein, in a GPI 
context, given the overarching retail or pricing concept of price discounts with high volumes in a group 
purchase, there is a strong likelihood of positive expectations interaction as a result of providing 
information cues in the market (i.e., a buyer inferring positive information (e.g., price is attractively low 
relative to prevailing price outside of GPI) from the observed actions or outcomes of other buyers who 
have committed to GPI purchases). Consequently, this would induce a buyer to have a higher 

4 A relevant analogy for this choice situation would be akin to choosing to buy an identical product from either Groupon (i.e., 
dominant leader with the biggest customer base) or LivingSocial (i.e., a smaller rival in the market). 
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propensity to also purchase from the GPI. This is even so in the case of positive preferences 
interactions among buyers in a GPI (i.e., the utility5 of an individual consumer’s purchase increases 
with the number of other buyers buying the same product in GPI, which could heighten the propensity 
to purchase in a GPI). For these reasons, we hypothesize: 
 

H2a: Providing an information cue in a GPI will elicit a buyer’s higher propensity for 
purchasing through the GPI compared to not providing it. 

 
Further, we need to know whether the presence of information cues enable buyers to choose a riskier 
competing option that offers a lower price but has a high quantity threshold requirement. We posit that 
providing information cues may induce buyers toward choosing the riskier choice (as in H2b) because, 
assuming that an information cue is available in the GPI,  the number of orders placed could have a 
positive impact on the newly placed orders. This position follows Anand and Aron (2003) and 
Kauffman and Wang (2001) and theories such as the information cascading theory (Bikhchandani, 
Hirshleifer, & Welch, 1992). Based on the positive expectation and/or preference interactions 
argument, offering potentially committed buyers the opportunity to observe the behaviors of others 
could reinforce the positive interactions, such that this could increase the propensity to choose the 
riskier option in a GPI. Such an argument is also in line with the decision uncertainty literature which 
documents that the provision of information cues could mitigate the information asymmetry amongst 
buyers and sellers alike (Shapiro, 1982). Therefore, hypothesize: 
 

H2b: When a buyer has decided to purchase through a GPI, providing an information 
cue will elicit the individual’s higher propensity to choose a risker option when 
presented with competing alternatives.  

 
Further, it is an open question about why buyers would not take on a proactive role in influencing 
others to purchase by submitting orders early. According to the principle of inaction inertia, people 
may choose to wait or delay committing to a purchase even when waiting may be detrimental to them 
(Anderson, 2003). If a buyer delays in making a commitment to a group-buying purchase and should 
the sale period terminate, it is plausible that the buyer may need to purchase the same item at a listed 
price that is likely to be higher than if the buyer purchased it through the GPI. However, if buyers have 
already committed to the purchase, then we posit that others would prefer the riskier option with a 
high-quantity threshold requirement but a low best price because it yields the maximum buyer surplus 
or welfare. This result arises because the presence of information cues can transmit signals of 
purchase commitment to the yet-to-commit onlookers and, thus, reinforce the effects of all the constraint, 
expectation, and preference interactions in a GPI. Therefore, other buyers’ propensity to choose a 
specific purchase option in GPI could increase in the presence of information cues (Ariely & Levav, 
2000). Specifically, when other buyers’ actions are visible through information cues, a buyer could also 
use such information cues to induce similar actions from other buyers. As such, we hypothesize: 
 

H2c: When a buyer has decided to purchase through a GPI, by providing an 
information cue, the individual’s propensity to choose a specific competing option 
will increase with the number of buyers choosing the same option. 

4. Research Method 
We employed a controlled laboratory experimentation method with a 2×2 between-subjects full 
factorial design to investigate the effects of an information cue and the conditional purchase on 
buyers’ decision making outcomes in the GPI. Each treatment comprised two experiment sessions, 
with 10 participants being recruited for each session. In each session, the participants assigned the 
role of buyers had to decide whether to purchase through a GPI and, if they decide to do so, the 
specific option to select. In the presence of an information cue, buyers gained access to information 

5 Utility is the perceived ability or value of a good to satisfy the needs or wants of an economic agent. 
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indicating the latest number of purchase orders received in the group-purchase exercise6. In the 
presence of the conditional purchase, buyers could only honor the purchase when the final offered 
price equated to the best available lowest price given by the quantity threshold requirement.  
 
Figure 1(a) illustrates the GPI mechanisms we studied. The figure also depicts the experimental 
system for the treatment containing both information cue and conditional purchase conditions. Figure 
1(a) presents two options: shop A and shop B, with two corresponding purchase options of radio 
button inputs (i.e., “buy at best price only” and “buy at final closing price”). If the conditional purchase 
was absent, then the purchase option of “buy at best price only” would be unavailable and the default 
radio button selection would be “buy at closing price” (i.e., but at the final offered price). In this case, a 
buyer would need to commit to purchase the product regardless of the final offered price (labeled as 
“final closing price” in the system). However, if the conditional purchase (i.e., the purchase option of 
“buy at best price only”) was available and the buyer chose it, then the buyer would only need to 
honor the purchase when the final offered price was equal to the best price (i.e., the best available 
lowest price). For other buyers who did not choose or who did not have the “buy at best price only” 
option, they would need to pay for the final offered price. If the information cue was present (red 
boxed information in Figure 1(a)), it presented information about the number of bids received (i.e., “X 
potential buyer(s) have bid for this item and X out of Y will “buy at best price only” as Figure 1(a) 
depicts). Thus, a buyer could use this information to make the eventual purchase decision. Figure 
1(b) depicts the screen that was displayed at the end of a trading period. As Figure 1(b) shows, for 
this particular buyer, he had previously bid for shop B and indicated that he would buy at the final 
offered price regardless of whether the final offered price reached the best available lowest price. 
 
We measure the dependent variables as the actual choice decisions of purchase (i.e., first, whether 
to order or not, and, second, which purchase option to choose in the GPI). The first purchase option, 
the low risk one, was to purchase from shop A, which had a low number-of-orders threshold to reach 
the best price. The second option, the high risk one, was to purchase from shop B, which had a high 
number-of-orders threshold to reach the best price. The best price for shop A was higher than that for 
shop B. Should a buyer have chosen to purchase and the minimum threshold was yet to be met, the 
buyer would have to purchase the product, known as a “unit”, at the retail price (i.e., the highest price) 
in the absence of the conditional purchase mechanism (see Figure 1 for sample screenshots of the 
experimental system). 
 
We performed all experiments in a public university. We recruited 80 graduate students from across 
the university, 40 of whom were male and had no previous experience of laboratory experiments, in a 
repeated buying and selling game on a computer platform. The participants were primarily business 
major students. We controlled for individual characteristics, such as age and computer proficiency 
(measured by the years of computer experience), by randomly assigning participants to different 
treatments. We also performed control checks. Our results indicated no significant differences in age 
(F=1.689, p>0.1) and computer proficiency (F=1.109, p>0.1) across the treatments. Thus, control 
over participant characteristics through randomization appeared to be successful.  
 
In each session, we provided participants with detailed instructions on paper and via online forms. 
The same experiment administrator conducted each set of experiment sessions by following a 
standard set of guidelines and instructions. Before the start of each session, the participants 
underwent a trial-trading period and completed a test designed to check their understanding of the 
trading rules and incentive structures. Each experiment session entailed one trial period and 19 
actual trading periods in which multiple measurements of dependent variables were made for each 
participant. Each actual trading period lasted for a maximum of two minutes. Participants were 
presented with a realistic market scenario in which they were to purchase a generic commodity 
product identified as a “unit” with no name or brand. They were primed to come across online GPIs 
selling an identical product. Each participant had to make a purchase decision during the given time 

6 In the self-developed experimental system simulating the GPI, the experimental participants had access to updated information on 
the purchase orders when the information cue is present. This information was automatically refreshed by the system on the 
terminal of each participant. 
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period. Once the decision was made, the participant was not allowed to amend the decision. No order 
of decision making among the participants was enforced; they were free to make a purchase decision 
any time within each period. 
 
To ensure experimental realism, we told the participants that the experiment focused on individual 
purchase decision making and they would be paid in cash for their participation. Specifically, we told 
the participants that they would be paid a fixed participation incentive (approximately USD$5) and a 
variable performance-based incentive (up to an additional USD$10, on average, depending on the 
performance). We told them that an initial amount of USD$5 was credited into their individual accounts 
at the start. The money would be given as cash if the amount remained the same until the end of the 
experiment. Participants earned (lost) money by buying below (above) their valuation price for the 
product7. We explicitly informed them that higher payments were possible based on performance but 
were not guaranteed. Each participant was paid an average of USD$15 for about an hour’s work. 
 

 
(a) 

Figure 1. Experimental System Screen Shot (Treatment for Presence of Conditional Purchase 
and Information Cue) 

 
 

7 The valuation price across different trading periods did change during the experiment and was predetermined according to a 
normal distribution, with distribution supports of the lowest best price and the retail price marked up by 10 percent. To reduce the 
possibility of collusion, we added a different (random) parameter-disguising scalar to the derivations of the valuation prices and the 
shops’ prices, such that the trading units were not readily comparable across experiment sessions. Indeed, the price valuation 
changes in this normal distribution across trading periods and across treatments. We alleviated the possibility of systematic bias 
resulting from sequencing the valuation prices through randomization. We also included valuation as a controlled variable in the 
analyses. Such an approach is in accordance with the market institutional principle in experimental economics (Davis & Holt, 
1993) and prior studies such as that by Brewer, Huang, Nelson, and Plott (2002). 
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(b) 

Figure 1. Experimental System Screen Shot (Treatment for Presence of Conditional Purchase 
and Information Cue) (cont.) 

 

5. Stated Choice Model Specification 
Stated choice methods are typically used with a formal structure to investigate the responsiveness of 
potential and actual participants in markets for products and services, explain individual and 
aggregate choice behavior in such markets, and predict behavioral responses to changing 
opportunities (McFadden, 1979, 1981). As such, we conceptualize decision making in a GPI as a two-
stage model; that is, a buyer decides (1) whether to purchase and, (2) if purchasing, which purchase 
option. This two-stage model is in accordance with the prior theoretical modeling of consumer 
decisional behavior (Bucklin, Gupta, & Siddarth, 1998). Table 2 summarizes some prior works that 
adopt the two-stage model. In particular, Chintagunta (1992) suggests that considering the two-stage 
decision making process and applying the subsequent nested logit (NL) model can account for the 
heterogeneity in intrinsic preferences and intrinsic purchase propensities across individuals; 
conversely, disregarding the process may result in the model estimations generating biased 
coefficients of the independent variables. Several papers on a similar setting of online auctions also 
consider two-stage nested models, such as Bapna, Goes, Gupta, and Karuga (2008). 
 
 
 
 
 
 
 
 
 
 

 
Journal of the Association for Information Systems Vol. 16, Issue 9, pp. 738-765, September 2015 748 



 
Goh et al. / Online Group Purchase 

Table 2. Examples of Auction Bidding Research using the Two-stage Analysis Model 
Authors (year) Domain Two-stage decision model applied 

Bidding 
Ahmad (1990) Construction contract 

bidding problem 
Propose a two-stage bidding model of bidding 
problem. First stage is concerned with bid/no-bid 
decision. Second stage deals with the bidding 
options with explicit parameters such as type of 
project and location. 

Fleten & Kristoffersen 
(2007) 

Hydropower bidding 
problem 

A two-stage stochastic programming model is 
proposed. The first stage involves the bidding 
process and the second stage focuses on the 
production aspects. 

Skitmore (1989) Contract bidding problem Proposes a two-stage model of contract bidding 
with two sequential decisions: (1) whether to bid 
or not, and (2) the bid level to win the contract. 

Wang, Xu, & Li (2009) Engineering project 
bidding problem 

Proposes a two-stage model of project selection 
where the first stage is concerned with “bid/no-
bid decision” and the second stage with “which 
project to bid”. 

 
Consistent with the econometric methodology in stated choice methods, we adopt the choice 
modeling approach in specifying our empirical model to test our research hypotheses (Louviere, 
Hensher, & Swait, 2000). Our empirical model specification is based on the NL model (Louviere et al., 
2000; McFadden, 1979, 1981). Consistent with an NL framework, we assume that a buyer makes a 
purchase decision following a two-stage process. First, a buyer decides whether to bid (i.e., to 
acquire through a group-purchase website) or not to bid. If a buyer decides to bid, then the buyer 
chooses among one of the competing group-purchase options available. Figure 2 depicts the 
structural view of the behavioral decision tree. In the NL framework, choosing between shop A and 
shop B forms one nest, and the decision to bid or not to bid forms the other. Shop A (subscripted as j 
= 1 in Equation (1)) represents a less-risky choice with the number of order thresholds demanded 
being comparatively lower than that of shop B (subscripted as j = 2 in Equation (1)). However, the 
tradeoff between choosing either of the two shops is that the best price that can be yielded by shop A 
is higher than that of shop B.  
 

 
Figure 2. Decisional Choice (Nested Logit) 
 
We use the multinomial logit (MNL) model as a benchmark comparison to the aforementioned 
proposed NL model. The MNL model is essentially a specific case of the NL model, such that 
individuals are assumed to make choice decisions in one stage or a single nest (without a multiple 
stage or nest structure). For example, in our group-purchase context, we assume that individuals 
evaluate their choice decisions of choosing one alternative among the three options of (1) not to order, 
(2) order from shop A, and (3) order from Shop B. An individual simultaneously evaluates all three 
options and chooses the alternative that gives the highest utility. 
 

Not to Order 
To Order 

Shop A Shop B 
(Option Choice) 

Decision to Order 
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Although the MNL model is an empirically tractable and robust model for probabilistic choice, it is 
attached with the assumption of independence-from-irrelevant alternatives8 (IIA). Consequently, we 
choose the NL model as our final empirical model specification to evaluate our research hypotheses 
because the NL model has an intuitive staged decisional-processing interpretation based on different 
hierarchical decisional nests in which choice alternatives sharing close similarities are grouped 
together. Such decision nest structures of the NL model alleviate the problems associated with the IIA 
property of the MNL model. In our empirical estimation, we also formally test for the presence of the 
IIA property associated with the MNL model to justify our specification of the NL model in the GPI 
context. In Section 5.1, we elaborate the details of the NL model specification as applied to a group-
buying scenario. 

5.1. Shop Choice 
We can specify an individual’s choice of shop when buying through a GPI by a random utility model 
(RUM) (McFadden, 1973). RUM assumes that a decision maker selects one option (i.e., shop in a 
GPI context) from among the competing options in a choice set. We start by specifying that, if buyer i 
decides to bid, then the buyer chooses among the j shops available in the choice set. The utility for 
buyer i to choose to bid at shop j can be expressed as: 
 

 
ε

α β ε
= +

= + + = =

(buyer  chooses shop bid)
 , for 1 to  and 1 to 2

ij ij ij

j ij ij

U i j V
X i N j

 (1) 

 
Vij is assumed to be the deterministic part of the utility, and ε ij  is the random unobserved component 
assumed to be identically and independently distributed with an extreme value distribution (i.e., the 
Gumbel distribution). Xij denotes the row vector of individual and option alternative-specific characteristics, 
and α j  and β  are the estimated utility parameters for alternative-specific constants and choice attributes, 
respectively. If we observe that buyer i chooses shop 1 rather than shop 2, then we can infer that Ui1 > Ui2. 
In this light, the probability that buyer i chooses shop j, conditional on deciding to purchase using a GPI in 
the first stage, can be represented using a logit specification as follows: 
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where µ  is the scale parameter for the lower level shop-choice nest of the NL model. 
 
Intuitively, Equation 2 suggests that the larger the utility of shop j as a proportion of total utility from all 
seller options, the larger the probability of selecting shop j. Estimating the NL model generates a 
column vector of parameters β  that indicates the effect of individual and shop-specific 
characteristics X on the probability that a buyer, having already decided to bid through a GPI, would 
choose shop j. From Equation 2, we can observe that any variable that does not vary across choices 
(i.e., shop) will drop out from the choice probability Equation 2. Hence, variables such as a buyer’s 
product valuation, risk propensity, previous returns from acquiring products through a GPI, and 
trading experience are excluded from the lower level seller-choice decision nest during model 
estimation. These buyer-specific variables will appear in the upper level decision-to-bid nest, which 
we discuss in Section 5.2. 

8 The MNL model builds on an assumption that the probabilities of choosing any two options (e.g., shop A and shop B) would be 
independent of the presence or attributes of a third option (i.e., the IIA). 
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5.2. Decision to Bid 
The upper level decision-to-bid nest requires a decision to be made on whether to acquire the product 
via group-purchase websites; that is, to bid or not to bid. This specification employs the binary logit 
framework. We assume that an individual’s utility for bidding through a GPI is: 
 

 
ξ

γ ξ
µ

= +

= + + =

(buyer  chooses to bid)
1  , for 1 to 

i i i

i i i

U i V

Z I i N
 (3) 

where Vi is the deterministic part of the utility, and ξ i  is the extreme value distributed random error 
term. Zi denotes the row vector of individual buyer-specific characteristics and 
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I X j  is the inclusive value index. γ  and µ  are the respective 

estimated vector and scalar of utility parameters for the NL model. Denoting the decision not to bid as 
the null choice with zero utility, the probability of deciding to bid is: 
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where δ  is the scale parameter for the upper level decision-to-bid nest of the NL model.   
 
The inclusive value iI  denotes the utility associated with having both shops available in the decision-

to-bid choice set. If the coefficient of the inclusive value,
1
µ

, is not statistically different from 1.0, then 

the decision to bid is independent of the utility value of the shops in the shop choice set. In this regard, 
a sufficient reason to warrant the nesting of the two decisions is lacking (i.e., the decision to bid and 

the selection decision of the shop to purchase from). Hence, the coefficient 
1
µ

 provides a test of 

determining whether the nesting of the two decisions in the NL model—the decision to bid and the 
choice of seller to purchase from—is appropriate. If the hierarchical nesting structure in the NL model 
is rejected, then an MNL model that assumes individuals to evaluate their choice decisions in one 
stage without a hierarchical structure would be more appropriate. 

5.3. Unconditional Probability of Shop Choice 
To estimate the utility parameters for shop choice and the decision to bid nests jointly, the NL model 
computes the unconditional probability that buyer i will choose shop j as shown in Equation 5. For the 
purpose of model parameters identification, we normalize the upper level scale parameter δ = 1 but 

estimate the lower level scale parameter µ  (i.e., the inclusive value parameter
1
µ

) freely. Thus, this 

condition conforms to the specification of the random utility maximization NL model (RUMNL) rather 
than the non-normalized NL model (NNNL), which does not satisfy the utility maximization 
assumption (Louviere et al. 2000). 
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For the purpose of model parameters identification, we normalize the upper level scale parameter 

δ = 1 but estimate the lower level scale parameter µ  (i.e., the inclusive value parameter
1
µ

) freely. 

Thus, this condition conforms to the specification of the random utility maximization NL model 
(RUMNL) rather than the non-normalized NL model (NNNL), which does not satisfy the utility 
maximization assumption (Heiss 2002; Louviere et al. 2000). 

6. Data Analysis and Findings 
We tracked the dependent variable measures of decision-to-order and shop choices throughout the 
trading periods. Table 3 lists the frequency counts and relative row-level percentages of decisional 
choices made by experiment participants in each treatment condition. Manipulated and independent 
variable measures of conditional purchase, information cues, number of buyers in each period 
choosing a specific option, buyer’s valuation, risk aversion, and earnings from trade in group 
purchase are recorded and included as covariates in the empirical validation of the proposed RUMNL 
model. Table 4 provides the descriptive statistics for these variables across 1,520 observed periods. 
Generally, most participants were risk-averse because the mean of the risk aversion measure9 is at 
5.71 along a seven-point Likert scale. 
 
Table 3. Frequency Statistics of Choices Made by Treatment Conditions 

Conditional 
purchase Information cue Decision not 

to order 
Choice for shop A 

(less risky) 
Choice for shop B 

(more risky) 

Absence 
Absence 50 (13.16%) 309 (81.32%) 21 (5.52%) 
Presence 194 (51.10%) 160 (42.10%) 26 (6.80%) 

Presence 
Absence 57 (15.00%) 300 (78.95%) 23 (6.05%) 
Presence 48 (12.63%) 262 (68.95%) 70 (18.42%) 

Conditional purchase 
Absence 244 (32.11%) 469 (61.71%) 47 (6.18%) 
Presence 105 (13.82%) 562 (73.95%) 93 (12.23%) 
Information cue 
Absence 107 (14.10%) 609 (80.10%) 44 (5.80%) 
Presence 242 (31.84%) 422 (55.53%) 96 (12.63%) 
Note: Decision not to order, choice for shop A, and choice for shop B are binary in nature. 
 
 
 
 
 
 

9 Risk aversion is a perceptual measure that reflects the degree to which a buyer is willing to choose a risky option. The question 
item was: “I am very concerned with a potential financial loss from making a poor choice”. 
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Table 4. Descriptive Statistics of Manipulated and Independent Variables 
Variable Mean Std. dev. Min Max 

Conditional purchase 0.50 0.50 0 1 
Information cue 0.50 0.50 0 1 
Number of buyers choosing not to order 2.30 3.00 0 10 
Number of buyers choosing shop A 6.78 3.80 0 10 
Number of buyers choosing shop B 0.92 1.99 0 10 
Valuation 165.37 35.01 130 200 
Risk aversion 5.71 1.27 1 7 
Current period earning 47.08 43.78 -70 120 
Previous period earning 44.64 44.15 -70 120 
Previous period choice (shop A) 0.67 0.47 0 1 
Previous period choice (shop B) 0.09 0.29 0 1 

6.1. MNL Model Results (for the Decision to Order) 
We examined the effects of the manipulated variables (i.e., conditional purchase and information 
cues) on the decisional choice to not to order, buy from Shop A, or buy from Shop B by estimating a 
RUMNL model using maximum likelihood estimation methods. For benchmark comparison, we also 
estimated an MNL model based on only the upper level decision to order or not to order from the GPI. 
We included the manipulated variables of conditional purchase and information cues (interacted with 
the bid dummy) as predictor variables. We also included control variables of the current valuation, risk 
aversion attitude, earnings and option choices of the previous period, and time period dummies as 
covariates. Table 5 shows the model estimation results for our MNL model. 
 
Table 5. Multinomial Logit Model of Decision to Order (0: Not to Order; 1: Order) 

Variable Coef. Std. err. z 
Independent variables  
Bid dummy -1.67 0.66 -2.52 
Conditional purchase * Bid dummy 0.64 0.17 3.68 
Information cue * Bid dummy -0.73 0.17 -4.23 
Control variables [* bid dummy] 
Valuation 0.02 0.00 8.23 
Risk aversion -0.19 0.08 -2.38 
Previous period earning 0.01 0.00 3.85 
Previous period choice (shop A) 2.37 0.23 10.41 
Previous period choice (shop B) 1.39 0.27 5.11 
Period dummies (for period 3 to 20) Estimated but not shown 
Auxiliary statistics 
Model log-likelihood -514.20   
Model LR: chi-square (df) 348.51 (25)   
 
The benchmark MNL model was statistically significant in terms of the model likelihood ratio test. The 
MNL model estimation results suggest that a buyer is more likely to order from a GPI in the presence 
of the conditional purchase mechanism. However, a buyer is significantly less inclined to order if 
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provided with information cues10. Hence, H1a and H2a(ii) were supported but H2a(i) was not. A buyer 
was significantly more inclined to order if the valuation and previous period’s earnings were higher 
and if the risk aversion measure was lower. 

6.2. NL Model Results (for Option choice) 
For the overall choice model of the decision-to-order and the choice-of-option-to-order, we set up and 
estimated a RUMNL model in Equation 5. We included the manipulated variables of conditional 
purchase and information cue as the predictor variables in the lower-level option-choice decision nest. 
We interacted the manipulated variables with the shop A and shop B dummies because variations in 
the independent variable values across the available option choices are needed in the RUMNL model 
setup. For the upper-level decision-to-bid nest, we used the same control variables in the benchmark 
MNL model estimated in Table 5.  
 
For the NL specifications, we tested two model specifications: RUMNL models 1 and 2. RUMNL 
model 1 included the variables computed by the interaction of the information cue dummy, the option 
dummies, and the number of buyers choosing each option in a period. RUMNL model 2 nested model 
1 but added the variables computed by the interaction of the conditional purchase dummy, the option 
dummies, and the number of buyers choosing each option in a period. Table 6 shows the model 
estimation results for RUMNL models 1 and 2. 
 
Table 6. Nested Logit Model of Decision to Order and Option Choice 
 RUMNL model 1 RUMNL model 2 

Variable Coef. Std. err. z Coef. Std. err. z 
Independent variables (in nest for option choice)  
Shop A -3.70 1.00 -3.71 -6.01 1.05 -5.72 
Shop B -7.47 1.21 -6.20 -10.62 1.74 -6.11 
Conditional purchase * shop A -0.22 0.36 -0.62 -7.63 1.26 -6.04 
Conditional purchase * shop B -0.59 0.54 -1.10 -2.23 0.96 -2.33 
Information cue * shop A -5.68 0.72 -7.93 -5.11 0.85 -5.98 
Information cue * shop B -1.51 0.65 -2.33 -1.11 0.82 -1.36 
Number of buyers choosing shop A * information cue * shop A 0.80 0.09 8.76 0.62 0.08 7.29 
Number of buyers choosing shop B * Information cue * shop B 0.85 0.12 6.99 0.70 0.18 3.88 
Number of buyers choosing shop A * conditional purchase * shop A -- -- -- 1.17 0.14 8.12 
Number of buyers choosing shop B * conditional purchase * shop B -- -- -- 0.51 0.15 3.42 
Control variables [* bid dummy] (in nest for bid/no bid decision) 
Valuation 0.03 0.00 6.69 0.05 0.01 8.53 
Risk aversion -0.06 0.10 -0.60 -0.21 0.14 -1.47 
Previous period earning 0.00 0.00 0.91 0.00 0.00 0.57 
Previous period choice (shop A) 2.45 0.39 6.28 3.10 0.51 6.12 
Previous period choice (shop B) 1.30 0.50 2.61 1.57 0.62 2.53 
Period dummies (for period 3 to 20) Estimated but not shown Estimated but not shown 
Inclusive value (dissimilarity) parameters 
No bid 1.00 -- -- 1.00 -- -- 
Bid 1.50 0.24 6.35 1.75 0.39 4.46 
Auxiliary statistics 
Model log-likelihood -611.40 -439.77 
Model LR: chi-square (df) 553.67 (31) 531.10 (33) 
LR test for IIA assumption: chi-square (df) 6.82 (1) 15.06 (1) 
 
 

10 The significance level is based on the z-score values. We interpret the z-score values using a 95 percent confidence level. This 
means that, when z-score values fall within -1.96 and +1.96, then the p-values would be more than 0.05. 
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Our proposed RUMNL Models 1 and 2 estimated using the aforementioned independent and control 
variables were significant in terms of the model likelihood ratio tests. Furthermore, the likelihood ratio 
test of homoscedasticity in the logit random error terms across decision nests in both RUMNL models 
indicated that homoscedasticity (i.e., the IIA assumption) was rejected (see Table 6, last row, 

2χ =6.82 and 2χ =15.06, respectively). Thus, our use of the RUMNL model (rather than the MNL 
model) for modeling the overall decisional choice was justified. However, RUMNL model 2 provided a 
better model fit than RUMNL model 1 because the model log-likelihood for RUMNL model 2 was 
significantly higher. Estimated model coefficients (that were statistically significant) were similar in 
signs and magnitudes across both specifications. We next discuss all model estimation results and 
implications for only RUMNL model 2. 
 
In Table 6, the RUMNL model 2 estimation results indicate that a buyer was more likely to choose 
shop B (the high-risk option) rather than shop A if the conditional purchase option was provided (see 
coefficients of -2.23 vs. -7.63, respectively). Similarly, a buyer was more likely to choose shop B 
rather than shop A if the information cue mechanism was provided (see coefficients of -1.11 vs. -5.11, 
respectively). Therefore, H1b and H2b were both supported. RUMNL model 2 results reveal, as we 
hypothesized, that, in the presence of an information cue, a buyer was more likely to choose a 
specific option if more buyers chose the same option. Therefore, H2c was supported. This effect was 
more pronounced for shop B than shop A (comparing coefficients of 0.70 vs. 0.62, respectively). 
Based on the results of a post-hoc analysis in RUMNL model 2, we found that, in the presence of a 
conditional purchase, a buyer was also more likely to choose a specific option if more buyers chose 
the same option. In terms of the control variables, buyer valuations have a positive influence on the 
decisions to bid or use GPI. Specifically, buyers with higher valuations tended to choose to order. 
Significant evidence of inertia or state dependence in the buyers’ choices for shop B across the 
periods in the experiments apparently existed. 

6.3. Robustness Check Using Multinomial Logit Model 
To ascertain the robustness of our analysis findings from the RUMNL model 2, we additionally 
estimated a MNL model based on the assumption of a one-stage decision process of simultaneously 
evaluating the decision to order and the shop A or shop B option. We essentially included the same 
set of model variables as those used in the estimation of the RUMNL model 2 (i.e., the manipulated 
variables of conditional purchase and information cues (interacted with the dummy variables of shop 
A and shop B options), the current valuation, risk aversion attitude, earnings and shop choices of the 
previous period, and time period dummies). 
 
Table 7 shows the model estimation results for our MNL model used for robustness check. We 
obtained identical results relative to those from the RUMNL model 2 in Table 6 in terms of the relative 
magnitudes of model coefficients related to variables associated with shop A and shop B. As such, the 
results of the hypotheses tests remained consistent across the model estimation results from both 
RUMNL and MNL. Nevertheless, as we state earlier, since the RUMNL model does not suffer from 
the IIA problem, we derive implications of our model application using the RUMNL results. 
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Table 7. Multinomial Logit Model of Decision to Order and Option Choice 
Variable Coef. Std. err. z 

Independent variables  
Shop A -5.62 1.00 -5.63 
Shop B -5.64 1.20 -4.70 
Conditional purchase * shop A -6.03 0.60 -10.09 
Conditional purchase * shop B -2.44 0.62 -3.92 
Information cue * shop A -3.93 0.43 -9.10 
Information cue * shop B -1.81 0.50 -3.62 
Number of buyers choosing shop A * information cue * shop A 0.46 0.06 7.39 
Number of buyers choosing shop B * information cue * shop B 0.61 0.17 3.57 
Number of buyers choosing shop A * conditional purchase * shop A 0.97 0.09 10.41 
Number of buyers choosing shop B * conditional purchase * shop B 0.45 0.16 2.70 
Control variables [* option A dummy] 
Valuation 0.04 0.00 8.40 
Risk aversion -0.07 0.12 -0.58 
Previous period earning 0.00 0.00 0.85 
Previous period choice (shop A) 3.16 0.34 9.37 
Previous period choice (shop B) 1.63 0.42 3.93 
Period dummies (for period 3 to 20) Estimated but not shown 
Control variables [* option B dummy] 
Valuation 0.05 0.01 8.78 
Risk aversion -0.42 0.14 -3.10 
Previous period earning 0.00 0.00 0.84 
Previous period choice (shop A) 1.84 0.44 4.17 
Previous period choice (shop B) 0.95 0.47 2.01 
Period dummies (for period 3 to 20) Estimated but not shown 
Auxiliary statistics 
Model log-likelihood -430.22 
Model LR: chi-square (df) 393.89 (54) 

6.4. Model Application: Choice Elasticities 
Using the aforementioned estimated model coefficients for RUMNL model 2, we computed the NL 
choice elasticities for both the competing shop option choices and the GPI order choices using the 
sample enumeration method (Louviere et al., 2000). Table 8 shows the probability-weighted 
aggregate point elasticities. Figures 3 and 4 illustrate the corresponding distributions of the elasticities 
of choice probabilities. 
 
Table 8 shows that the availability of a conditional purchase option will, all else being equal, lead to a 0.889 
percent and 0.126 percent increase in the overall probability of choosing the high-risk shop B and low-risk 
shop A, respectively. However, the availability of an information cue mechanism will, all else being equal, 
lead to a 1.451 percent increase and a 0.036 percent decrease in the probability of choosing shop B and 
shop A, respectively. Thus, this premise suggests that whether one chooses a high-risk option (shop B) is 
more sensitive to the availability of an information cue than to the presence of a conditional purchase 
option. However, this relationship is reversed for the choice of a low-risk option (shop A) in that such a 
choice is more sensitive to the presence of a conditional purchase than an information cue.  
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Figure 3 shows that the distributions of both the conditional purchase and the information cue 
elasticities of choice probabilities for shop B were unimodal (modes near 0) and had wider ranges 
compared to those of shop A that are bimodal (modes at 0 and -1). This result implies that, although a 
majority of the elasticities of choice probabilities for shop B were concentrated around 0, a significant 
“long tail” of the high-magnitude elasticities still existed. Correspondingly, for shop A, the bimodal 
distributions of the choice probability elasticities reveal that two majority groups of elasticities 
centered around -1 and 0, which indicates two different majority consumer segments in the studied 
experimental GPI market.  
 
Table 8. Elasticities of Choice Probabilities from Nested Logit Model 
Nest 2: shop A | shop B Shop A Shop B 
Conditional purchase 0.126 0.889 
Information cue -0.036 1.451 
Number of buyers choosing same option * information cue 0.013 0.080 
Number of buyers choosing same option * conditional purchase 0.011 0.115 
Nest 1: order-no | order-yes Order: no Order: yes 
Valuation 1.832 0.546 
Risk aversion -0.303 -0.090 
Previous period earning 0.013 0.004 
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Figure 3. Distribution of Choice Probabilities with respect to Conditional Purchase and 

Information Cue 
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Figure 4. Distribution of Choice Probabilities with respect to Number of Buyers Choosing the 

Same Option 
 
From Table 8, a 1 percent increase in the number of buyers choosing the same option in the 
presence of an information cue (but with all else being equal) will lead to a 0.080 percent and 0.013 
percent increase in the overall probability of choosing shop B and shop A, respectively. Moreover, a 1 
percent increase in the number of buyers choosing the same option in the presence of a conditional 
purchase (but with all else being equal) will lead to a 0.115 percent and 0.011 percent increase in the 
overall probability of choosing shop B and shop A, respectively. Figure 4 shows that the distributions 
of these elasticities of choice probabilities for both shop A and shop B are unimodal and have both 
positive and negative supports.  

7. Discussion 
In this paper, we examine GPI via manipulating conditional purchase and information cue. The 
results indicate that a buyer is more likely to purchase through GPI when a conditional purchase is 
provided. These results provide further empirical justification for our conjecture that the conditional 
purchase could reduce the impact of detrimental consequences associated with negative constraint 
interactions in GPI. This observation is also in accordance with the decision-avoidance literature, 
which contends that reducing an action’s negative consequences induces a lesser likelihood to 
select inaction inertia (Dhar, 1997; Dhar & Nowlis, 1999), which is a primary concern of GPI. 
Furthermore, by providing conditional purchase, buyers are encouraged to choose riskier options to 
a certain extent. Using the illustrative example of Groupon and based on our choice elasticities 
analysis, a 10 percent increase in the average daily number of 73 customers who purchased 
Groupon deals across approximately 400 markets to date (i.e., an incremental increase of 

 
Journal of the Association for Information Systems Vol. 16, Issue 9, pp. 738-765, September 2015 758 



 
Goh et al. / Online Group Purchase 

approximately seven customers) would result in an 11.5 percent increase in the probability of the 
next prospective customer participating in the GPI of Groupon11. 
 
In contrast to the conditional purchase findings, our results on providing the information cue suggest 
that participants exhibit higher levels of risk aversion when confronted with the choice between 
inaction inertia (i.e., the decisions not to order) and action (i.e., the decisions to order), arguably due 
to negative expectation and/or preference interactions in GPI. However, in the event that a choice is 
to be made between a riskier and a less-risky option, the presence of the information cue (coupled 
with positive expectation and/or preference interactions) could lead to a higher propensity for the 
riskier choice. We observe that a buyer is more likely to choose a specific option if the buyer is able to 
see numerous buyers choosing the same option. Again, illustrating with the real-world example of 
Groupon (which provides real-time information cue of the current number of customers who have 
purchased in the GPI), our choice elasticities analysis implies that an incremental increase of 
approximately seven customers could result in an 8 percent increase in the probability of a potential 
customer participating in Groupon. 
 
These results suggest, at best, that information cues works only to the effect of leading buyers to 
make similar purchase decisions when a particular number of others have already made the choice. 
At worst, information cues may cause inaction inertia from a buyer when they display no commitment 
from the rest of the buyers. Hence, information cues may be a double-edged sword in GPI depending 
on the specific nature of expectation and/or preference interactions. Thus, we add to the theory that 
providing information cues may be insufficient in motivating buyers to abandon inaction inertia 
(Anderson 2003). However, once the inaction inertia has been bridged, our choice elasticities analysis 
indicates that the choice of the riskier but more rewarding alternative in the GPI is more sensitive to 
the information cue mechanism than to the conditional purchase option in the GPI. 

7.1. Limitations 
This study has several limitations. First, our set of experiments restricts the market to a small number 
of buyers. Despite the small number of players in each experiment session, we were able to project 
significant differences in the decisions. Our experiment involving 10 buyers is analogous to the 
situation where only a handful of buyers contemplate the purchase of similar items in a period of time.  
 
Second, although we used a laboratory experimental setting with strict controls, there may still be 
concerns on the realism of the study because the experiment participants were all postgraduate 
university students, albeit with working experience. Given that our laboratory markets were real 
markets in that the principles of economics apply there as elsewhere and that the participants earned 
real profits in the context of realistic market trading rules (Smith, 1982), we believe that we have 
somewhat mitigated these concerns. 
 
Third, there might be other mechanisms at play in GPI. To this end, there are two fundamental types 
of GPI; namely, the daily-deal variant model and the dynamic discount pricing mechanism. In this 
research, we focus on the latter. Thus, future research could also examine the former type. 
 
Fourth, in our experiment, we considered the minimum quantity threshold difference between the 
different shop options in our experimental GPI market. We determined this value through manipulation 
checks conducted through several rounds of pilot tests carried out before the main experiment sessions. 
However, it is plausible that successfully manipulating low-risk and high-risk options in GPI hinges on a 
perceptible difference (in the minds of consumers) in the minimum quantity threshold requirement 
across different purchase options of GPI. Future research could explore this issue on the relationship 
between the extent of risk in GPI options and minimum quantity threshold differences. 

11 We acknowledge that our results may not apply to the GPI case of Groupon, which is a simplified version of our studied GPI. Thus, 
due to the lack of other published examples, we use Groupon’s published statistics. As of January 2011, Groupon lists the total 
number of GPI deals transacted as 22 million on its website (http://www.groupon.com/pages/press-kit). In existence since 
November 2008 for about 25 months, Groupon seems to be averaging approximately 73 customers a market daily who purchased 
Groupon deals across its 400 different markets. 
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Fifth, we did not examine the increasing or decreasing rate of the number of buyers when we 
evaluated the effect of conditional purchase and information cue. Thus, future research could explore 
decision making behaviors when the number of buyers changes. 
 
Sixth, information cues may not be only applicable to GPI context and its application can be 
witnessed in other domains. However, conditional purchase is a more distinct feature of GPIs’ 
dynamic pricing mechanism. Through selecting one general feature (i.e., information cue) and one 
more distinct feature (i.e., conditional purchase) from GPI, we are able to formulate more 
generalizable insights from our findings while retaining a degree of relevance to GPI. Despite so, we 
acknowledge that GPIs’ existence and features are also strongly affected by prior market institution 
features such as information provision in auction markets. 

7.2. Implications for Research and Practice 
With this study, we provide five key theoretical implications. First, this study is among the first 
attempts to assess two GPI mechanisms that could potentially influence buyer purchase behavior 
across competing GPI options. Prior studies on GPIs (as Table 1 reviews) have focused on examining 
the revenue generation for sellers and the GPI itself (e.g., Anand & Aron, 2003; Chen et al., 2007, 
2009a) and on buyers’ bidding response to price and order quantity manipulations (e.g., Chen et al., 
2009b; Kauffman & Wang, 2001). They do not examine the important issue of how a GPI can be 
designed to attract people with sufficient aggregated commitment to a purchase. The empirical 
evidence suggests that providing conditional purchases and information cues can have different 
impacts on different decisions that GPI buyers make (Rusbult & van Lange, 2003). Thus, our work 
complements prior GPI research by showing that providing GPIs would fail to attract buyers to order 
unless appropriate mechanisms are available.  
 
Second, we conducted this study in part to answer Manski’s (2000) call to analyze social interactions 
in an economics paradigm. Specifically, in reviewing the intersection between economics and 
sociology, Manski (2000, p. 117) writes that “the broadening of economic theory has coincided with 
new empirical research by economists on social interactions. Unfortunately, the empirical literature 
has not shown much progress”. He supports this view with two reasons: 1) the “dearth of clear 
thinking in the empirical literature” and 2) “the inherent difficulty of drawing inferences from the data”. 
In line with his perspective, we believe empirical modeling of constraint, expectation, and preference 
interactions with a clear, standard setup that affords clear conceptualization of the interaction process 
(e.g., GPI and our focal manipulations) could be a way to understand interactions in a market setting. 
The results from this study allow us to observe the nature and outcome of expectations and 
preferences interactions in a cooperative gaming mode. 
 
Third, much current understanding about cooperative game is built based on individuals’ committing 
to purchase simultaneously. In this situation, decision making is independent from others’ decisions 
and individuals’ purchase commitments are non-reversible. Demanding individuals to make decisions 
simultaneously creates a fundamental concern that the observations made from the social 
interactions among the consumers result from their aggregated individual preferences rather than 
“interaction” per se. This research examines constraint, expectation, and preference interactions by 
letting the consumers observe others’ behavior and make decisions (i.e., decision to buy). By using 
conditional purchases and information cues, we examined a setting that does not explicitly demand 
the individuals to define the decisions simultaneously at the beginning of each trading period. 
Furthermore, we allowed the commitments to be reversible (i.e., individuals did not have to honor the 
purchase should the best price not be met). Thus, our findings add an additional dimension of 
empirical understanding to the cooperative game literature. 
 
Fourth, our considering both information cues and conditional purchases features extends prior IS work 
that has mostly focused on information-provision mechanisms and their impact on user-interaction. Prior 
work on information provision has advocated that making information available reduces the asymmetry 
among individuals (Charness & Villeval, 2009; Sandler, 1992) and, thus, should lead to improved overall 
welfare (Healy & Palepu, 2001). Our results indicate that providing information in a GPI can also lead to 
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a bystander, observatory behavior that causes individuals to withhold or delay decisions. It is only when 
the potential of suffering from non-cooperative outcomes in GPI emerges will the information cue 
mechanism in GPI be able to achieve what it is supposed to resolve. 
 
Fifth, we contribute to the extant literature on decision under uncertainty by examining the 
implementation of conditional purchase. Prior studies have highlighted that buyers have a tendency to 
exhibit loss aversion (Kim & Kankanhalli, 2009) and inaction inertia (Tykocinski & Pittman, 1998) due to 
the inability to estimate the likelihood that a decision that results in negative consequences will occur. 
We explicitly consider a mechanism, in the form of conditional purchase, that could alleviate such a 
concern. The condition purchase mechanism allows buyers to “quit” should they better realize negative 
consequences (e.g., when the final offered price is higher than the possible available lowest price). 
 
Our research also has four important practical implications. First, our research suggests the need to 
have adequate GPI mechanisms in place to induce buyers to purchase. As GPI and similar electronic 
market variations become more sophisticated in terms of aggregating buyer demands, our proposed 
GPI mechanisms could be mutually beneficial to both buyers in terms of lower prices and to shops in 
terms of liquidating stocks in large quantities, particularly in situations characterized by high 
acquisition costs and where buyer outcomes are interdependent. 
 
Second, there is an escalating concern over GPIs’ long-term existence due to the intensifying rivalry 
to compete for buyers (Azfar, 2001; Bosker, 2011). Our results reveal that buyers could gather or 
remain as onlookers when they are aware of others’ actions (i.e., through information cues). This calls 
for attention to how and what kind of information retailers and GPI operators can provide to enhance 
the probability of buyers gathering together to commit to purchasing products on a GPI. 
 
Third, the effects of conditional purchases and information cues on judgment and choice are not 
limited to GPIs but could influence buyers in a large number of activities, such as signing up for group 
tour packages. Practitioners should be aware that any purchase decision made carries a risk, and 
sufficient information and/or incentives must be available to motivate a buyer to purchase. Hence, 
they could consider providing the option of conditional purchases, aside from other popular marketing 
tools such as money-back guarantee, to alleviate such an uncertainty and, thereby, induce deviation 
from inaction inertia. Likewise, GPI competitors promoting riskier options to buyers could contemplate 
reducing the risk or uncertainty entailed in the options by providing information about the decisions 
that other buyers make. For example, in this age of the popular social media usage, one could 
integrate GPI information cues with Facebook’s “like” or “recommend” mechanisms in social graphs to 
accentuate the impact of social recommendations for GPI purchases among a circle of like-minded 
buyers who are friends in a social network. The study of such explicit “social” information cues in the 
GPI context could potentially be the subject of immense interest in future GPI research. 
 
Fourth, our setting on the GBI, which considers conditional purchase and information cue, could be 
extended to situations where online retailers are pricing their new products through discovering and 
approximating the consumers’ willingness to pay. Such an approach could, in a more general outlook, 
allow dynamic pricing to truly occur in the digital world where the bulk of the current pricing scheme 
remains as a posted offer (i.e., buy at the listed price). From another point of view, promoting indirect 
bargaining of prices through the staggered pricing mechanism, which we focus on in this research, 
could also be beneficial to consumers at large. 
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