

J ournal of the

A I S ssociation for nformation ystems

Research Paper ISSN: 1536-9323

Volume 17 Issue 4 pp. 267 – 307 April 2016

Job Satisfaction in Agile Development Teams: Agile
Development as Work Redesign

John F. Tripp
Information Systems Department, Baylor University

John_Tripp@baylor.edu

Cindy Riemenschneider
Information Systems Department, Baylor University

C_Riemenschneider@baylor.edu

 Jason B. Thatcher
Department of Management, Clemson University

jason.b.thatcher@gmail.com

Abstract:

Agile software-development advocates claim that an important value proposition of agile methods is that they make
people more motivated and satisfied with their jobs. While several studies present anecdotal evidence that agile
methods increase motivation and satisfaction, research has not theoretically explained or empirically examined how
agile development practices relate to team members’ feelings about their work. Drawing on the management and
software-development literature, we articulate a model of job design that connects agile development practices to
perceptions of job characteristics and, thereby, improve agile team members’ job satisfaction. Using data collected from
252 software-development professionals, we tested the model and found a positive relationship between agile project-
management and software-development practices and employees’ perceptions of job characteristics. Further, we found
direct effects between agile development-practice use and job satisfaction. Finally, we found interaction effects between
the use of agile project-management and software-development approaches and the perception of job autonomy. With
this study, we contribute to the literature by theoretically explaining and directly evaluating agile development practices’
impact on individuals’ perceptions about their job characteristics and on their job satisfaction.

Keywords: Agile Development, Job Satisfaction, Job Characteristics Model.

Fred Niederman was the accepting senior editor. This paper was submitted on November 5, 2014, and went through three revisions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301380431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org/cais/

268 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

1 Introduction
Over the last decade, a growing number of companies have employed agile software-development methods
(West, Grant, Gerush, & D’Silva, 2010). Regardless of whether they advocate for agile methods such as
scrum, extreme programming (XP), crystal clear, feature-driven development (FDD), or kanban, agile-
method advocates make two overarching claims. First, they claim that agile methods produce better
software—a claim that research that examines project success, software quality, and other measures has
supported (e.g., Maruping, Venkatesh, & Agarwal, 2009a; Maruping, Zhang, & Venkatesh, 2009b; Nevo &
Chengalur-Smith, 2011). Second, they claim that using agile methods creates more satisfied employees
(Highsmith, 2002)—a claim that researchers have rarely empirically investigated.

Limited research connects agile development (i.e., using agile methods and their associated practices) to
software-development team members’ satisfaction. One study of software developers found that satisfaction
was higher with pair programming (an agile development practice) than with traditional individual
programming (Balijepally, Mahapatra, Nerur, & Price, 2009). These authors speculate that “higher
satisfaction of programming pairs has implications for reducing employee turnover” (Balijepally et al., 2009,
p. 111). In a study of teams, another group of authors investigated the relationship between using agile
practices and team motivation (McHugh, Conboy, & Lang, 2011). They found that three agile practices (i.e.,
iteration planning, daily stand-up meetings, and iteration retrospectives) were associated with job
characteristics such as job autonomy, skill variety, and feedback. Similarly, Tessem and Maurer (2007)
found that some members of a particular agile team had higher perceptions of job characteristics and job
satisfaction but others did not. These and other studies of agile development methods provide evidence of
their impact on work-related perceptions including job satisfaction, but they have substantial theoretical and
methodological limitations (e.g., Layman, Williams, & Cunningham, 2004; Mannaro, Melis, & Marchesi,
2004; Mann & Maurer, 2005; McHugh, Conboy, & Lang, 2010).

For instance, some researchers based their findings on a single team or a few teams (e.g., McHugh & Lang,
2011; Tessem & Maurer, 2007). Furthermore, many researchers investigated the influence of one or only a
few of the practices enumerated in an agile method. For instance, McHugh et al. (2012) focused on three
practices from the scrum method (sprint/iteration planning, daily stand-ups, and sprint/iteration retrospectives)
in investigating trust in agile teams. Tessem and Maurer (2007) used a single agile team that employed the
scrum method to investigate the impact of agile methods on team members’ job satisfaction. Although Melnik
and Maurer (2006) drew a large sample (n = 448) to compare job satisfaction of agile development and
traditional team members, their study was descriptive, failed to measure the use of agile methods, and did not
test a mechanism for how agile methods impact job satisfaction. Consequently, while some evidence suggests
an agile method-satisfaction relationship, it is important to conduct a rigorous, theory-based field study of the
relationship between agile development methods and job satisfaction.

We need to realize a deeper understanding of the relationship between agile development methods and job
satisfaction because research in information systems (IS), marketing, and management consistently
suggests that job design is related to employee satisfaction, which results in positive outcomes for
employing organizations. A meta-analysis of studies on employee attitudes found that job design influences
job satisfaction, which, in turn, influences work performance (Harrison, Newman, & Roth, 2006). In
information technology (IT) workforce research, a substantial body of research connects job design with
outcomes such as intrinsic motivation, job satisfaction, and turnover intention (Joseph, Ng, Koh, & Ang,
2007; Thatcher, Liu, Stepina, Goodman, & Treadway, 2006; Thatcher, Stepina, & Boyle, 2002). Because
agile methods and their associated practices change the structure of software developers’ work (Tessem &
Maurer, 2007)—for example, in pair programming (Cockburn & Williams, 2001), developing tests first (Beck,
2003), and delivering iteratively (Moe, Dingsoyr, & Dyba, 2010)—we propose that the use of these methods
affects employees’ motivation and satisfaction.

In this paper, we investigate the relationship between the use of agile methods and agile team members’
job satisfaction. Although agile-method proponents claim a common philosophy as described in the agile
manifesto (Fowler & Highsmith, 2001), each method emerged out of different circumstances and has a
different focus. For instance, scrum (Schwaber & Beedle, 2002) is primarily a project management method,
while extreme programming (XP) (Beck, 2000) focuses more on software-development concerns. Because
of their different heritage, each method prescribes different and sometimes contradictory practices. For
example, while XP prescribes collective (team) code ownership, feature-driven development (FDD) (Palmer
& Felsing, 2002) prescribes that each code component have a defined, single owner. We apply the term
“practices” to specific agile techniques, such as pair programming and collective code ownership. In

Journal of the Association for Information Systems 269

Volume 17 Issue 4

contrast, “methods” refers to any of a number of defined, interdependent sets of practices developed by
software practitioners, such as XP, FDD, and scrum.

In addition, although agile practitioners claim to adopt methods, few adopt all of the practices in a method
(Conboy & Fitzgerald, 2010), and many adopt practices from multiple methods (VersionOne, 2011). Because
of this variance in adoption, even among teams that claim to adopt the same method, we primarily focus on
the use of specific agile practices and their impact on job satisfaction in this paper. In doing so, we pursue two
research questions. First, proponents argue that agile method influences job satisfaction because of the
combined and overlapping effect of multiple practices (Beck, 2000; Highsmith, 2002). These practices may
not contribute equally, or at all, to job satisfaction. Hence, we examine the following research question:

RQ1: How does the extent of use of different agile practices impact job satisfaction?

To explore this question, we developed a theoretical model that links agile practices with agile-development
team members’ motivation and job satisfaction. Initial research on the use of agile methods, motivation, and
job satisfaction has found that agile team members are more motivated (McHugh & Lang, 2011) and
satisfied than traditional-development team members (Melnik & Maurer, 2004). A common thread through
this literature is that agile practices affect team members’ perceptions of job characteristics, a key predictor
of job satisfaction (Hackman & Oldham, 1980). We leverage the existing body of knowledge on job design
and IT workforce management (e.g., Ahuja, Chudoba, Kacmar, McKnight, & George, 2007; Moore, 2000;
Morris & Venkatesh, 2010; Thatcher et al., 2002) to motivate a model that connects the use of popular agile
practices and processes to job satisfaction, both directly and indirectly, through their effect on perceptions
of job characteristics. Hence, we developed a model that investigates our second research question:

RQ2: What are the causal pathways through which agile practices affect job satisfaction?

Throughout this paper, we develop and test a model that evaluates agile practices’ impact on job satisfaction
and how agile method use impacts employee perceptions of job characteristics. This model contributes to
the agile development and IS literature by 1) investigating the antecedents of job perceptions, 2) recognizing
that agile methods and their defined practices are largely instances of job design, and 3) developing a
theoretical lens through which to explain the impacts of agile methods on job attitudes. In Section 2, we
address the theoretical background for this study.

2 What is an Agile Development Team?
Agile development teams (ADT) are groups of people that work together to build new software systems and
modify existing software systems. ADTs usually include members with a broad skill set, such as analysis,
programming, design, database architecture and administration, systems engineering, and project
management. In fact, agile teams share the premise that everyone who the team needs to fill all the roles
necessary to complete the project must participate in the project team (Highsmith, 2002). This situation
differs from the traditional waterfall/structured environments, where teams often specialize according to
function (e.g., analysis, design, development, testing) (Nerur, Mahapatra, & Mangalaraj, 2005)1.

ADT team members often have different responsibilities and titles across organizations. For example,
systems analysts might perform programming and design responsibilities in their job even though their job
does not inherently delineate those responsibilities. Or a developer might perform programming, testing,
and configuration management tasks that are fragmented in a traditional setting. Therefore, we use the term
ADT to represent the plethora of job titles and roles fulfilled by the team delivering a software product.

ADTs use an agile method such as scrum, XP, or kanban or combinations of practices from multiple agile
methods (Highsmith, 2002; VersionOne, 2011). ADTs typically work in short cycles in which they deliver
working software incrementally and iteratively and focus on emergently understanding the problem space
during development (Beck, 2003; Cockburn, 2001; Harris, Collins, & Hevner, 2009; Schwaber & Beedle,
2002). In contrast to traditional teams, agile teams do not focus on specifying system requirements and
design up-front or fully understanding the problem space early on (Boehm, 1984) because they lack the
longer delivery cycles employed by traditional project-management techniques (Boehm & Turner, 2004;
Highsmith, 2002).

1 We use the terms “traditional” and “waterfall” or “structured” as a shortcut for referring to traditional development approaches but

realize that “waterfall” as such is not necessarily fully implemented, nor does it preclude some level of iteration in many organizations.

270 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Even though many agile methods call for heavy customer involvement with the ADT (e.g., XP’s on-site
customer practice)—even in some cases calling for the customer to be part of the ADT—we do not include
customers in our conceptualization of the ADT for two reasons. First, not all ADTs include the customer as
a part of the team. Although all agile methods call for a product owner’s regular availability for decision
making, it is unusual for most ADT customers to be full-time members of the team (Cockburn, 2001;
Highsmith, 2002). Second, agile proponents’ claims regarding job satisfaction revolve around ADT members
who are part of the core team delivering the software (Beck, 2000; Highsmith, 2002). As such, our theory
development focuses on ADT roles that are typically part of the information technology function in
organizations: software developers, quality assurance and test analysts, business analysts, software
architects, project managers, and team leads.

In summary, an ADT 1) is a cross-functional team that builds and updates software; 2) predominantly uses
agile management and development practices, such as iterative delivery or pair programming; and 3)
comprises members whose responsibilities focus on delivering software rather than externally managing
the team or business.

2.1 The Job Characteristics Model and Agile Development Teams
By employing the practices defined in agile methods, organizations change the design of ADT members’
work. For example, agile methods require software developers to participate in activities beyond
programming such as systems analysis and project management, which will likely increase their level of
perceived job autonomy and skill or task variety. Furthermore, the management and IS literature has
suggested that, by changing job characteristics, agile methods might impact ADT members’ motivation, job
satisfaction, and work performance.

The job characteristics model (JCM) (Hackman & Oldham, 1980; Joseph et al., 2007) represents a useful
lens for understanding how changes wrought by agile methods affect job satisfaction. The JCM identifies
five job characteristics that influence workers’ perceptions of the job and their attitudes about it: 1) task
significance, which the extent to which people believe that their job impacts the lives of people—either
society at large or in an organization; 2) task identity, which is the extent to which a job’s tasks are “whole”
or involve the completion of an identifiable outcome; 3) skill variety, which is the extent to which one
perceives a job as requiring a variety of skills, talents, and experiences; 4) job autonomy, which is the extent
to which an employee has the discretion about how to complete the work required and set a schedule for
completion; and 5) feedback, which is the extent to which the process of completing the work provides
employees with information through which they can evaluate their own performance.

Research has used the JCM to explain IT professionals’ job satisfaction (e.g., Morris & Venkatesh, 2010),
turnover intention (e.g., Thatcher et al., 2002), and work exhaustion (e.g., Moore, 2000), among other
outcomes. Job satisfaction is an affective response resulting from work experiences (Weiss & Cropanzano,
1996), whereas work exhaustion is the depletion of emotional, mental, and physical resources because of
work experiences (Moore, 2000). Research has shown work exhaustion to be associated with lower job
satisfaction (Burke & Greenglass, 1995; Rutner, Hardgrave, & McKnight, 2008) and higher turnover (Moore,
2000). Job characteristics are strongly related to job satisfaction and work exhaustion (e.g., Ahuja et al.,
2007; Ang & Slaughter, 2001; Moore, 2000; Morris & Venkatesh, 2010; Rutner et al., 2008; Thatcher et al.,
2002). While studies on turnover in broad populations of IT professionals (Dinger, Thatcher, Treadway,
Stepina, & Breland, 2015; Moore, 2000; Thatcher et al., 2006) and more narrowly defined populations such
as IT road warriors (Ahuja et al., 2007) and software developers (Ply, Moore, Williams, & Thatcher, 2012)
have found the JCM to be useful to explain job satisfaction, we lack rigorous research on how agile methods
impact employee perceptions of job characteristics or job satisfaction is scarce (for an exception, see
Pedrycz, Russo, & Succi, 2011).

Hence, to examine agile practitioners’ claims about their methods’ resulting in higher job satisfaction, we
use the JCM as a lens through which to theorize about the impacts of agile software-development methods
on ADT members’ perceptions of and satisfaction with their jobs. Table 1 presents the definitions of the job
characteristics and the other constructs we use in this study.

Journal of the Association for Information Systems 271

Volume 17 Issue 4

Table 1. Constructs Used in this Study

Construct name Definition (source)
Dependent variable

Job satisfaction
The extent of positive emotional response to the job resulting from an
employee’s appraisal of the job as fulfilling or congruent with the
individual’s values (Morris & Venkatesh, 2010; Weiss & Cropanzano,
1996).

Perceptions of job characteristics

Job autonomy
The extent to which a job provides employees with discretion to choose
how they do work and to set the schedule for completing the work activities
(Hackman & Oldham, 1980; Moore, 2000; Thatcher et al., 2002).

Feedback
The extent to which carrying out the work activities provides employees
with clear information about their own performance (Hackman & Oldham,
1980; Moore, 2000; Thatcher et al., 2002).

Skill variety The extent to which a job requires the use of different talents (JHackman &
Oldham, 1980; Moore, 2000; Thatcher et al., 2002).

Task identity The extent to which a job involves completing a whole identifiable outcome
(Hackman & Oldham, 1980; Moore, 2000; Thatcher et al., 2002).

Task significance
The extent to which a job has impact on the lives of people in an
organization or society in general (Hackman & Oldham, 1980; Moore,
2000; Thatcher et al., 2002).

Independent variables

Agile project-management practices
The extent to which the respondent’s team uses the agile project-
management practices defined in this study; namely, burndown, daily
stand-ups, retrospective meetings, and iterative delivery.

Agile software-development approach
management practice

The extent to which the respondent’s team uses the agile software-
development approach practices defined in this study; namely, pair
programming, automated builds, continuous integration, unit testing,
refactoring, code standards.

We contend that ADTs organize work in a fashion that results in their members’ more positively perceiving
job characteristics. ADTs do so by instantiating Hackman and Oldham’s (1980) five job-design principles
that lead to higher perceptions of job characteristics and job satisfaction: 1) combining tasks, 2) forming
natural work units, 3) establishing client relationships, 4) vertically loading the job, and 5) opening feedback
channels (Figure 1). ADT proponents argue that the principles of scientific management, which traditional
software-development practices embody, fractionalize work, lower perceived job characteristics, and
diminish motivation and satisfaction.

Agile practices might de-fractionalize software-development processes by requiring team members to
combine skills and tasks and share responsibilities; doing so results in improved job-characteristic
perceptions and related attitudes such as job satisfaction. For example, rather than taking an assembly
line approach in which each worker performs a small part of the work and then hands it off to the next
worker, agile methods require that each ADT member assume responsibility for building software. In
this way, agile methods help ADT members to better understand the scope and significance of the work
being performed (Hackman & Oldham, 1980). In Section 2.2, we describe each of the job-design
principles and map specific agile practices to the job-design principles (see Figure 1), which will lead
to improved job characteristics perceptions.

272 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Figure 1. Job-design Principles as Related to Job Characteristics (Hackman & Oldham, 1980)

2.2 Agile Methods as Job Redesign
Agile methods prescribe a wide range of practices that can affect perceived job characteristics. We
focus on practices rather than methods because agile teams consider methods to be a toolkit that they
can draw on as needed (Conboy & Fitzgerald, 2010). Although some teams self-identify as using one
particular method or another, a large proportion of teams use hybrid methods comprising practices from
multiple methods (VersionOne, 2011). Although developers in agile development environments use at
least 25 practices, more than half of these environments adopt only 11 (VersionOne, 2011). Because
of their high reported adoption, we include these 11 practices in our review of agile and job design.
Additionally, we also include pair programming (rank order 16) because of its reported influence on job
characteristics (e.g., Tessem & Maurer, 2007). Table A3 provides the rank order and the usage
percentage of these 12 and other agile practices.

We offer succinct definitions of the agile practices we investigate in this study (see Table 2). One can place
agile development practices into two primary categories (Tripp & Armstrong, 2014)2. The first relates to
project management and includes daily stand-ups, iterative delivery, retrospectives, and burndowns. The
second relates to the ADT’s software-development approach (SDA) and includes automated (unit) testing,
automated builds, continuous integration, coding standards, and refactoring. As we describe above, due to
the evidence as to its potential impact on job satisfaction, we include pair programming in the agile SDA
category (Table 2). We propose that these agile practices instantiate job-design principles as Table 3
summarizes. We describe these proposed impacts of the use of each agile practice on job-design principles
starting with combining tasks, followed by forming natural work units, establishing client relationships,
vertically loading the job, and opening feedback channels. First, we describe each job-design principle.
Second, we provide a specific illustration of the applicable project management or software development
practices associated with that job-design principle.

2 Tripp and Armstrong performed a two-round categorization exercise for the 12 agile practices using three expert agile developers to

categorize the practices. The judges identified two categories: agile project management and agile software-development approach.
The judges had 97.2 percent agreement on categorization.

Journal of the Association for Information Systems 273

Volume 17 Issue 4

Table 2. Definitions of Agile Practices Described in this Study

Agile practice name Definition (source)
Project-management practices

Daily stand-up meeting
(Schwaber & Beedle, 2002)

A (usually) daily meeting in which all project participants meet while standing
to encourage brevity. In scrum, the meeting involves asking and answering
three questions*.

1. What did I accomplish yesterday?
2. What will I do today?
3. What obstacles are impeding my progress?

A kanban daily stand-up asks and answers:
1. What obstacles are impeding my progress?
2. What has progressed?

* The meeting focuses on these questions as much as is practical.

Iterative delivery
 Release planning
 Iteration planning
 Velocity

The process of 1) planning and 2) delivering in an incremental manner.
Specifically, the concept that delivery in small chunks provides the team with
the ability to generate code and immediately receive feedback from the
environment after each iteration. Velocity emerges after the team has
delivered several iterations and measures the amount of work that it can
complete per iteration.

Retrospectives
(Schwaber & Beedle, 2002)

A meeting held at the end of each iteration in which the team 1) critically
reflects on the last iteration and 2) identifies and implements continuous
improvement opportunities.

Burndown

A visual representation that provides information to the team about 1) work
that has been completed and 2) work remaining to be completed in the current
iteration or release.

Software-development approach practices

Automated (unit) testing
(Beck, 2000)

Using dedicated test code that one can run (usually automatically) to test the
effects of changes to the system. The team generally performs this testing
before ADT members are allowed to check in code, which allows developers
to be sure that they have not broken anything in the system.

Automated builds
(Küster, Gschwind, & Zimmermann,

2009)

Using a code script to rebuild the software, which allows the team to be sure
that any files necessary to successfully build the software have been added to
the code repository.

Continuous integration
(Beck, 2000; Duvall, Matyas, &

Glover, 2007)
The process of systematically and regularly building and deploying the code to
a test server.

Coding standards
(Beck, 2000) A set of established norms as to code-naming and consistency.

Refactoring
(Fowler, 1999)

A commitment by the team to use practices that lead to removing redundancy,
eliminating unused functionality, and refreshing obsolete designs.

Pair programming
(Beck, 2000; Cockburn & Williams,

2001)
The practice of two developers working together to develop a portion of code.

274 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Table 3. Job-design Principles and Agile Practices

Agile practice CT FNWU ECR VL OFC
Project-management practices
Daily stand-up meeting x x
Iterative delivery
 Release planning
 Iteration planning
 Velocity

 x x x

Retrospectives x x
Burndown x
Software-development approach
Automated (unit) testing x x
Automated builds x x
Continuous integration x
Coding standards x
Refactoring x x
Pair programming x x
CT: combining tasks, FNWU: form natural work units, ECR: establish client relationships, VL: vertical job loading,
OFC: opening feedback channels

2.3 Combining Tasks
Properly developing code requires software-development teams to write code, test code, and ensure that
one can deploy the code as written and tested. Traditional software-development takes a work-
fractionalization approach. Work is divided across software-development teams who focus on particular
layers of the software (database, business logic, user interface) or phases of the project lifecycle. For
example, activities such as coding, testing, and deploying software are often segmented into different
phases of the project lifecycle and completed by three distinct teams. By dividing the work across teams,
foci, and phases of the lifecycle, traditional development methods reduce software developers’ ability to see
the results of tasks related to a completed product.

Agile teams organize work in a significantly different fashion. ADTs recombine the responsibilities of
software developers to include multiple tasks and the development of multiple layers of the software, which
leads to better understanding of the complete system and not just development of a particular component
(Anderson, 2004). Because ADTs desire to ensure that one can deploy their code after each iteration, this
entire process occurs continuously. We propose that four of the selected agile practices relate to the
perception of recombining tasks and higher perceived job characteristics (Table 2, column 2).

2.3.1 Automated (Unit) Testing and Combining Tasks
Although developers in traditional software environments typically test software before deployment, most
traditional teams do not write persistent shared code suites to test software systems. Instead, each
developer might perform initial unit testing manually or with some ad-hoc code written for testing their
particular changes. Further, in traditional teams, a dedicated team of system testers typically fully tests
systems at a later time.

When using automated-testing frameworks, ADTs write both unit and system tests that they preserve so all
members of the ADT can use them. These tests combine tasks in two ways. First, the code is an example
of documentation in practice (Beck, 2000; Küster et al., 2009) because the tests themselves provide
guidance as to the system’s functionality. Second, one can run these tests at any time, which allows a
developer to test the consequences of changing code across the entire system. In this way, unit tests
combine tasks previously performed by the business analyst role and the tester role.

Journal of the Association for Information Systems 275

Volume 17 Issue 4

2.3.2 Automated Builds and Combining Tasks
Automated builds refer to the process of creating scripts to generate a complete and deployable build, and
many ADTs require that team members run automated builds before they check in code changes (Küster
et al., 2009). When ADTs do this, a developer adopts tasks beyond the traditional boundaries of the role
and performs the tasks of a configuration manager. Automated builds help to ensure that a developer has
included and configured all dependencies required to deploy the software.

This process vertically loads the ADT by providing control over execution of scripts, which reduces the need
for a dedicated configuration manager role, and places the responsibility for ensuring that the packages are
complete and deployable onto each ADT member. Further, ADTs run the automated build processes
regularly, most often before a developer submits code (Küster et al., 2009). During this process, the
developer receives a notification about whether their new changes have broken any other portions of the
code base and whether one can properly build the code on their machine. As such, automated builds provide
feedback directly to the developers as they complete code.

2.3.3 Coding Standards, Refactoring, and Combining Tasks
The term coding standards refers to the ADT’s ensuring that it follows agreed-on guidelines when coding.
As such, ADT developers combine tasks by ensuring that they do not simply code software that works but
software that is easier to refactor and easier to assign to others to work on (Auer & Miller, 2002). Whereas
software code adopts a format according to multiple individual preferences, coding standards require
developers to ensure that the code itself is not a personal object but a community artifact (Beck, 2000). As
such, the programming task in ADTs includes the community code-formatting task.

Refactoring refers to practices that remove redundancy, eliminate unused functionality, and refresh obsolete
designs (Fowler, 1999). Refactoring as an agile method reflects the team’s commitment to improve the
structure and reduce the complexity of the code whenever necessary (Beck, 2000). The entire ADT (rather
than a particular subgroup, such as the architects) performs the refactoring whenever necessary. As such,
refactoring combines software-development tasks that traditional practices might fragment.

2.3.4 Pair Programming and Combining Tasks
Pair programming refers to the practice of two developers working together to develop code (Cockburn &
Williams, 2001). When pair programming, two developers work together to first design the software and
then build it (Beck, 2000). In some cases, writing the tests is a light implementation of a design specification
(Highsmith, 2002). When such an implementation occurs, some advocate that the first programmer write
the tests for the code and the second provide feedback (Beck, 2000). Then, when they are programming
the actual system code, the two developers reverse roles. Adding the development of the design to the
programmers’ responsibilities combines tasks that might be fragmented across analysts, architects, and
developers in traditional team structures.

2.4 Forming Natural Work Units

2.4.1 Task Significance and Task Identity in Natural Work Units
Work fractionalization means that a person can complete only a portion of the work required to complete a
full task, which can lead to workers addressing seemingly unrelated and unnatural sets of tasks in a given
period (Hackman & Oldham, 1980). The lack of understanding of how work units are related leads to lower
task identity and task significance. In contrast, by forming natural work units, employees develop ownership
of their work (Hackman & Oldham, 1980). Developing this ownership mentality can increase the perceived
meaningfulness and perceived value of the work. As such, forming natural work units increases task
significance and task identity.

In traditional software-development environments, work fractionalization among various roles leads to
assignments by task type, such as database coding, user interface coding, or testing. The contrasting
approach used in ADTs is to assign as a bundle all of the tasks necessary to complete a particular feature
rather than simply assigning a coder the next task in that coder’s specialized area (Anderson, 2004; Palmer
& Felsing, 2002). This practice is consistent with the call in the agile manifesto to define the key measure
of progress in a development project as finished, functional code (Fowler & Highsmith, 2001). Rather than
identifying their work as “data access layer coding”, programmers in this example can identify their work as
completing “the XYZ feature”, which is an identifiable and functional component of the finished system—an

276 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

accomplishment of definable significance. We propose that practices that allow coders to iteratively deliver
code are more likely than traditional practices to lead to coders’ forming natural work units and, ultimately,
more clearly understanding task identity and task significance.

2.4.2 Iterative Delivery and the Formation of Natural Work Units
Although research has often discussed release planning, iteration planning, and velocity separately, they
all concern iterative delivery (see Table 2). Release planning defines, at a high level, the order in which one
will deploy features. Toward this end, ADTs and the customer plan iteratively before each work cycle; that
is, the ADT’s and customer’s together define the features included in the next cycle, divide the features into
tasks, and estimate the work they need to perform. These two practices also incorporate velocity. Velocity
(as an agile practice) refers to calculating the amount of work that the ADT can achieve during a standard
work cycle. As such, the calculated velocity of the ADT helps it to properly size the work committed to for
the iteration. The agile experts consulted for this study (see Appendix A for details) repeatedly described
these three concepts (i.e., release planning, iteration planning, and velocity) interchangeably, so we treat
them as a single method called iterative delivery.

Iterative delivery helps ADTs to form natural work units. When the client provides priorities related to needed
functionality, the team determines the work required to complete a full feature. Rather than focusing on
developing particular modules of code, the team focuses on developing features, which are, by definition,
natural work units.

2.5 Establishing Client Relationships
In the traditional software-development context, work is fractured and specialized and there is potential
division between the analyst, architect, coder, and tester roles, which often creates several layers of
hierarchy between an employee and the actual client. In this context, workers may not have contact with
the people for whom the work has been completed. If employees lack direct contact with the customer,
feedback is filtered through others, and employees lose a potential source of information through which they
can understand the impacts of their work, which reduces task significance.

In contrast, agile practices emphasize the importance of direct and regular contact (in many cases on a
daily basis) between the client and all the members of the team. This contact helps to establish client
relationships. Direct client feedback obtained through these relationships is likely to provide the clearest
information to help employees evaluate the overall success of their work.

Further, when employees establish relationships with their clients, employees gain increased skill variety
and job autonomy. In any work structure, employees’ technical or operational skills can grow through their
work performance and training; however, when employees communicate with clients, employees can
increase their skill variety by developing and using interpersonal skills. Additionally, when employees are
empowered to directly manage a personal client relationship, their perceptions of job autonomy improve.
Two agile project-management practices help to develop these client relationships: the daily stand-up
meeting and iterative delivery.

2.5.1 Daily Stand-up Meeting and Establishing Client Relationships
The daily stand-up meeting is (usually) a daily meeting of the entire ADT that occurs while everyone
stands to encourage brevity. Depending on the agile method in use, the daily stand-up meeting focuses
on a short defined list of questions for each team member to answer (see Table 3). The ADT as a whole
performs this practice each day. Each member of the ADT provides information regarding their work
performed the previous day, their work planned for the day, and any blocking or coordination issues
(Schwaber & Beedle, 2002). Agile methods also prescribe that, whenever possible, the business owner
should attend this daily meeting.

By providing the opportunity to discuss the project’s status, the daily stand-up allows each ADT member to
directly interact with the customer. Each team member can ask the customer questions, which opens the
door for a daily iterative dialogue and assists in establishing a direct relationship between the coding
developer and the client. Further, because the daily stand-up focuses on issues (see Table 3), ADT
members can be transparent with the customer (business owner), which builds trust, an important
component of good relationships (Deutsch, 1960; Lewicki & Bunker, 1995; Lewis & Weigert, 1985).

Journal of the Association for Information Systems 277

Volume 17 Issue 4

2.5.2 Iterative Delivery and Establishing Client Relationships
Iterative delivery establishes client relationships because it creates an environment in which the
customer and ADT share authority over the planning process. Both the client representatives and ADT
members participate together in release planning and iteration planning. According to both scrum and
XP, the client sets the task priorities, while the ADT estimates the work and establishes the schedule
to complete those priorities.

Further, the ADT uses its defined velocity (Beck, 2000) to establish the amount of work that it can fit into a
work cycle. By using this metric, which is determined based on the amount of work accomplished in previous
cycles (see Table 3), the ADT sets an attainable goal. By completing iterations and releases as promised,
the ADT as a whole establishes a trust relationship with the client, and each member of the ADT benefits
from this relationship during regular interactions with the client.

2.6 Vertical Loading
Many traditional development contexts split software-development responsibilities between the planning
(analysis and design), the doing (development and testing), and the controlling (project management) of the
work, which creates a gap between each component of the job (Nerur et al., 2005). Vertically loading jobs
reduce the distance between the doing, the planning, and the controlling of a given piece of work because
vertical loading adds the “responsibilities and controls that formerly were reserved for higher levels of
management” to individual jobs (Hackman & Oldham, 1980, p. 64). Vertical loading increases perceptions
of job autonomy and personal responsibility because it returns discretion to the jobholder to make decisions
regarding work scheduling, time management, and, to a lesser extent, troubleshooting, crisis management,
and financial controls (Cordery, Morrison, Wright, & Wall, 2010; Hackman, Brousseau, & Weiss, 1976).

In a traditional software-development environment, one group of employees (e.g., architects, analysts)
might make decisions about designing and implementing the system , while another set of employees (e.g.,
developers, testers) might complete the doing (or implementation), which indicates a lack of vertical loading.
In contrast, ADT practices tend to vertically load the job by combining design, development, testing, and
other tasks into a single team member’s responsibilities. We propose that a large number of the agile
practices increase vertical loading, which we describe in Sections 2.6.1 to 2.6.3.

2.6.1 Iterative Delivery and Vertical Loading
To plan iterative delivery, the ADT must estimate the size of the work it needs to complete. When ADT
members participate in planning and estimating, their roles are vertically loaded. ADT transforms software
development by shifting control over planning and estimating from management or others to ADT members.
By shifting control, ADT introduces more vertical control into team members’ jobs.

2.6.2 Retrospectives and Vertical Loading
Retrospective meetings occur at the end of a work cycle. At these meetings, ADT members reflect on the
work process they used in the previous iteration and propose or adopt modifications to the process for the
next work cycle. This process allows the ADT to direct itself, and, as such, the process vertically loads the
ADT with the responsibility of defining its own development process (McHugh & Lang, 2011; Schwaber &
Beedle, 2002). This process also gives each member a voice in evaluating work quality for the entire ADT
(Beck, 2000; Highsmith, 2002; McHugh & Lang, 2011; Schwaber & Beedle, 2002).

2.6.3 Refactoring and Vertical Loading
Refactoring involves making changes to the internal structure of a software system to make the system
code easier to understand and less expensive to maintain and modify (Fowler, 1999). Rather than
relying on a coding supervisor such as a team lead or architect to complete this work, the agile software-
development approach (SDA) practice of refactoring relies on vertically loading this important practice
onto each developer in the ADT; refactoring in ADTs is a community activity. Rather than proposing to
an architect or other leader that that they should change existing code, an ADT developer can refactor
existing code. Agile methods encourage the use of this practice in order to encourage team members
to feel that they have the job autonomy to ensure that the software system has as few defects and
architectural issues as possible.

278 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

2.7 Opening Feedback Channels
Employees need to obtain additional information relevant to planning and doing their work and their work’s
results. Because feedback is one of the job characteristics that helps improve job satisfaction (see Table
1), additional opportunities and avenues through which to obtain feedback should increase this perception.
Personal relationships and communications provide feedback (Hackman & Oldham, 1980); in addition, agile
practices allow one to design feedback into the work itself. For example, when an employee’s job of making
a product or delivering a service includes quality-control task, the employee can obtain direct feedback and
additional information about their performance. Agile development practices specifically merge design,
development, and testing into a single process, which the same programmer or pair usually completes.
These development processes, along with supporting automated tools, can immediately check the quality
of a set of code and provide feedback directly to the individual who created it.

2.7.1 Daily Stand-Up Meeting and Opening Feedback Channels
The daily stand-up meeting opens multiple feedback channels by allowing ADT members to immediately
judge the quality of their previous and current work processes and outputs. When ADT members discuss
their status daily with all members of the team, they can share feedback with one another about completed
work, work barriers, and issues that previously performed work caused. These repeated, planned
discussions allow the team to provide and receive feedback and to understand the status of the project’s
environment (Burke, Stagl, Salas, Pierce, & Kendall, 2006). Further, because the client attends the meeting
as well, each member of the ADT can receive direct feedback about questions regarding direction,
requirements, or issues.

2.7.2 Retrospectives and Opening of Feedback Channels
Retrospective meetings occur at the end of a work cycle and provide a feedback channel for members in
the ADT to evaluate their work quality (Beck, 2000; Highsmith, 2002; McHugh & Lang, 2011; Schwaber &
Beedle, 2002). Retrospective meetings allow ADTs to continuously improve because they provide a forum
in which each member can describe what is working well, what is not working well, and how things need to
be changed in the next work cycle (Derby, Larsen, & Schwaber, 2006). Retrospectives allow team members
to clarify issues from previous iterations because these meetings provide clear feedback about whether and
how the team achieved previous work cycles’ goals and allow team members to define opportunities to
improve work practices for the next work cycle (McHugh et al., 2012). Research has found the
retrospective’s omission from ADT processes to contribute to a lack of shared understanding in the team
about whether it is performing well (Moe et al., 2010).

2.7.3 Burndown and Opening of Feedback Channels
The burndown chart is a feedback channel that compares the amount of work planned at a given point in a
work cycle with the amount of work actually completed (Sutherland, 2001). The entire ADT (rather than just
a project manager) sees this chart, which provides all team members with the necessary information about
the progress they have made toward the previously set team goal. By providing the ADT with feedback
about its current progress toward a goal, the burndown chart empowers each member of the ADT to take
action to reduce the possibility of the project’s falling behind.

2.7.4 Automated (Unit) Testing, Automated Builds, and Opening Feedback Channels
These three practices work together to open feedback channels for each individual developer and for the
team as a whole. First, automated unit testing opens feedback channels by providing immediate information
to a developer via a failed test. Many development teams require coders to run the full suite of tests before
committing code changes to the common code repository (Beck, 2003; Highsmith, 2002; Küster et al., 2009).
By iteratively running all of the tests until they pass, ADT members obtain information that allows them to
immediately validate the quality of the code they have written.

Automated builds extend the practice of automated (unit) testing. Automated builds allow any developer to
rebuild the entire software system after refreshing from the repository or at any other time before committing.
Automated building goes beyond automated unit testing because the practice of performing automated
builds ensures not only that the system code is functional but also that the team has added all other build
dependencies to the list of system dependencies (for instance, a third party code component) and to the

Journal of the Association for Information Systems 279

Volume 17 Issue 4

build scripts. This process provides a feedback channel to each individual who is changing the system so
that the team can build their changes into the updated software system without issues.

2.7.5 Continuous Integration and Opening Feedback Channels
Continuous integration (CI) extends to the entire ADT the feedback channels opened to individuals through
automated testing and automated builds. Because continuous integration occurs on a server machine that
is common to the entire team and refreshed after each team member checks in code, it allows the ADT as
a whole to ensure that the code is consistently deployable. This opens a feedback channel that allows the
entire ADT to determine whether members have completed a change properly. CI provides feedback
beyond the process of automated testing and automated builds, because it ensures not only that the code
runs on a developer’s machine but also that the developer has committed all of the necessary configuration
changes to the code repository (Duvall et al., 2007; Fowler, 2006).

2.7.6 Pair Programming and Opening Feedback Channels
Working in pairs better enables coders to identify mistakes during the actual coding process. When the
observing coder notices a mistake in progress, that person can give immediate feedback to correct it.
Further, because agile methods argue that pairs should be fluid structures, they often recombine regularly
(in some cases, pairs can change more than once per day) (Beck, 2000); in this way, feedback channels
are opened between the pair to ensure that the entire ADT consistently implements coding standards.

In summary, this section defines each of the five job-design principles and explains how each of the 10 agile
practices relates to each principle. We suggest that job characteristic perceptions increase when ADT
practices that instantiate the job-design principles design and recombine jobs. In Section 2.8, we map agile
practices to the job-design principles and develop a model that connects agile practices, job characteristics,
and job satisfaction.

2.8 Operationalizing and Mapping of Agile Practices to Job-design Principles and
the Job Characteristics Model

Table 2 categorizes the 10 agile practices into two groups: agile project management (PM) practices and
agile software-development approach (SDA) practices. We believe that one can best conceptualize these
groupings as distinct, second-order multidimensional constructs. They are distinct because agile PM
practices and agile SDA practices have different foci and different impacts on perception of job
characteristics. Agile SDA practices focus primarily on executing the software-development process. In
contrast, agile PM practices primarily focus on establishing customer relationships, obtaining feedback, and
coordinating work in teams. As such, the agile PM practices are primarily managerial and support the
performance of the actual software engineering. Because of these different foci, one can represent agile
practices as two conceptually related yet distinct constructs.

We believe one needs to model each of the 10 individual agile practices as reflective in nature (Petter, Straub,
& Rai, 2007; Polites, Roberts, & Thatcher, 2012). Because terminology is inconsistent across methods and
because one team might claim to use a practice but not actually implement it in the same manner as another
team, it is difficult to evaluate how much teams use each practice. To that end, in our survey (described in
Section 4) we asked multiple agile practice-specific questions; for example, the use of stand-up meetings and
iterative delivery help to determine the depth to which an ADT employs agile PM practices. For these first order
factors, we asked questions that sampled the activity domain of a team’s practices to evaluate the depth of
each agile method’s use. Thus, to evaluate the extent of stand-up meeting use, for example, we asked
questions such as the frequency and range of issues discussed at meetings. Although these questions tap
into the broader domain of stand-up meetings, one could conceive them as interchangeable.

We conceptualized the second-order factors as formative in nature (Polites et al., 2012) because the use of
one agile practice (e.g., pair programming) might not require the concurrent use of other agile practices.
Because of most agile practices’ independence, using one practice at a high level does not necessarily mean
that a team uses another practice at a high level. Our agile-practices conceptualization suggests that, to
effectively evaluate whether teams use agile PM and agile SDA, one must evaluate not only the depth of a
practice’s use but also whether the team employs other agile practices. Hence, while at the first order we used
multiple interchangeable items to evaluate a practice’s use (e.g., in a reflective manner), our second-order
conceptualization required that we also aggregate the presence of specific practices employed by an ADT.
For this reason, at the second order, agile PM and agile SDA practices should be operationalized as formative.

280 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

As our review and associated measurement theory suggests, one can conceptualize PM and SDA practices
as aggregate constructs; that is, one can conceptualize them as having reflective first-order dimensions and
a formative relationship from the first order to the associated second-order construct. In Figure 2, we
conceptualize the agile practices as acting as instantiations of job-design principles. Our explanation of the
figure further underscores the importance of modeling practices as distinct constructs at a second-order
level. The agile PM and the agile SDA practices highly overlap on the vertical loading and opening-feedback
channels concepts: more than 50 percent of each category’s practices instantiate these two job-design
principles. In contrast, only agile PM practices instantiate establishing client relationships and forming
natural work units, while only agile SDA practices instantiate combining tasks.

Figure 2. Agile Practices as Instances of Job-design Principles Mapped to JCM

Extending the mapping, the right column of Figure 2 lists the five job characteristics and the cumulative
instantiations of the job-design principles through the use of each agile practice. To illustrate, job autonomy
category has four agile PM practices (two from vertical loading and two from establishing client relationships)

Journal of the Association for Information Systems 281

Volume 17 Issue 4

and two agile SDA practices (two from vertical loading and zero from establishing customer relationships).
As the figure shows, the job autonomy and feedback categories each have a relatively high number of the
agile PM and agile SDA practices mapped to them, while the remaining job characteristics are primarily
mapped to agile SDA practices. Hackman and Oldham (1980) argue that the three constructs of task
identity, skill variety, and task significance are primarily related to job tasks, while the constructs of feedback
and job autonomy are related to job management. Similarly, the agile SDA construct comprises practices
that primarily focus on the actual process of performing software development, while the agile PM practices
focus on job management (Tripp & Armstrong, 2014). The implications of these differences in mapping
directly affect our research model, and we discuss them in Section 3.

In summary, in this section, we describe Hackman and Oldham’s (1980) job characteristics model and job-
design principles. We also illustrate numerous ways in which the one can conceive the practices defined in
agile methods as instantiating the job-design principles. We conceptualize PM and SDA practices as
second-order, aggregate constructs. Finally, we present a mapping of agile practices to job-design principles
and then to the job-characteristics model. In Section 3, we present our research model and hypotheses.

3 Hypothesis Development
Figure 3 presents our research model, and Table 1 (see Section 2.1) defines our constructs.

Figure 3. Research Model

Our research model leverages the logic articulated in prior sections of this paper and extant research.
Research has extensively tested our first set of hypotheses (e.g., Ahuja et al., 2007; Morris & Venkatesh,
2010; Thatcher et al., 2002). We include these hypotheses as a means to connect our model to the
established IT workforce nomological network (Joseph et al., 2007). Hence, we hypothesize that employees’
more favorable perceptions of job characteristics results in more favorable perceptions of job satisfaction.
As such, we hypothesize:

282 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

H1a-e: Higher perceptions of the job characteristics of a) feedback, b) skill variety, c) task identity, d)
task significance, and e) job autonomy are positively related to job satisfaction.

Our review of agile development methods and job design principles suggests that when agile practices use
increases, ADT members should see their jobs as less fragmented, more autonomous, and more significant.
We argue that agile PM and agile SDA practices are related to job characteristic constructs in different ways.
First, we hypothesize that the extent of agile PM practice use primarily impacts job characteristics that are
related to managing the job rather than executing the software development task. As Hackman and Oldham
(1980) argue, the job characteristics feedback and job autonomy are primarily related to job management.
Using agile PM practices increases vertical loading, opens feedback channels, and allows the entire team
to engage with the client. These forces are reflected primarily in feedback and job autonomy, two important
job characteristics. Therefore, using these job-design principles should increase positive perceptions of
feedback and job autonomy. As such, we hypothesize:

H2a-b: The extent of use of agile PM practices positively impacts the perceived job characteristics of
a) job autonomy and b) feedback.

In contrast to the agile PM practices, which focus on managing a project, the agile SDA practices focus on
completing the actual task. As such, agile SDA practices will likely impact the task-related job
characteristics: task significance, task identity, and skill variety. This occurs primarily through the agile
practices that combine tasks that are fragmented in traditional work models (e.g., developer tasks are
combined when a developer is allowed to write tests and production code components for various features
rather than handing testing over to another person).

Further, consistent with the mapping in Figure 2, we argue that agile SDA practices also have the potential
to impact job autonomy and feedback. Agile SDA practices open feedback channels in several ways. First,
automated testing and continuous integration allow ADT members to quickly evaluate the impact of any
code change. By its nature, pair programming provides feedback to the coder because the partner
continuous evaluates the work as it occurs. Finally, agile SDA practices provide numerous opportunities to
vertically load a job, which can lead to more opportunities to be autonomous.

Because one can map the agile SDA practices to all five job characteristics, we hypothesize:

H3a-e: The extent of use of agile SDA practices positively impacts job characteristic perceptions of
a) job autonomy, b) feedback, c) skill variety, d) task identity, and e) task significance.

Our mapping of agile practices in Figure 2 suggests overlap in the potential impacts of both agile PM
practices and agile SDA practices on both job autonomy and feedback. The impact of using both agile PM
and agile SDA practices would likely positively reinforce the impacts of each construct. Although not yet
tested, agile practitioners have long argued that the impact of using multiple practices is not simply additive
but multiplicative (e.g., Beck, 2000; Highsmith, 2002); that is, that multiple practices yield an impact greater
than the sum of individual parts. As an example, automated testing and continuous integration likely
increase iterative delivery’s impact, which allows the ADT to make fast course corrections and direction
changes as necessary. As such, we hypothesize:

H4a-b: There is a positive interaction effect between the extent of agile PM practices use and the
extent of agile SDA practices use on a) job autonomy and b) feedback.

Additionally, we propose that agile practices have direct effects on job satisfaction. Agile proponents
report and some research has supported that ADTs have higher engagement with the client and higher
developer motivation (e.g., McHugh et al., 2010). Research has also found ADTs to deliver higher-
quality software (Maruping et al., 2009a) and have shorter project timelines and higher project success
rates than traditional team methods (West et al., 2010). Agile teams work iteratively and set short-term
goals to achieve working and deliverable software every few weeks (Highsmith, 2002). Research has
viewed job satisfaction as a product of rewards (tangible and intangible) gained from performance (e.g.,
Naylor, Pritchard, & Ilgen, 1980; Vroom, 1964). Agile team members can gauge their individual
performance daily by using feedback practices such as unit testing, continuous integration, and
burndown. Further, ADTs gauge their performance at the end of each work cycle and receive feedback
from their customers about the quality and suitability of their work (Beck, 2000; McHugh et al., 2010;
Schwaber & Beedle, 2002). This shortening of the performance-evaluation cycle should lead to greater
perceptions of satisfaction because it affords opportunities for recognizing success and improving
continuously (Burke et al., 2006). As such, we hypothesize:

Journal of the Association for Information Systems 283

Volume 17 Issue 4

H5: The extent of use of agile PM practices positively impacts job satisfaction.

H6: The extent of use of agile SDA practices positively impacts job satisfaction.

In Section 4, we present the details of our research study that tested these hypotheses.

4 Research Method
To evaluate our research model, we collected survey data in June 2013 from 252 respondents who worked
as software-development professionals. We recruited our sample using Empanel, a data-collection
company that specializes in recruiting Internet-based survey panels. The panel comprised IT professionals
screened by Empanel. Many IS studies have successfully collected and use data in this manner (e.g., Angst
& Agarwal, 2009; Ayyagari, Grover, & Purvis, 2011; Benlian, Titah, & Hess, 2012). The company provided
1,098 potential respondents. We asked each potential respondent whether they were currently part of a
software development team and what role they played on the team. Further, to ensure that our respondents
had sufficient background and experience to have developed perceptions of their current jobs, we asked
them to report their total IT experience and how much experience they had at their current organization3.
Based on the answers to these screening questions, we eliminated 441 potential respondents and included
the other 657 respondents in the survey.

As additional quality checks, we positioned “quality assurance” questions at several points in the survey to
ensure that respondents were engaged with it. If respondents answered a QA question improperly, we
immediately terminated their survey and dropped their responses. As a result, we disqualified 351
respondents who had started the survey. Our questionnaire was long, so, to ensure our analysis included
only respondents who carefully thought about each question, we rejected 51 respondents who completed
the questionnaire in less than 10 minutes4. This left 255 respondents who completed the full survey, who
answered all of the QA questions appropriately, and who took at least 10 minutes to complete the survey.
Finally, we reviewed these responses and dropped three additional respondents who answered all of the
questions the same or indicated in an open-ended question that they did not qualify. We included data from
the remaining 252 respondents in the study. Of the 252 respondents, 125 indicated that they worked in agile
development teams, and 127 indicated that they did not. Of the 252 respondents, 80.7 percent were male.
This percentage is consistent with reported gender ratio analyses of software development teams (James,
2010). Appendix A2 breakdowns the sample by team role.

Where possible, the survey included scales adapted from previous research. To measure agile method use,
we developed a new set of items. Table A1 presents the sources for the items and the instrument we used
for this survey.

5 Model Analysis
We analyzed our theoretical model using partial least squares (PLS) with SmartPLS (Ringle, Wende, & Will,
2005). Partial least squares structural equation modeling (PLS-SEM) is an appropriate analysis technique
for our model because the model is relatively complex, includes interaction effects, and models agile method
practices as aggregate second-order constructs (Polites et al., 2012). We performed multiple tests to
validate our model, including tests for convergent and discriminant validity and common method bias, the
results of which Appendix B reports. Our results suggest that our model meets or exceeds standards for
validity (Straub, Boudreau, & Gefen, 2004).

We modeled agile PM and agile SDA constructs as aggregate constructs, where the agile practices were
measured reflectively, and then the second-order factors were composed of the respective practices (Hair,
Hult, Ringle, & Sarstedt, 2013). We used a multi-stage approach for the analysis; we modeled the approach
after hierarchical regression based on the technique that Siponen and Vance (2010) applied. First, we
examined the independent effects of the control variables (negative affectivity, age, organizational tenure,
gender, education, and total work experience—see Appendix A) without including any of the JCM or agile
practice constructs on the dependent variable job satisfaction. We call this model 1. These variables

3 Respondents had to play a role as a member of a software development team, have at least one year of total experience, and have

worked for their current organization for at least six months.
4 We later analyzed our data including these 51 respondents. Our results did not substantially change.

284 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

explained 20 percent of the variance of job satisfaction. However, inspecting the analysis suggested that
only negative affectivity and gender significantly related to the dependent variable.

Next, we analyzed the added effects of the job characteristics model’s constructs (feedback, job autonomy,
task identity, task significance, and skill variety), which we refer to as model 2. Of these constructs, all were
significant (all p < .05). The variance explained in model 2 increased from 20 percent to 54.2 percent. We
then calculated the size of the effect differences between the two models as ƒ2 = (R2Model2 – R2Model1)/(1 –
R2Model2) (Chin, Marcolin, & Newsted, 2003; Qureshi & Compeau, 2009) in order to test whether this increase
was significant. Then, we performed a pseudo F-test by multiplying the effect size (ƒ2) by (n – k – 1), where
n is the sample size and k is the number of independent variables (Mathieson, Peacock, & Chin, 2001). The
size of the effect was very large (.741), indicating that the change in R2 was significant (F = 181.04, p < .01),
which means that the job characteristics model construct’s impact on variance explained in job satisfaction
(model 2) was significantly higher than that explained by model 1.

Table 4. Model Comparison

 Model 1
controls only

Model 2
JCM + controls

Model 3
full model

R2 .200 .542 .582
Delta R2 .342** .040*

Effect size .747 .096
**p <.01, *p<.05
JCM job characteristics model

Finally, we added the agile practice use constructs to complete the full model (model 3) (see Figure 2). The
full model increased the explained variance in job satisfaction from .542 to .582. The effect size was .096,
which is a small effect (Cohen, 1988). However, even though the effect was small and the change in
explained variance was only 4 percent, this change was significant when we performed the pseudo F-test
(F = 14.55, p < .05). These tests support including the agile practice use constructs in the full model. Table
4 summarizes this multi-stage analysis. To test significance, we performed bootstrapping with 252 cases
and 1,000 iterations; Figure 4 presents the results of the full model.

Figure 4. PLS Results

Journal of the Association for Information Systems 285

Volume 17 Issue 4

Interestingly, while all paths from the job characteristics to job satisfaction were significant in model 2, in the
full model, the paths from feedback (.033) and skill variety (.112) were not significant. Also, although we
hypothesized that both agile practice use constructs have a direct effect on job satisfaction, only the agile
PM practices (.174) were significant at the p <.01 level. All of our hypothesized paths from the agile practice
use constructs were significant except the path from agile SDA practices to job autonomy. The interaction
between agile SDA practices and agile PM practices significantly influenced job autonomy and did not
influence feedback. Thus, our results partially support H1, H3, and H4 and support H2 and H5; they do not
support H6. Table 5 summarizes our hypothesis results. Also, in our final model, negative affectivity was
the only control variable that significantly related to job satisfaction. In Section 6, we discuss our findings
and their implications.

Table 5. Summary of Hypothesis Results

Hypothesis Result Supported?
H1: Higher perceptions of the job characteristics are positively

related to job satisfaction.
 a) Job autonomy
 b) Feedback
 c) Skill variety
 d) Task identity
 e) Task significance

.296**
.033
.112

.142**

.112**

Yes
No
No
Yes
Yes

H2: The extent of use of agile PM practices positively impacts
the perceived job characteristics of a) job autonomy and b)
feedback
 a) Job autonomy
 b) Feedback

.174**
.251**

Yes
Yes

H3: The extent of use of agile SDA practices positively impacts
job characteristic perceptions of:
 a) Job autonomy
 b) Feedback
 c) Skill variety
 d) Task identity
 e) Task significance

.057

.233**

.269**

.406**

.343**

No
Yes
Yes
Yes
Yes

H4: There is a positive interaction effect between the extent of
agile PM practices use and the extent of agile SDA
practices use on:
 a) Job autonomy
 b) Feedback.

.413**
-.066

Yes
No

H5: The extent of use of agile PM practices positively impacts
job satisfaction. .174** Yes

H6: The extent of use of agile SDA practices positively impacts
job satisfaction . .028 No

Note: ** - p < .01

6 Discussion and Implications
Motivated by a desire to evaluate practice-based claims about agile practices’ positive influence on job
design, we investigated two research questions:

RQ1: How does the extent of use of different agile practices impact job satisfaction?

RQ2: What are the causal pathways through which agile practices affect job satisfaction?
Through a cross-sectional investigation of ADT members, we found support for agile practices’ affecting job
satisfaction. First, we found that members of ADTs that used higher levels of agile PM practices had higher
perceptions of job satisfaction (Hypothesis 5). Conversely, higher levels of the use of agile SDA practices
did not have a direct impact on perceptions of job satisfaction (Hypothesis 6). Second, we found that the
extent of use of agile practice constructs impacted perceptions of job characteristics, although not all of our
predicted paths were significant (Hypothesis 3a). We also found a positive interaction between agile PM
practices use and agile SDA practices use on job autonomy but not on feedback. We discuss each of these
findings below.

286 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

While we found general support for agile practices’ affecting job satisfaction, we found that not all job
characteristics significantly influenced job satisfaction in the presence of agile method use. In model 2,
which did not include the agile method use constructs, all five job characteristics impacted job satisfaction
significantly as one would expect based on extant research (e.g., Ahuja et al., 2007; Hackman et al., 1976;
Moore, 2000; Morris & Venkatesh, 2010; Ply et al., 2012). However, in the full model (model 3), which
considers agile method use, only three of the job characteristics (job autonomy, task identity, and task
significance) were significant. We found that feedback and skill variety were insignificant in the full model.
A possible explanation for these results comes from the inherent benefits embedded in the design of agile
practices. Two of the benefits of implementing agile practices are the high occurrence of iterative feedback
and the increased skill variety. It is plausible that the measures focused on feedback in agile practices were
more salient to the respondents than the more general measures typically used to measure feedback in the
JCM. Further, as theorized, the same effect might occur for the skill variety construct because both agile
PM and agile SDA practices require using a more diverse skill set than might be required in a typical
traditional software-engineering environment. We believe that, while job characteristics are an excellent
predictor of job satisfaction, research should develop additional theory regarding the impact of various IS-
related contextual factors on the formation of perceptions of the job characteristics. This study represents a
first step toward developing contingency models that explain how the structure of IT work makes job
characteristics more or less salient for ADT members and the broader IT workforce.

By examining sources of job characteristics, our work advances the IT workforce literature beyond its
foundation in the JCM. In our analysis, the impact of the extent of use of agile PM practices was highly
significant with regard to feedback and skill variety, which supports Hypotheses 2a-b. As expected, the agile
SDA practices were associated with higher perceptions of the task-specific job characteristics, including
task identity, task significance, and skill variety. The extent of use of agile SDA practices impacted feedback
as well, although the path to job autonomy was insignificant. Job autonomy might not be salient to agile
teams because agile SDA practices reinforce the interdependence of team members’ work. For example,
agile practices such as pair programming and coding standards focus direct attention on individuals’
responsibility for adhering to team norms and agreed-on processes. Despite this non-finding, these results
confirm proponents’ assertion that using agile methods improves perceptions of job characteristics (McHugh
& Lang, 2011; Tessem & Maurer, 2007). Hence, this paper importantly demonstrates that software-
development practices such as agile methods relate to how ADT members perceive their jobs.

Moreover, our study suggests that sets of practices shape core job characteristics. We found that agile PM
and SDA practices interacted to positively influence job autonomy (Hypothesis 4a). The interaction effect
on job autonomy reflects that the ability to manage and change direction iteratively (as reflected in the agile
PM practices) is likely contingent on using complementary software-development approach practices. Agile
proponents argue that creating a full design up front is likely to waste resources because understanding of
the business problem changes over time. However, this approach can lead to large sections of code having
to be repeatedly refined and potentially added and removed. Without agile SDA practices such as unit
testing and automated builds, the impact of large-scale changes would impact a team’s ability to realize the
iterative development benefits. Thus, our findings support agile proponents’ long-argued assertion that agile
practices, when used together, produce an impact that is greater than the sum of their parts (e.g., Beck,
2000; Highsmith, 2002).

We found that the interaction of the agile PM and agile SDA constructs did not consistently affect perceived
job characteristics. Although the agile SDA and agile PM constructs had a direct effect on feedback, the
interaction effect was non-significant (Hypothesis 4b). This result could be because the feedback practices
in the two constructs are different. We mapped the agile PM practices to feedback through the JDP
constructs of establishing client relationships and opening feedback channels, while we mapped the agile
SDA practices through only opening feedback channels. ADT members may perceive feedback generated
by the agile PM practices such as the stand-up meeting and the retrospective as mainly human-generated
feedback. In contrast, they may perceive the feedback generated by the agile SDA practices such as
automated testing and continuous integration as machine-generated feedback. Although the interaction of
agile PM and agile SDA practices did not affect feedback, future research should explore whether the
difference in these practices affects other workplace outcomes, such as professional rewards, or more
frequently researched outcomes such as job satisfaction and ADT member turnover.

Our findings underscore that agile PM and SDA practices exert differential effects on how individuals
perceive their workplace. Turning to Hypothesis 5, we found a direct effect between the level of agile PM
practice use and job satisfaction. Agile PM practices focus on organizing to rapidly and repeatedly deliver

Journal of the Association for Information Systems 287

Volume 17 Issue 4

software. Because regular and repeated response to environmental cues is critical to assessing a team’s
success (Burke et al., 2006), using agile PM practices will likely lead team members to view their work as
successful and, therefore, satisfying. This finding is consistent with the prior literature that describes
coordination practices as impacting job satisfaction (e.g., McHugh & Lang, 2011). Conversely, our results
did not support Hypothesis 6 because the agile SDA practice use level did not affect perceptions of job
satisfaction directly. Agile method proponents have argued that some practices support using other
practices. Instead of having a direct effect, agile SDA practices might support a team’s ability to deliver
iteratively. If this were the case, then agile SDA practices would have an indirect effect on job satisfaction.

6.1 Tests for Mediation
Given our findings, we performed post-hoc analyses to explore whether our direct effects were partly (agile
PM) or fully (agile SDA) mediated by perceptions of job characteristics. Using the seemingly unrelated
regression (sureg) package in Stata 13, we tested for multiple mediation as Preacher and Hayes (2008)
recommend. We tested each indirect path effect individually and then pooled the agile PM effects and agile
SDA effects to test the total indirect effect of each construct. Because indirect effects are usually skewed
and have high kurtosis, the p-values to test significance are not robust. We used bootstrapping (5,000
replications) to determine significance. Table 6 shows the results. We found no mediation effect of the agile
PM construct and a small fully mediated effect (.091*) of the agile SDA construct. Therefore, the full effect
of the use of agile PM practices on job satisfaction was direct, while the full effect of the use of agile SDA
practices was fully mediated by the JCM constructs of job autonomy, task significance, and task identity.

Table 6. Multiple Mediation Effects

Agile PM -> job autonomy -> job satisfaction -.003
Agile PM -> feedback -> job satisfaction .000
Total agile PM mediation effect -.003
Agile SDA -> job autonomy -> job satisfaction .024*
Agile SDA -> feedback -> job satisfaction .000
Agile SDA -> task significance - > job
satisfaction .043*

Agile SDA -> task identity - > job satisfaction .034*
Agile SDA -> skill variety - > job satisfaction -.010
Total agile SDA mediation effect .091*
Note: *p<.05

One can possibly explain this difference in direct versus indirect effects for the agile PM and agile SDA
constructs by the fact that agile SDA practices are more individually task related, while agile PM practices
give team members a sense of control over a broad set of project characteristics. This distinction is important
because the JCM describes individuals’ control over their own individual tasks and context, while the agile
PM practices give individuals a voice in a broader team- and project-level context.

6.2 Implications for Theory and Future Research
By connecting agile development practices to perceived job characteristics and satisfaction, our results hold
the potential to inform future research. First, while research has investigated the impact of technology
characteristics on job characteristics (e.g., Lending & Chervany, 2002), our study is the first to examine a
specific IS development practice (e.g., using agile practices) as an antecedent to job characteristics. As
such, our results signal a new avenue for researchers seeking to develop a theory of how to manage the IT
workforce. Previous studies have often treated the job characteristics as exogenous and have generally
investigated IT contexts using the model that Hackman and Oldham (1980) describe (e.g., Ahuja et al.,
2007; Moore, 2000; Thatcher et al., 2002) or have used Hackman and Oldham’s model as a lens to
investigate changes in perceptions resulting from IT implementations (e.g., Morris & Venkatesh, 2010).
However, our study shows that IS-related organizational and process constructs can impact the formation
of the perceptions of job characteristics. Further research should explore the impact of other IS-related
constructs on the formation of JCM construct perceptions.

288 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Additionally, by distinguishing between agile PM and agile SDA practices and the differences in their effects,
we illustrate the importance of taking a more nuanced view of software-development practices. This more
nuanced view suggests that, rather than discussing “agile development methods” as a monolithic concept,
future research needs to carefully consider the foci and structure offered by the method or practice
relationship with job satisfaction and other perceptions. For instance, our results suggest that some agile
practices affect the individual directly and that others affect the team as a whole. Additionally, our results
hint at a more complex structure of agile practices’ influencing workplace outcomes, where some practices
support others. Agile practitioners have argued for the compounding effect of using multiple agile practices
and a structure of reinforcing practice use that enables other practices (Beck, 2000). Research has also
identified similar non-linear effects of using multiple practices in the human resource-management context
(Ferratt, Agarwal, Brown, & Moore, 2005). Therefore, developing an understanding of whether a
nomological network of constructs is at work in the context of agile methods use would be a significant
contribution. Such research is important because it could enable managers to properly match agile methods
to projects such that they more positively affect both product quality and employee satisfaction.

Furthermore, our findings lay a foundation for research to explore agile PM and agile SDA practices as they
relate to relevant job perceptions and behaviors such as perceived work overload, burnout, empowerment,
performance, and turnover. Such research should consider not only the organizational impact but also the
impact of agile practices versus traditional practices over time (e.g., the life of a project or a professional’s
career). For example, as an ADT member gains experience across various projects and varied sets of agile
practices, that ADT member will likely develop a richer understanding of the impact of agile practice use.
Because most prior work treats agile development as a monolithic concept, research has relatively
unexamined agile practice use perceptions, project success results, resulting job characteristics changes,
and the impact of these factors on ADT members over time. Further, future research might explore the
relationship between agile project success and job satisfaction because the effects of team performance
and individual job satisfaction are not independent (e.g., Cox, 2003).

Beyond agile methods, researchers should evaluate the effects of project success on ADT members’ beliefs
about the implications of ADT practices. For example, agile methods open feedback channels through
acceptance tests that client representatives or product owners write5 (Matook & Maruping, 2014). People in
this role need to approve or disapprove the agile development team’s implementation of specific features,
and the team receives feedback on how well its software is meeting client specifications. Yet, while research
has found that such changes have positive effects on perceived job characteristics, we know little about
how such changes affect ADT members’ global perceptions of their jobs, their projects, or the broader
employing organization. It is intuitive that ADT members who perceive that agile practices use is related to
higher project success would believe that using those practices is a positive event. Conversely, if ADT
members believe their projects are not successful, they may find using agile practices as exhausting with a
potential reduction in job satisfaction. Research should explore the relationship between agile PM and agile
SDA practices and ADT employee perceptions of project success and job- and organizational-related
outcomes such as burnout or commitment to the organization.

Although we conceptualized this study at the individual level, there are rich opportunities for multi-level
research on software development and agile practices. Because of the highly interdependent nature of
team-based software development work, research should study our theory should at the team level or with
a multi-level approach across organizations. Such research could yield additional insight on the within-team
and between-team differences in job satisfaction by including multiple respondents from the same team.
For example, examining the interplay among industry, agile practices, and leadership practices could yield
further insight into ADT members’ job satisfaction and other workplace perceptions.

Finally, we acknowledge that we need to move beyond the job characteristics model to fully understand the
effect of agile PM and agile SDA practices on agile development team members (Behson, 2012). Agile teams
have a great deal of input into the demands of their jobs (e.g., iterative planning, retrospectives). As such,
Karasek’s (1979) job strain model, which argues that a balance between authority and responsibility leads to
an employee’s being free to take action, might provide a new lens to investigate the impact of agile methods
on team performance and job satisfaction. Given that ADTs are intentionally self-directing and often perform
highly, the job-strain model might provide a lens to conceptualize a novel theoretical approach to job
satisfaction in ADT. In addition, the JCM is only one small component of the research on job design and its
outcomes (e.g., Grant, Fried, & Juillerat, 2011; Joseph et al., 2007). Future research on agile methods could

5 Thanks to an anonymous reviewer for this suggestion.

Journal of the Association for Information Systems 289

Volume 17 Issue 4

investigate the impacts of the agile PM and agile SDA constructs on several additional outcomes such as
learning, performance, and stress and interactions with other constructs such as interdependence. We still
have much to learn regarding the impact of agile methods as catalysts of job redesign.

6.3 Implications for Practice
Our study has several implications for practice. First, it provides support for a key argument made by agile
proponents (Beck, 2000) in that it shows that a broad approach of adopting both management- and task-
related agile practices leads to non-linear impacts on the organization. This non-linear effect suggests that
management should offer incentives and encourage teams to move beyond exploratory agile
implementations and to implement more agile software-development practices. Even though industry
surveys have found that agile practice adoption is widespread, many if not most such projects use relatively
few agile practices (Conboy & Fitzgerald, 2010).

However, our research also shows that more does not necessarily mean better at least when it comes to
the impact of agile PM and agile SDA practices on job satisfaction. Our results suggest that the impact of
using agile methods on job satisfaction is the highest when one uses both agile PM and agile SDA practices.
The direct impact of agile PM practices on job performance is notable but is complemented by the direct
impact of both agile PM and agile SDA use constructs on job perception constructs. The agile PM constructs
primarily impact the management side of the JCM (job autonomy and feedback), while the agile SDA
constructs primarily impact the task side of the JCM (skill variety, task identity, and task significance). For
managers, this finding suggests that implementing only one type of agile practice (SDA or PM) would have
less impact on job satisfaction than implementing both types of practices. Therefore, management should
be aware of the synergies realized from supporting and encouraging agile SDA and agile PM practices,
specifically on perceptions of job autonomy, which is a strong predictor of job satisfaction.

Finally, our results should encourage agile practitioners to speak of agile development as more than a
software-development method and instead as a way of organizing and designing work in a manner that can
increase job satisfaction. Because satisfaction is a predictor of turnover, which reduces team performance
(Argote, Insko, Yovetich, & Romero, 1995), management should attempt to increase job satisfaction. Agile
practitioners can argue that using agile practices redesigns the work of software-development teams in a
way that increases team members’ positive perceptions of job characteristics. By underscoring the
distinction among specific agile PM and agile SDA practices and their influence on job characteristics, our
work affords opportunities for practitioners to justify including or excluding specific agile practices in how
they organize new projects or address deficiencies in existing projects.

7 Limitations
This study has several limitations. First, with regard to the generalizability of our findings, we drew the
sample from IS professionals working in the United States. Future research might consider cultural,
geographical, and other differences to extend this study’s generalizability across contexts. Additionally, we
did not explore outsourcing, offshoring, and job status (i.e., contract labor vs. permanent employee) of ADT
members. Second, the data were self-reported and the data-collection method was cross-sectional.
Appendix B delineates two tests that suggest common method variance did not bias our results. Future
research should gather longitudinal data to more rigorously test our theory.

Finally, although research has shown workplace characteristics to be an important factor affecting job
satisfaction (McKnight, Phillips, & Hardgrave, 2009), we focused on the impact of agile development
methods on job characteristics perceptions. For this reason, and because our survey instrument was already
extremely long, we did not include workplace characteristics in our model. However, one could theorize both
agile PM and agile SDA practices to impact workplace characteristics such as information sharing and trust
in senior management (McKnight et al., 2009). This area is a potential opportunity for future research.

8 Conclusion
We developed a model of agile development practices’ impact on ADT members’ job satisfaction. We found
mixed support for our hypotheses for the effect of agile practices use on job satisfaction and for the impact
of agile practices use on job characteristics perceptions. This study demonstrates that IS-related
organizational and process constructs relate to job characteristics perceptions. The agile SDA constructs
are primarily related to the task side of job characteristics, while the agile PM constructs are primarily related

290 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

to the management side of job characteristics. Astute managers should support and encourage both agile
SDA and agile PM practices to maximize ADT members’ job satisfaction.

Our model contributes to the agile software development and IT workforce literature by providing a
theoretical lens that illustrates the pathways through which the use of agile methods impact job satisfaction,
and it provides evidence of how Hackman and Oldham’s (1980) job-design principles affect the perceptions
of job characteristics.

Journal of the Association for Information Systems 291

Volume 17 Issue 4

References
Ahuja, M. K., Chudoba, K. M., Kacmar, C. J., McKnight, D. H., & George, J. F. (2007). IT road warriors:

Balancing work-family conflict, job autonomy, and work overload to mitigate turnover intentions. MIS
Quarterly, 31(1), 1-17.

Anderson, D. J. (2004). Agile management for software engineering: Applying the theory of constraints for
business results. New York: Prentice Hall.

Ang, S., & Slaughter, S. A. (2001). Work outcomes and job design for contract versus permanent information
systems professionals on software development teams. MIS Quarterly, 25(3), 321–350.

Anderson, D. J. (2004). Agile management for software engineering: Applying the theory of constraints for
business results. New York: Prentice Hall.

Ang, S., & Slaughter, S. A. (2001). Work outcomes and job design for contract versus permanent information
systems professionals on software development teams. MIS Quarterly, 25(3), 321-350.

Angst, C. M., & Agarwal, R. (2009). Adoption of electronic health records in the presence of privacy
concerns: the elaboration likelihood model and individual persuasion. MIS Quarterly, 33(2), 339-370.

Argote, L., Insko, C. A., Yovetich, N., & Romero, A. A. (1995). Group learning curves: The effects of turnover
and task complexity on group performance. Journal of Applied Social Psychology, 25(6), 512-529.

Auer, K., & Miller, R. (2002). Extreme programming applied. New York: Addison-Wesley.

Ayyagari, R., Grover, V., & Purvis, R. (2011). Technostress: Technological antecedents and implications.
MIS Quarterly, 35(4), 831-858.

Balijepally, V., Mahapatra, R. K., Nerur, S. P., & Price, K. (2009). Are two heads better than one for software
development? The productivity paradox of pair programming. Management Information Systems
Quarterly, 33(1), 91-118,

Beck. (2003). Test-driven development: By example. New York: Addison-Wesley.

Beck, K. (2000). Extreme programming explained: Embrace change. New York: Addison-Wesley.

Behson, S. J. (2012). Using relative weights to reanalyze research on the job characteristics model. Journal
of Organizational Psychology, 12(2), 71-81.

Benlian, A., Titah, R., & Hess, T. (2012). Differential effects of provider recommendations and consumer
reviews in E-commerce transactions: an experimental study. Journal of Management Information
Systems, 29(1), 237-272.

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Boston, MA:
Addison Wesley.

Boehm, B. W. (1984). Software engineering economics. IEEE Transactions on Software Engineering,
10(1), 4-21.

Burke, C., Stagl, K., Salas, E., Pierce, L., & Kendall, D. (2006). Understanding team adaptation: A
conceptual analysis and model. Journal of Applied Psychology, 91(6), 1189-1207.

Burke, R. J., & Greenglass, E. (1995). A longitudinal study of psychological burnout in teachers. Human
Relations, 48(2), 187-202.

Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS Quarterly,
22(1), vii-xvi.

Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling
approach for measuring interaction effects: Results from a Monte Carlo simulation study and an
electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189-217.

Chin, W. W., Thatcher, J. B., & Wright, R. T. (2012). Assessing common method bias: Problems with the
ULMC technique. MIS Quarterly, 36(3), 1003-1019.

Cockburn, A. (2001). Agile software development. Boston, MA: Addison-Wesley.

292 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Cockburn, & Williams, L. (2001). The costs and benefits of pair programming. In G. Succi & M. Marchesi
(Eds.), Extreme programming examined (pp. 223-248). New York: Addison-Wesley.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. San Diego, CA: Psychology Press.

Conboy, K., & Fitzgerald, B. (2010). Method and developer characteristics for effective agile method
tailoring: A study of XP expert opinion. ACM Transactions on Software Engineering and
Methodology, 20(1).

Cordery, J. L., Morrison, D., Wright, B. M., & Wall, T. D. (2010). The impact of autonomy and task
uncertainty on team performance: A longitudinal field study. Journal of Organizational Behavior,
31(2‐3), 240-258.

Cox, K. B. (2003). The effects of intrapersonal, intragroup, and intergroup conflict on team performance
effectiveness and work satisfaction. Nursing Administration Quarterly, 27(2), 153-163.

Derby, E., Larsen, D., & Schwaber, K. (2006). Agile retrospectives: Making good teams great. Raleigh, NC:
Pragmatic Bookshelf.

Deutsch, M. (1960). The effect of motivational orientation upon trust and suspicion. Human Relations,
13, 123-139.

Dinger, M., Thatcher, J. B., Treadway, D., Stepina, L., & Breland, J. (2015). Does professionalism matter in
the IT workforce? An empirical examination of IT professionals. Journal of the Association for
Information Systems, 16(4), 281-313.

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous integration: Improving software quality and
reducing risk. New York: Addison-Wesley.

Ferratt, T. W., Agarwal, R., Brown, C. V., & Moore, J. E. (2005). IT human resource management
configurations and IT turnover: Theoretical synthesis and empirical analysis. Information Systems
Research, 16(3), 237-255.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and
measurement error. Journal of Marketing Research, 18(1), 39-50.

Fowler, M. (1999). Refactoring. Improving the design of exiting code. Reading, MA: Addison Wesley Longman.

Fowler, M. (2006). Continuous integration. Retrieved from http://www.martinfowler.com/articles/continuous
integration.html

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8), 28-35.

Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and
annotated example. Communications of the Association for Information Systems, 16, 99-109.

Grant, A. M., Fried, Y., & Juillerat, T. (2011). Work matters: Job design in classic and contemporary
perspectives. In S. Zedeck (Ed.), APA handbook of industrial and organizational psychology.
Washington, DC: American Psychological Association.

Griffeth, R. W., Hom, P. W., & Gaertner, S. (2000). A meta-analysis of antecedents and correlates of
employee turnover: Update, moderator tests, and research implications for the next millennium.
Journal of Management, 26(3), 463-488.

Hackman, J., & Oldham, G. (1980). Work redesign (E. Schein & R. Bekhard, Eds.). New York: Addison Wesley.

Hackman, J. R., Brousseau, K. R., & Weiss, J. A. (1976). The interaction of task design and group
performance strategies in determining group effectiveness. Organizational Behavior and Human
Performance, 16(2), 350-365.

Hair, J., Hult, G. T., Ringle, C., & Sarstedt, M. (2013). A primer on partial least squares structural equation
modeling (PLS-SEM). Thousand Oaks, CA: Sage.

Harris, M., Collins, R., & Hevner, A. (2009). Control of flexible software development under uncertainty.
Information Systems Research, 20(3), 400-419.

Journal of the Association for Information Systems 293

Volume 17 Issue 4

Harrison, D. A., Newman, D. A., & Roth, P. L. (2006). How important are job attitudes? Meta-analytic
comparisons of integrative behavioral outcomes and time sequences. Academy of Management
Journal, 49(2), 305-325.

Highsmith, J. (2002). Agile software development ecosystems. Boston: Addison Wesley.

James, J. (2010). IT gender gap: Where are the female programmers? TechRepublic. Retrieved from
http://www.techrepublic.com/blog/software-engineer/it-gender-gap-where-are-the-female-
programmers/

Joseph, D., Ng, K.-Y., Koh, C., & Ang, S. (2007). Turnover of information technology professionals: A
narrative review, meta-analytic structural equation modeling, and model development. MIS Quarterly,
31(3), 547-577.

Karasek R. A., Jr. (1979). Job demands, job decision latitude, and mental strain: Implications for job
redesign. Administrative Science Quarterly, 24(2), 285-308.

Küster, J., Gschwind, T., & Zimmermann, O. (2009). Incremental development of model transformation
chains using automated testing. In A. Schurr & B. Selic (Eds.), MODELS 2009 (vol. 5795, pp. 733-
747). Heidelberg: Springer.

Layman, L., Williams, L., & Cunningham, L. (2004). Exploring extreme programming in context: An industrial
case study (pp. 32-41). Paper presented at the Agile Development Conference.

Lending, D., & Chervany, N. L. (2002). Case tool use and job design: A restrictiveness/flexibility explanation.
Journal of Computer Information Systems, 43(1), 81-90.

Lewicki, R. J., & Bunker, B. B. (1995). Trust in relationships: A model of development and decline. In B. B.
Bunker & J. Z. Rubin (Eds.), Conflict, cooperation, and justice: Essays inspired by the work of Morton
Deutsch. San Francisco: Jossey-Bass.

Lewis, J. D., & Weigert, A. (1985). Trust as a social reality. Social Forces, 63(4), 967-985.

Liang, H., Saraf, N., Hu, Q., & Xue, Y. (2007). Assimilation of enterprise systems: The effect of institutional
pressures and the mediating role of top management. MIS Quarterly, 31(1), 59-87.

Mannaro, K., Melis, M., & Marchesi, M. (2004). Empirical analysis on the satisfaction of IT employees
comparing XP practices with other software development methodologies. In Extreme programming
and agile processes in software engineering (pp. 166-174). New York: Springer.

Mann, C., & Maurer, F. (2005). A case study on the impact of scrum on overtime and customer satisfaction.
In Proceedings of the Agile Conference (pp. 70-79).

Maruping, L., Venkatesh, V., & Agarwal, R. (2009a). A control theory perspective on agile methodology use
and changing user requirements. Information Systems Research, 20(3), 377-399.

Maruping, L., Zhang, X., & Venkatesh, V. (2009b). Role of collective ownership and coding standards
in coordinating expertise in software project teams. European Journal of Information Systems,
18(4), 355–371.

Mathieson, K., Peacock, E., & Chin, W. W. (2001). Extending the technology acceptance model: The
influence of perceived user resources. ACM SigMIS Database, 32(3), 86-112.

Matook, S., & Maruping, L. M. (2014). A competency model for customer representatives in Agile software
development projects. MIS Quarterly Executive, 13(2), 77-95.

McHugh, C., K., & Lang, M. (2011). Using agile practices to influence motivation within it project teams.
Scandinavian Journal of Information Systems, 23(2), 85-110.

McHugh, O., Conboy, K., & Lang, M. (2010). Motivating Agile teams: A case study of teams in Ireland and
Sweden. Presented at the 5th pre-ICIS International Research Workshop on Information Technology
Project Management.

McHugh, O., Conboy, K., & Lang, M. (2012). Agile practices: The impact on trust in software project teams.
Software, IEEE, 29(3), 71-76.

McKnight, D. H., Phillips, B., & Hardgrave, B. C. (2009). Which reduces IT turnover intention the most:
Workplace characteristics or job characteristics? Information & Management, 46(3), 167-174.

294 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Melnik, G., & Maurer, F. (2004). Direct verbal communication as a catalyst of agile knowledge sharing. In
Proceedings of the IEE Agile Development Conference (pp. 21-31).

Melnik, G., & Maurer, F. (2006). Comparative analysis of job satisfaction in agile and non-agile software
development teams. In Extreme programming and agile processes in software engineering (pp. 32–
42). New York: Springer.

Moe, N., Dingsoyr, T., & Dyba, T. (2010). A teamwork model for understanding an agile team: A case study
of a Scrum project. Information and Software Technology, 52(5), 480-491.

Moore, J. E. (2000). One road to turnover: An examination of work exhaustion in technology professionals.
Management Information Systems Quarterly, 24(1), 141-168.

Morris, M. G., & Venkatesh, V. (2010). Job characteristics and job satisfaction: Understanding the role of
enterprise resource planning system implementation. MIS Quarterly, 34(1), 143-161.

Nahm, A. Y., Rao, S. S., Solis-Galvan, L. E., & Ragu-Nathan, T. S. (2002). The Q-sort method: Assessing
reliability and construct validity of questionnaire items at a pre-testing stage. Journal of Modern
Applied Statistical Methods, 1(1), 114-125.

Naylor, J. C., Pritchard, R. D., & Ilgen, D. R. (1980). A theory of behavior in organizations. New York:
Academic Press.

Nerur, S., Mahapatra, R. K., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies.
Communications of the ACM, 48(5), 72-78.

Nevo, S., & Chengalur-Smith, I. (2011). Enhancing the performance of software development virtual teams
through the use of aagile methods: A pilot study. In Proceedings of the Hawaii International
Conference on System Sciences (pp. 1-10).

Nunnally, J. C., Bernstein, I. H., & Berge, J. M. (1967). Psychometric theory (Vol. 226). New York:
McGraw-Hill.

Palmer, S. P., & Felsing, J. M. (2002). A practical guide to feature driven development. Upper Saddle River,
NJ: Prentice Hall.

Pavlou, P. A., Liang, H., & Xue, Y. (2007). Understanding and mitigating uncertainty in online
exchange relationships: A principal-agent perspective. Management Information Systems
Quarterly, 31(1), 105–136.

Pedrycz, W., Russo, B., & Succi, G. (2011). A model of job satisfaction for collaborative development
processes. Journal of Systems and Software, 84(5), 739-752.

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research.
MIS Quarterly, 31(4), 623-656.

Ply, J. K., Moore, J. E., Williams, C. K., & Thatcher, J. B. (2012). IS employee attitudes and perceptions at
varying levels of software process maturity. MIS Quarterly, 36(2), 601-624.

Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in
behavioral research: A critical review of the literature and recommended remedies. Journal of Applied
Psychology, 88(5), 879-903.

Polites, G. L., Roberts, N., & Thatcher, J. (2012). Conceptualizing models using multidimensional
constructs: A review and guidelines for their use. European Journal of Information Systems,
21(1), 22-48.

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing
indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891.

Qureshi, I., & Compeau, D. (2009). Assessing between-group differences in information systems research:
A comparison of covariance-and component-based SEM. MIS Quarterly, 197-214.

Ringle, C. M., Wende, S., & Will, A. (2005). Smart PLS 2.0. University of Hamburg. Retrieved from
http://www. smartpls.de

Rutner, P. S., Hardgrave, B. C., & McKnight, D. H. (2008). Emotional dissonance and the information
technology professional. MIS Quarterly, 32(3), 635-652.

Journal of the Association for Information Systems 295

Volume 17 Issue 4

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper Saddle River, NJ:
Prentice Hall.

Siponen, M., & Vance, A. (2010). Neutralization: New insights into the problem of employee information
systems security policy violations. MIS Quarterly, 34(3), 487-502.

Straub, D., Boudreau, M.-C., & Gefen, D. (2004). Validation guidelines for IS positivist research.
Communications of the Association for Information Systems, 13, 380-427.

Sutherland, J. (2001). Agile can scale: Inventing and reinventing scrum in five companies. Cutter IT Journal,
14(12), 5-11.

Tessem, B., & Maurer, F. (2007). Job satisfaction and motivation in a large agile team. In G. Concas, E.
Damiani, M. Scotto, & G. Succi (Eds.), XP 2007 (vol. 4536, pp. 54-61). New York: Springer.

Thatcher, J. B., Liu, Y., Stepina, L. P., Goodman, J. M., & Treadway, D. C. (2006). IT worker turnover: An
empirical examination of intrinsic motivation. ACM SIGMIS Database, 37(2-3), 133-146.

Thatcher, J. B., Stepina, L. P., & Boyle, R. J. (2002). Turnover of information technology workers: Examining
empirically the influence of attitudes, job characteristics, and external markets. Journal of
Management Information Systems, 19(3), 231-261.

Tripp, J. F., & Armstrong, D. J. (2014). Exploring the relationship between organizational adoption motives
and the tailoring of agile methods. In Proceedings of the 47th Hawaii International Conference on
System Sciences (pp. 4799-4806).

VersionOne. (2011). 6th annual state of agile development survey. Retrieved from www.versionone.com

von Hippel, C., Kalokerinos, E. K., & Henry, J. D. (2013). Stereotype threat among older employees:
Relationship with job attitudes and turnover intentions. Psychology and Aging, 28(1), 17-27.

Vroom, V. H. (1964). Work and motivation. Oxford, England: Wiley.

Weiss, H. M., & Cropanzano, R. (1996). Affective events theory: A theoretical discussion of the structure,
causes and consequences of affective experiences at work. In B. M. Staw & L. L. Cummings (Eds.),
Research in organizational behavior: An annual series of analytical essays and critical reviews (vol.
18, pp. 1-75). New York: Elsevier.

West, D., Grant, T., Gerush, M., & D’Silva, D. (2010). Agile development: Mainstream adoption has changed
agility. Forrester Research.

Williams, L. J., Edwards, J. R., & Vandenberg, R. J. (2003). Recent advances in causal modeling methods
for organizational and management research. Journal of Management, 29(6), 903-936.

Wright, R. T., Campbell, D. E., Thatcher, J. B., & Roberts, N. (2012). Operationalizing multidimensional
constructs in structural equation modeling: Recommendations for IS research. Communications of
the Association for Information Systems, 30(1), 367-412.

296 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Appendix A: Instrument
For the measurement items, we adapted some scales from previous research: we measured job satisfaction
and job characteristics using scales slightly modified from Hackman and Oldham’s (1980) scales (Morris &
Venkatesh, 2010). To measure agile method use, we developed a new set of items. ADT members
sometimes use similar terms to describe their practices even if those practices are not executed in the same
manner. As such, we developed a scale that reflected practices in a manner consistent with the agile
literature (e.g., Beck, 2000; Schwaber & Beedle, 2002). To develop this scale, one of the authors used agile
development publications and the input of an external agile researcher and an agile practitioner to develop
an initial set of items for each of the 10 agile practices of interest. After they developed these items, we
followed the guidelines for applying a Q-sort (Nahm, Rao, Solis-Galvan, & Ragu-Nathan, 2002). We used
two additional agile practitioners to perform a sorting exercise. Initial agreement on the scales was
approximately 60 percent. We discussed the items that did not perform with the practitioners who did the
sort. Based on this discussion, we modified or replaced the items, and three additional agile team members
performed a second round of sorting. The Cohen’s kappa for this sorting exercise was more than 85 percent,
which indicates excellent agreement (Nahm et al., 2002). We used these items for the study.

Because research has shown job satisfaction to be one of the best predictors of turnover intention (Griffeth,
Hom, & Gaertner, 2000), we examined several of the control variables that IT turnover studies have often
used and chose age and organizational tenure (Ahuja et al., 2007; Joseph et al., 2007; Moore, 2000),
negative affectivity (Moore, 2000) and gender and education (Joseph et al., 2007). Studies on job attitudes
in the psychology literature have also used gender, tenure, and age as control variables (von Hippel,
Kalokerinos, & Henry, 2013). Additionally, we also included total work experience as a control variable to
account for the possibility that the culmination of a developer’s total work experience might impact their job
satisfaction.

For the sections of the survey that presented items relating to the JCM constructs and job satisfaction, the
respondents were prompted with the statement: “For the following questions, please indicate to what
extent YOU AGREE with the statements as they relate to your CURRENT job.”. Because we sought to
obtain feedback from development team members who used both agile and non-agile methods, we did not
use the term “agile development” in the survey until after the respondents answered our questions regarding
agile method use. Instead, we wrote the items in a manner that agile and non-agile team members could
interpret, and we presented the respondent with the following prompt: “For the following questions, we would
like you to think about THE WAY YOUR TEAM WORKS. When you see the term “work cycle”, you should
think about what your team uses as its shortest standard work cycle [we had defined this term previously]
**If you see a specific term (such as "release"), please think about THAT term.”

Table A1. Survey Instrument

Extent of agile practice use constructs
Seven-point Likert scale (“strongly disagree” to “could agree or disagree” to and “strongly agree”) and “don’t know” as
an eighth option.

Construct Indicator Item text

1. Burndown

BD1 Our team utilizes visual indicators (charts, graphs, etc.) of how well we are
progressing DURING a work cycle.

BD2 We use visual tools that allow team members to easily tell if the work is
being completed on schedule.

BD3 We plot our work completed against work planned on a chart.

2. Iterative delivery

ID1 At the beginning of each work cycle, the team and business owners agree
on what will be delivered during the work cycle.

ID2 The team gives input as to how much work can be completed in a work
cycle.

ID3 The team estimates the amount of work each feature will require to be
completed.

ID4 Our team lets business people make business decisions about releases, and
technical people make technical decisions about releases.

3. Stand-up SU1 The team has a short meeting every day to discuss what is going on with the
project.

Journal of the Association for Information Systems 297

Volume 17 Issue 4

Table A1. Survey Instrument

SU2 Each day, all team members share with the team what they are working on.
SU3 The team discusses issues together daily.

4. Retrospective

RE1 On a regular basis, the team reflects on previous work and looks for ways to
improve team performance.

RE2 At the end of each work cycle, the team asks itself "what went well" during
the last work cycle.

RE3 At the end of each work cycle, the team asks itself "what could be improved"
during the next cycle.

5. Unit testing

UT1 We have a separate set of "test" code that is written specifically to test the
"real" code.

UT2 Every programmer is responsible for writing unit tests for the code he or she
writes.

UT3 Programmers are responsible to personally run a set of unit tests until they
all run successfully before "checking in" changes.

6. Continuous integration

CI1 Members of the team integrate code changes as soon as possible.

CI2 The team has a process that automatically rebuilds the software several
times a day.

CI3 The team is automatically notified of any issues related to the automated
compiling, deployment or testing of code

7. Automated build

AB1 The team uses a script or other code to automatically compile the code.

AB2 The team uses a script or other code to automatically build the software
package.

AB3 The team uses a script or other code to generate release notes or other
documentation.

8. Coding standards

CS1 The naming and structure of our code is consistent.
CS2 Our team uses standards for consistent code formatting.

CS3 It is important to the team's success that all of the code be formatted
consistently.

9. Refactoring

RF1 Whenever we see the need, we improve the design of the code we have
written previously.

RF2 Every member of the team attempts to improve the structure of the code
when making a change.

RF3 If we find code that is not used, we remove it.

10. Pair programming
PP1 When new software is being developed, two programmers concentrate on

the code being written.
PP2 We develop our code using pair programming.
PP3 Our code is created by two people working together at a single computer.

Job characteristic model constructs
Seven-point Likert scale (“strongly disagree” to “strongly agree”).

Construct Indicator Item text

11. Feedback
FB1 Just doing the work required by the job provides many chances for me to

figure out how well I am doing.
FB2 After I finish a task, I know whether I performed well.
FB3 The job itself provides you with information about your work performance.

12. Job autonomy

JA1 Your job gives you considerable opportunity for independence and freedom
in how you do the work.

JA2 Your job permits you to decide on your own how to go about doing the work.

JA3 Your job gives you a chance to use your personal initiative and judgment in
carrying out the work.

298 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Table A1. Survey Instrument

JA4 You have a great deal of autonomy in your job.

13. Skill variety

SV1 The job requires you to use a number of complex or high-level skills.

SV2 The job requires you to do many different things at work, using a variety of
your skills and talents.

SV3 There is a great deal of variety in the work I perform.

14. Task identity

TI1 The job is arranged so that I can do an entire piece of work from beginning
to end.

TI2 The job provides me the chance to completely finish the pieces of work I
begin.

TI3 My job involves doing “whole” and identifiable pieces of work.

15. Task significance

TS1 The job itself is very significant and important in the broader scheme of
things.

TS2 The results of your work are likely to significantly affect the lives or well-
being of other people.

TS3 My job is very significant and important.
Job satisfaction
Seven-point Likert scale (“strongly disagree” to “strongly agree”).

Construct Indicator Item text

16. Job satisfaction
JS1 Overall, I am satisfied with my job.
JS2 I would prefer another, more ideal job.
JS3 I am satisfied with the important aspects of my job.

Negative affectivity
Five-point Likert scale (“not at all”, “a little”, “moderately”, quite a bit”, “extremely”).

Construct Indicator Item text

17. Negative affectivity

NA1 Right now, to what extent do you feel afraid?
NA2 Right now, to what extent do you feel distressed?
NA3 Right now, to what extent do you feel nervous?
NA4 Right now, to what extent do you feel upset?
NA5 Right now, to what extent do you feel ashamed?
NA6 Right now, to what extent do you feel irritable?

Table A2. Respondent Breakdown by Team Role

Role Number of
respondents Cumulative %

Team leader/project manager 88 31.0%

Architect 15 37.0%

Developer 133 89.9%

QA testing 18 96.8%

Business analyst 7 99.6%

Other 3 100.0%

Journal of the Association for Information Systems 299

Volume 17 Issue 4

Table A3. Summary of Agile Practice Use (VersionOne, 2011)

Rank Practice % of respondents
1 Daily stand-up 79%
2 Iteration planning* 74%
3 Unit testing 69%
4 Retrospectives 66%
5 Burndown 66%
6 Release planning* 65%
7 Velocity* 55%
8 Automated builds 55%
9 Continuous integration 55%

10 Coding standards 51%
11 Refactoring 48%
12 Test-driven development (TDD) 37%
13 Open work area 37%
14 Story mapping 34%
15 Digital taskboard 33%
16 Pair programming 29%
17 Collective code ownership 29%
18 Automated acceptance testing 25%
19 On-site customer 24%
20 Kanban 24%

21
Release-per-feature/continuous

deployment
23%

22 Analog taskboard 23%
23 Agile games 16%
24 Cycle time (lean related) 11%
25 Behavior-driven development (BDD) 9%

Note: * practices merged into the iterative delivery concept
(Shaded rows are not included in our analysis)

300 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Appendix B: Model Validation, Common Method Bias Testing, and
Mediation Testing

To test convergent validity and reliability for the measurement model, we followed the recommended PLS
validation procedures that Gefen and Straub (2005) outline. To test convergent validity, we performed a
bootstrap with 200 resamples and then examined the outer model loadings. Convergent validity is
demonstrated when all indicators load significantly on their respective latent construct. In our case, all
indicators exhibited loadings that were significant at the .001 level (see Table B1), denoting strong
convergent validity.

Table B1. T-statistics for Convergent Validity

Construct
Sub-construct

(2nd-order weights,
T-statistic)

Indicator Outer loading T-statistic

Agile PM
practices

Burndown BD1 burndown .936 92.12***

(.323, 17.882***)
BD2 burndown .943 112.70***
BD3 burndown .863 35.79***

Iterative delivery
(.330, 14.655***)

IP1 iterative delivery .834 28.70***
IP2 iterative delivery .815 30.11***
IP3 iterative delivery .786 25.37***
IP4 iterative delivery .772 19.42***

Retrospectives
(.290, 14.584***)

RE1 retrospectives .845 27.29***
RE2 retrospectives .919 64.47***
RE3 retrospectives .924 80.82***

Daily stand-up
(.306, 14.469***)

SU1 daily stand-up .902 54.42***
SU2 daily stand-up .924 63.24***
SU3 daily stand-up .924 78.45***

Agile SDA
practices

Automated build
(.178, 9.315***)

AB1 automated build .812 33.66***
AB2 automated build .868 33.35***
AB3 automated build .889 43.68***

Continuous integration
(.230, 12.038***)

CI1 cont. integration .813 27.90***
CI2 cont. integration .882 42.44***
CI3 cont. integration .873 44.92***

Coding standards
(.253, 12.603***)

CS1 coding standards .893 51.53***
CS2 coding standards .923 67.47***
CS3 coding standards .876 37.01***

Pair programming
(.210, 9.808***)

PP1 pair programming .888 50.42***
PP2 pair programming .907 70.45***
PP3 pair programming .918 66.49***

Refactoring
(.245, 14.198***)

RF1 refactoring .804 21.82***
RF2 refactoring .902 60.78***
RF3 refactoring .878 45.39***

Unit testing
(.206, 10.839***)

UT1 unit testing .719 13.14***
UT2 unit testing .836 24.79***
UT3 unit testing .844 31.15***

Feedback N/A
FB1 feedback .862 38.20***
FB2 feedback .880 39.36***

Journal of the Association for Information Systems 301

Volume 17 Issue 4

Table B1. T-statistics for Convergent Validity

Construct
Sub-construct

(2nd-order weights,
T-statistic)

Indicator Outer loading T-statistic

FB3 feedback .900 55.03***

Job autonomy N/A

JA1 job autonomy .875 44.03***
JA2 job autonomy .847 34.66***
JA3 job autonomy .810 25.27***
JA4 job autonomy .802 22.29***

Skill variety N/A
SV1 skill variety .824 18.44***
SV2 skill variety .831 19.84***
SV3 skill variety .871 37.73***

Task identity N/A
TI1 task identity .905 58.04***
TI2 task identity .928 98.22***
TI3 task identity .891 48.15***

Task
significance N/A

TS1 task significance .817 18.37***
TS2 task significance .833 31.90***
TS3 task significance .920 86.62***

Negative
affectivity N/A

NA1 negative affect .769 16.22***
NA2 negative affect .785 21.16***
NA3 negative affect .828 28.61***
NA4 negative affect .789 18.34***
NA5 negative affect .714 15.12***
NA6 negative affect .725 14.12***

Job satisfaction N/A
JS1 job satisfaction .897 43.81***
JS2 job satisfaction .911 59.34***
JS3 job satisfaction .903 51.53***

Note: *** p < .001

Another common test of convergent validity is to determine whether the average variance extracted (AVE)
is at least .50 (Fornell & Larcker, 1981). In our model, the smallest AVE was .592. Both the Gefen and
Straub (2005) and the Fornell and Larcker (1981) tests indicate a high degree of convergent validity.

In addition, to test the reliability of measurement items, we used SmartPLS to compute the Cronbach’s α
and a composite reliability score (Fornell & Larcker, 1981). All constructs exhibited a reliability score well
above the threshold recommended for exploratory research (.60) (Nunnally, Bernstein, & Berge, 1967).
Table B2 summarizes these results.

To evaluate discriminant validity, we performed two tests. First, we examined the cross-loadings of
measurement items on their constructs. In this test, discriminant validity is demonstrated when an item loads
more highly on its intended construct than on any other construct (Hair et al., 2013). An additional test
suggests that the difference in loadings should exceed .10 (Gefen & Straub, 2005). In our case, all of our
items passed both of these standard tests (see Table B3).

A third test of discriminant validity is to compare the AVE score for each construct. In the AVE test of
discriminant validity, the square root of a given construct’s AVE must be larger than the correlation of the
construct with any construct in the model (Chin, 1998). All of our constructs passed this test, which indicates
strong discriminant validity. Table B4 presents the correlations and square roots of the AVE.

Finally, to assess our aggregate second-order construct, we followed guidelines that Polites et al. (2012)
and (Wright, Campbell, Thatcher, & Roberts, 2012) offer when evaluating the formative second-order agile
PM practice and agile SDA practice factors. At the first-order level, Tables B1, B2, and B3 present evidence
that the dimensions of agile PM and agile SDA factors exhibited both discriminant and convergent validity.

302 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Consistent with an aggregate construct, per the explanations that Polites et al. (2012) offer, the respective
first-order factors correlated at significant but varying levels. To assess the validity of the second-order
factor, we assessed whether each dimension significantly correlated with the aggregate construct. We found
that each first-order factor loaded significantly on the second-order factor. Table B1 lists the first-order factor
loadings on the second-order factors.

Table B2. AVE and Reliability Scores

Construct AVE Composite
reliability

Cronbach’s
α

Agile PM constructs

Burndown
Iterative delivery
Retrospectives
Daily stand-up meeting

.837

.644

.804

.841

.939

.878

.925

.941

.902

.815

.877

.905
Agile SDA constructs

Automated build
Continuous integration
Coding standards
Pair programming
Refactoring
Unit testing

.735

.734

.806

.818

.744

.643

.893

.892

.926

.931

.897

.843

.819

.818

.879

.889

.827

.719
Job characteristics model
constructs

Feedback
Job autonomy
Skill variety
Task identity
Task significance

.776

.696

.709

.825

.737

.912

.901

.880

.934

.893

.856

.815

.805
.89

.824

Negative affectivity .592 .897 .861
Job satisfaction .816 .930 .888

Journal of the Association for Information Systems 303

Volume 17 Issue 4

 Table B3. PLS Factor Loadings and Cross Loadings
Construct Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1. Burndown
BD1 .94 .48 .55 .51 .45 .52 .42 .43 .42 .52 .35 .15 .27 .31 .33 .38 -.21
BD2 .94 .52 .51 .57 .53 .55 .46 .45 .44 .51 .40 .20 .30 .33 .32 .39 -.19
BD3 .86 .49 .46 .49 .47 .55 .47 .45 .42 .52 .28 .05 .20 .31 .28 .23 -.10

2. Iterative delivery

IP1 .45 .83 .41 .43 .35 .35 .22 .38 .38 .28 .32 .23 .20 .32 .30 .36 -.15
IP2 .48 .82 .33 .44 .30 .37 .26 .35 .42 .21 .26 .27 .29 .37 .25 .41 -.22
IP3 .45 .79 .44 .40 .34 .37 .26 .31 .37 .35 .31 .19 .29 .18 .24 .28 -.06
IP4 .36 .77 .38 .31 .34 .34 .22 .28 .36 .22 .25 .17 .19 .26 .20 .27 -.07

3. Stand-up
SU1 .52 .43 .90 .41 .35 .39 .31 .33 .36 .42 .31 .15 .12 .26 .18 .37 -.20
SU2 .52 .44 .92 .44 .36 .44 .37 .31 .39 .48 .28 .11 .17 .24 .14 .29 -.14
SU3 .49 .46 .92 .44 .41 .40 .33 .34 .41 .45 .35 .17 .23 .27 .18 .36 -.22

4. Retrospective
RE1 .52 .42 .43 .85 .52 .45 .38 .34 .44 .39 .36 .11 .23 .19 .26 .28 -.12
RE2 .50 .44 .41 .92 .50 .46 .41 .40 .44 .35 .31 .13 .24 .21 .24 .34 -.10
RE3 .52 .46 .43 .92 .45 .48 .44 .37 .38 .38 .31 .13 .24 .19 .21 .28 -.06

5. Unit testing
UT1 .43 .33 .36 .44 .72 .40 .45 .47 .43 .32 .26 .09 .08 .21 .20 .18 .01
UT2 .42 .32 .33 .41 .84 .39 .38 .43 .44 .26 .36 .21 .20 .33 .29 .28 -.09
UT3 .43 .35 .28 .45 .85 .42 .39 .45 .47 .30 .34 .15 .27 .28 .24 .25 -.08

6. Continuous integration
CI1 .48 .36 .41 .39 .41 .81 .52 .31 .39 .52 .31 .11 .25 .22 .24 .29 -.12
CI2 .55 .40 .42 .47 .45 .88 .52 .42 .50 .43 .31 .14 .18 .24 .14 .31 -.15
CI3 .50 .38 .32 .47 .43 .87 .60 .45 .50 .38 .24 .18 .17 .23 .17 .35 -.13

7. Automated build
AB1 .48 .21 .37 .45 .46 .57 .81 .36 .40 .51 .22 .02 .05 .17 .22 .17 -.01
AB2 .37 .29 .26 .34 .46 .50 .87 .41 .33 .22 .18 .08 .15 .10 .16 .14 -.07
AB3 .40 .29 .30 .37 .37 .56 .89 .33 .30 .23 .17 .11 .16 .16 .17 .18 -.04

8 Coding standards
CS1 .47 .40 .33 .38 .49 .44 .34 .89 .54 .34 .37 .20 .21 .35 .22 .31 -.06
CS2 .47 .39 .36 .34 .51 .41 .36 .92 .54 .35 .33 .15 .18 .33 .30 .27 -.04
CS3 .38 .33 .26 .40 .51 .40 .47 .88 .39 .31 .29 .17 .18 .31 .27 .26 -.01

9. Refactoring
RF1 .29 .33 .29 .31 .39 .38 .29 .39 .80 .38 .27 .22 .21 .27 .19 .23 -.05
RF2 .45 .46 .36 .45 .52 .49 .36 .51 .90 .43 .32 .17 .24 .36 .27 .31 -.09
RF3 .45 .43 .43 .43 .52 .52 .39 .51 .88 .39 .35 .18 .20 .36 .28 .33 -.08

10. Pair programming
PP1 .45 .28 .45 .34 .26 .44 .34 .27 .36 .89 .23 .06 .09 .20 .18 .24 -.08
PP2 .53 .33 .40 .38 .36 .48 .34 .34 .46 .91 .29 .07 .12 .25 .21 .22 -.07
PP3 .55 .28 .49 .40 .36 .47 .36 .39 .44 .92 .30 .00 .13 .25 .21 .20 -.14

11. Feedback
FB1 .31 .30 .32 .34 .30 .26 .18 .30 .33 .22 .86 .39 .32 .30 .28 .39 -.10
FB2 .35 .30 .29 .29 .36 .31 .21 .34 .32 .24 .88 .39 .37 .34 .29 .36 -.16
FB3 .33 .34 .31 .32 .39 .31 .20 .34 .32 .34 .90 .42 .35 .33 .38 .45 -.25

12. Job autonomy

JA1 .16 .26 .17 .13 .16 .16 .10 .17 .20 .06 .38 .88 .41 .53 .36 .55 -.18
JA2 .14 .20 .08 .10 .14 .13 .06 .14 .18 .05 .33 .84 .40 .47 .32 .49 -.14
JA3 .09 .24 .17 .14 .12 .15 .05 .17 .15 .00 .42 .82 .41 .41 .29 .47 -.11
JA4 .10 .19 .09 .09 .20 .12 .04 .16 .20 .04 .39 .80 .48 .41 .34 .42 -.12

13. Skill variety
SV1 .19 .21 .12 .17 .15 .17 .08 .15 .13 .07 .28 .31 .82 .18 .43 .37 -.21
SV2 .15 .21 .09 .13 .13 .10 .12 .13 .15 .05 .26 .38 .83 .16 .45 .32 -.12
SV3 .32 .31 .23 .31 .27 .26 .14 .23 .31 .16 .40 .53 .87 .35 .51 .54 -.25

14. Task identity
TI1 .32 .28 .31 .21 .29 .26 .18 .33 .38 .29 .29 .49 .25 .90 .28 .44 -.20
TI2 .32 .33 .25 .19 .35 .25 .16 .37 .37 .21 .34 .51 .25 .93 .28 .47 -.17
TI3 .31 .36 .21 .19 .30 .22 .11 .31 .30 .21 .37 .50 .30 .89 .31 .49 -.19

15. Task significance
TS1 .19 .23 .08 .14 .20 .06 .10 .22 .19 .04 .25 .34 .46 .23 .82 .36 -.15
TS2 .29 .23 .10 .21 .21 .22 .20 .21 .19 .18 .25 .30 .43 .17 .83 .33 -.19
TS3 .36 .32 .24 .29 .34 .24 .23 .31 .33 .30 .39 .37 .53 .37 .92 .52 -.21

16. Job satisfaction
JS1 .39 .38 .36 .32 .28 .39 .22 .31 .33 .26 .44 .53 .40 .51 .45 .90 -.45
JS2 .32 .39 .34 .30 .26 .33 .16 .27 .30 .19 .39 .53 .49 .45 .44 .91 -.31
JS3 .28 .34 .30 .28 .27 .29 .13 .26 .28 .20 .39 .52 .50 .42 .43 .90 -.34

17. Negative affectivity

NA1 -.13 -.06 -.14 -.15 -.05 -.11 -.06 -.01 -.07 -.09 -.14 -.11 -.20 -.16 -.12 -.35 .77
NA2 -.09 -.06 -.13 -.05 -.01 -.13 -.02 .03 -.08 -.07 -.18 -.19 -.17 -.14 -.18 -.30 .78
NA3 -.20 -.15 -.17 -.14 -.06 -.12 -.11 -.06 -.07 -.12 -.14 -.14 -.25 -.19 -.21 -.32 .83
NA4 -.11 -.17 -.17 -.04 -.06 -.09 -.01 -.02 -.05 -.07 -.13 -.11 -.17 -.11 -.16 -.26 .79
NA5 -.09 -.05 -.06 .03 .01 -.03 .01 -.10 .01 .03 -.08 -.08 -.22 -.14 -.13 -.28 .71
NA6 -.21 -.23 -.25 -.10 -.13 -.20 -.01 -.04 -.13 -.14 -.20 -.14 -.13 -.19 -.20 -.35 .73

304 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Table B4. First-order Construct Correlations
Construct 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1. Auto. Build . 857
2. Burndown .494 .915
3. Continuous Int. .635 .591 .857
4. Coding Stand. .430 .488 .464 .898
5. Feedback .227 .377 .335 .366 .881
6. Iterative Plan. .301 .545 .445 .416 .357 .802
7. Job Sat. .190 .366 .374 .312 .454 .413 .904
8. Job Autonomy .077 .149 .168 .190 .452 .268 .583 .834
9. Negative Aff. -.046 -.182 -.154 -.043 -.196 -.158 -.409 -.168 .769
10. Pair Prog. .383 .566 .516 .372 .307 .330 .246 .047 -.107 .904
11. Refactoring .405 .470 .542 .550 .367 .475 .341 .220 -.087 .465 .862
12. Retrospective .458 .575 .520 .415 .362 .493 .331 .140 -.104 .416 .467 .897
13. Skill Variety .140 .279 .230 .211 .391 .303 .513 .505 -.245 .126 .251 .265 .842
14. Stand-up Mtg. .367 .556 .448 .354 .345 .483 .369 .154 -.203 .493 .423 .472 .188 .917
15 Task Sig. .215 .338 .212 .295 .359 .311 .486 .395 -.217 .222 .290 .263 .555 .179 .858
16 Task Identity .168 .348 .267 .368 .368 .356 .514 .550 -.205 .260 .386 .219 .296 .282 .317 .908
17. Unit Testing .508 .530 .504 .561 .399 .415 .297 .186 -.066 .364 .557 .544 .235 .404 .305 .345 .802
Note: Diagonal contains square root of AVE

Tests for Common Method Bias
To test for common method bias, we first performed Harman’s single-factor test (Podsakoff, MacKenzie,
Lee, & Podsakoff, 2003). In this test, one enters all items into an unrotated exploratory factor analysis to
determine whether a single factor emerges or a single factor accounts for the majority of the variance. In
our test, 37 factors emerged, the largest of which accounted for 36.8 percent of the variance. This result
was the first evidence that common method bias was not an issue.

We also performed the correlation test from (Pavlou, Liang, & Xue, 2007). We found that no constructs
correlate extremely highly (more than .90). This finding was the second evidence that common method bias
was not a problem in our study.

We performed the test that Liang, Saraf, Hu, and Xue (2007) suggest even though some have raised issues
with this test (Chin, Thatcher, & Wright, 2012). In this test, one creates a single item factor for each latent
indicator, and one creates a single “method” factor that contains all of the indicators. One then runs the
model with these factors6. Table B5 presents the results of this test. One identifies common method bias by
examining the statistical significance of the loadings of the single-item constructs and both the “substantive”
constructs and the “method” construct. Further, one compares the variance explained by the substantive
factors versus the variance explained by the method factor (Williams, Edwards, & Vandenberg, 2003). The
percentage of variance explained is the square of the loadings. If the method construct loadings are
generally insignificant, and the percentages of indicator variance explained by substantive constructs are
substantially greater than those explained by the method construct, then common method bias is
demonstrated to have minimal effect and, thus, be of little concern.

As Table B5 shows, variance of indicators caused by substantive constructs was substantially greater than
that caused by the method construct. The average variance caused by substantive constructs was 74
percent compared with less than 1 percent for the method construct. Further, when considering the loadings
of the method factor, we found that the large majority of factors were insignificant. We conclude that there
was little influence of common method bias.

6 For an excellent summary of this technique and how to complete it, see Siponen and Vance (2010).

Journal of the Association for Information Systems 305

Volume 17 Issue 4

Table B5. Common Method Bias Analysis

Construct Indicator
Substantive

factor
loading

Variance
explained

Method
factor loading

Variance
explained

1. Burndown
BD1 .95** .90 -.02 .000
BD2 .91** .83 .05 .003
BD3 .87** .76 -.03 .001

2. Iterative delivery

IP1 .82** .67 .02 .000
IP2 .78** .61 .05 .003
IP3 .77** .59 .02 .000
IP4 .84** .71 -.09 .008

3. Stand-up
SU1 .91** .83 -.01 .000
SU2 .94** .88 -.02 .000
SU3 .91** .83 .03 .001

4. Retrospective
RE1 .80** .64 .07 .005
RE2 .93** .86 -.02 .000
RE3 .96** .92 -.04 .002

5. Unit testing
UT1 .63** .40 .08 .006
UT2 .88** .77 -.03 .001
UT3 .88** .77 -.03 .001

6. Continuous integration
CI1 .80** .64 .02 .000
CI2 .88** .77 .005 .000
CI3 .89** .79 -.02 .000

7. Automated build
AB1 .71** .50 .13* .017
AB2 .92** .85 -.06 .004
AB3 .94** .88 -.05 .003

8. Coding standards
CS1 .89** .79 .02 .000
CS2 .92** .85 .005 .000
CS3 .88** .77 -.02 .000

9. Refactoring
RF1 .90** .81 -.13* .017
RF2 .88** .77 .03 .001
RF3 .81** .66 .08 .006

10. Pair programming
PP1 .93** .86 -.05 .003
PP2 .89** .79 .02 .000
PP3 .90** .81 .03 .001

11. Feedback
FB1 .88** .77 -.03 .001
FB2 .89** .79 -.01 .000
FB3 .87** .76 .04 .002

12. Job autonomy

JA1 .85** .72 .04 .002
JA2 .85** .72 -.03 .001
JA3 .82** .67 -.005 .000
JA4 .82** .67 -.01 .000

13. Skill variety
SV1 .90** .81 -.07* .005
SV2 .93** .86 -.121* .015
SV3 .71** .50 .20* .040

306 Job Satisfaction in Agile Development Teams: Agile Development as Work Redesign

Volume 17 Issue 4

Table B5. Common Method Bias Analysis

Construct Indicator
Substantive

factor
loading

Variance
explained

Method
factor loading

Variance
explained

14. Task identity
TI1 .90** .81 .008 .000
TI2 .93** .86 -.009 .000
TI3 .89** .79 .0009 .000

15. Task significance
TS1 .90** .81 -.11* .012
TS2 .88** .77 -.05 .003
TS3 .81** .66 .15* .023

16. Job satisfaction
JS1 .82** .67 .10 .010
JS2 .93** .86 -.03 .001
JS3 .96** .92 -.07 .005

17. Negative affectivity

NA1 .76** .58 -.003 .000
NA2 .80** .64 .03 .001
NA3 .82** .67 -.04 .002
NA4 .82** .67 .03 .001
NA5 .74** .55 .08 .006
NA6 .67** .45 -.10 .010

Average .86 .74 .00 .00
Note: ** - p < .01; *- p <.05

Journal of the Association for Information Systems 307

Volume 17 Issue 4

About the Authors
John F. Tripp is an Assistant Professor of Information Systems at Baylor University. Before beginning his
PhD, he worked for more than 17 years in industry as a software developer, project manager, and IT
Director. His research has appeared in the Journal of the Association for Information Systems, Information
Systems and e-Business Management, and the Journal of Management Systems. He currently examines
topics such as agile software development, social networking, trust and privacy, and how technology
influences leadership, collaboration, and communication in organizations.

Cynthia K. Riemenschneider is associate dean for research and faculty development and professor of
Information Systems in the Hankamer School of Business at Baylor University. She also holds the Helen
Ligon Professorship in Information Systems. Her publications have appeared in MIS Quarterly, Information
Systems Research, Journal of Management Information Systems, Information Systems Journal, European
Journal of Information Systems, IEEE Transactions on Software Engineering, and others. She currently
conducts research on IT work force issues, women and minorities in IT, and ethical issues surrounding IT
use.

Jason Thatcher is a Professor of Information Systems at Clemson University. His research examines
drivers of technology use in organizations, including individual innovation with technology, management of
the IT workforce, and organizations’ IT strategy. He work appears in MIS Quarterly, Information Systems
Research, Journal of Applied Psychology, and other outlets. He is actively involved in service to the IS
discipline. He is President-Elect of the Association for Information Systems. He serves as a Senior Editor
at MIS Quarterly, Decision Sciences, AIS Transaction on Human Computer Interaction, and other refereed
outlets. He has also served as an editorial board member of Information Systems Research, Journal of the
Association for Information Systems, and IEEE Transactions on Engineering Management.

Copyright © 2016 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish
from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from
publications@aisnet.org.

	1 Introduction
	2 What is an Agile Development Team?
	2.1 The Job Characteristics Model and Agile Development Teams
	2.2 Agile Methods as Job Redesign
	2.3 Combining Tasks
	2.3.1 Automated (Unit) Testing and Combining Tasks
	2.3.2 Automated Builds and Combining Tasks
	2.3.3 Coding Standards, Refactoring, and Combining Tasks
	2.3.4 Pair Programming and Combining Tasks

	2.4 Forming Natural Work Units
	2.4.1 Task Significance and Task Identity in Natural Work Units
	2.4.2 Iterative Delivery and the Formation of Natural Work Units

	2.5 Establishing Client Relationships
	2.5.1 Daily Stand-up Meeting and Establishing Client Relationships
	2.5.2 Iterative Delivery and Establishing Client Relationships

	2.6 Vertical Loading
	2.6.1 Iterative Delivery and Vertical Loading
	2.6.2 Retrospectives and Vertical Loading
	2.6.3 Refactoring and Vertical Loading

	2.7 Opening Feedback Channels
	2.7.1 Daily Stand-Up Meeting and Opening Feedback Channels
	2.7.2 Retrospectives and Opening of Feedback Channels
	2.7.3 Burndown and Opening of Feedback Channels
	2.7.4 Automated (Unit) Testing, Automated Builds, and Opening Feedback Channels
	2.7.5 Continuous Integration and Opening Feedback Channels
	2.7.6 Pair Programming and Opening Feedback Channels

	2.8 Operationalizing and Mapping of Agile Practices to Job-design Principles and the Job Characteristics Model

	3 Hypothesis Development
	4 Research Method
	5 Model Analysis
	6 Discussion and Implications
	6.1 Tests for Mediation
	6.2 Implications for Theory and Future Research
	6.3 Implications for Practice

	7 Limitations
	8 Conclusion
	References
	Appendix A: Instrument
	Appendix B: Model Validation, Common Method Bias Testing, and Mediation Testing
	Tests for Common Method Bias

	About the Authors

