

J ournal of the

A I S ssociation for nformation ystems

Research Paper ISSN: 1536-9323

Volume 18 Issue 11 pp. 814 – 836 November 2017

A Paradox of Progressive Saturation: The Changing
Nature of Improvisation over Time in a Systems

Development Project
Wolfgang Alfred Molnar

University of Warwick
wolfgang.molnar@gmail.com

Joe Nandhakumar
University of Warwick

 Patrick Stacey
Loughborough University

Abstract:

In this paper, we investigate improvisation in a systems development project in the context of safety-critical, rigid
quality-management standards. This study took place in a technology company in the automotive industry over a 31-
month period and focused on the development of an innovative information system for automobiles. Our analysis
traced different forms of improvised practice over the course of a systems development project at the company along
with various triggers of improvisation. We found that, as the project progressed, the latitude to improvise became
saturated by the increasing structural influences on improvisation. Yet, paradoxically, these structural influences
provoked developers to improvise in ways that were progressively more innovative by drawing on accumulated
knowledge; we call this phenomenon a “paradox of progressive saturation”. We identify ten forms of improvisation that
unfold across different stages of a systems development project. We offer a conceptualization of the paradox of
progressive saturation to represent the changing nature of improvisation over time, which contributes to the literature
on improvisation in information systems development.

Keywords: Socio-technical System, Empirical Research, Interpretive, Improvisation.

Elizabeth Davidson was the accepting senior editor. This paper was submitted August 6, 2014, and went through four
revisions.

815 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

1 Introduction
This paper reports the findings from a case study of systems development to further our understanding of
improvisation in the context of safety-critical, rigid quality-management standards. In this context, system
developers face challenges when expected to have a systematic, planned approach to enable control and
predictability despite uncertain and emergent requirements. In addition, they experience challenges in
having to simultaneously integrate software into emergent hardware innovations, which we see increasingly
with Internet of things (IoT) solutions. To respond to such challenges, research has established that
improvisation is necessary because planned actions alone are inadequate (e.g., Zheng, Venters, &
Cornford, 2011). Research has evidenced this coping potential of improvisation before (Magni, Proserpio,
Hoegl, & Provera, 2009) and in safety-critical contexts related to ours, such as emergency and crisis
management (e.g., Mendonça, 2007). Prior research in information systems (IS) often treats improvisation
as homogeneous throughout a systems development project. For example, researchers have studied
improvisation in discrete development stages such as design (Teoh, Wickramsinghe, & Pan, 2012),
implementation (Berente & Yoo, 2012), and post-implementation (Rodon, Sese, & Christiaanse, 2011). Yet,
we know little about how developers’ improvisation practices change across different development stages in
the lifetime of one systems development project. As such, we address two research questions:

RQ1: What kinds of improvisation exist in a new systems development project in the context of rigid
quality-management standards that are characterized by routinized practices?

RQ2: How do these kinds of improvisation unfold over the course of the project?

We investigated these research questions through a longitudinal, qualitative field study conducted in a
technology company in the automotive industry that operated in a safety-critical, ISO-compliant
environment. During the field study, we focused on the development practices and improvisations in
relation to an innovative, embedded information system. We identified ten major forms of improvised
practice at the company. We offer a conceptualization of the changing nature of improvisation over the
course of a single systems development project.

This paper proceeds as follows: in Section 2, we review prior research on improvisation in IS. In Section 3,
we describe our research design. In Section 4, we present the results of our empirical study. In Section 5,
we discuss our contributions to, and the implications for, the existing literature by drawing on the themes
that emerged from the findings. Finally, in Section 6, we conclude the paper.

2 Theoretical Foundations
Firms often use quality-management standards such as ISO 9001 in the development of safety-critical
software in order to ensure conformity to specific requirements during stages of development such as
design, development, production, and installation. Firms establish procedures to control and verify design,
which includes conducting planning and design activities, defining organizational and technical interfaces,
reviewing and validating design, controlling design changes, and so on. Such process standards are
essential for software and systems development that emphasizes rigid quality and safety considerations
(Rakitin, 2006; Schrenker, 2006). These standards, broadly based on a document-driven approach to
systems development, ensure that the requirements are specified prior to their design and implementation
and that documents are only changed through controlled procedures. In this formal setting, improvisation
is regarded as an ad hoc, immature, and putatively substandard mode of working (Paulk, Curtis, Chrissis,
& Weber, 1993; Bhardwaj et al., 2015). Bodies such as the International Standards Organization (ISO)
and the Software Engineering Institute (SEI) often discourage improvisation (e.g., Paulk et al., 1993; Saltz,
2015). They state that, if an organization is improvising, then they are at the lowest level of process
maturity: “In an immature software organization, software processes are generally improvised by
practitioners and their management during the course of the project” (Paulk et al., 1993, p. 1).

Studies such as Magni et al., (2009) and Zheng et al., (2011) have described plans informed by formal
standards as inadequate coping mechanisms as challenges and uncertainties arise that disrupt systems
development, and they have evidenced that such circumstances require improvisation. Disruptions take
different forms of course; in putatively highly disruptive contexts such as emergency recovery processes,
improvisation is reportedly as important as safety, prediction, and planning (Marjanovic & Hallikainen,
2013, pp. 24-32). While this literature has begun to move toward improvisation, it has not necessarily
done so away from formality and planning. Rather, a blended view has emerged in which improvisation

Journal of the Association for Information Systems 816

Volume 18 Issue 11

and planning co-exist in order to deal with highly disruptive situations. Indeed, in the mainstream IS
literature, a common interpretation of improvisation is that it involves overlapping forms of IS work, such
as planning, designing, and developing (Effah & Abbeyquaye, 2014, p. 12). The cognate organizational
literature on improvisation has expressed this overlapping in terms of dyads, such as conception and
execution (Moorman & Miner, 1998a), planning and implementation (Moorman & Miner, 1998b), and real-
time planning (Miner, Bassoff, & Moorman, 2001).

A systems methodologist will recognize a similar trait in agile methods, which also feature a variety of
activities in small, ongoing iterations (Baskerville, Ramesh, Levine, Pries-Heje, & Slaughter, 2003;
Karlström & Runeson, 2005). However, one typically more anticipates these cycles of agile activity despite
their fluidity; with improvisation, one typically does not much anticipate what activity comes next (Lanzara,
1999; Louridas, 1999; Weick, 2001; Stacey & Nandhakumar, 2008, 2009). Further, improvisation does not
constitute a process model, such as RUP, XP, or Scrum (Abrahamsson, Salo, Ronkainen, & Warsta,
2002), but rather mixes capabilities and in situ actions; that is, one does not model improvisation. The so-
called “paradox” literature on IS improvisation has refined this overlapping and blending of IS activities.
For example, proposed paradox pairs include “planned serendipity” and “rehearsed spontaneity” (Mirvis,
1998; Zheng, Venters, & Cornford, 2007). These pairs are paradoxical because it seems inconceivable
that a developer could simultaneously rehearse and take spontaneous action. This idea is important to our
paper, and we extend it by proposing a new paradox pair in our conclusions.

Improvisation is spontaneous in the sense that one performs work in an impulse-driven, “spur-of-the-
moment” way. It is based on personal inspiration and autonomous reflexivity in that “actors complete their
thinking in relative autonomy” (Mutch, 2010, p. 516). Autonomous reflexivity (Archer, 2007) is
characterized by actors’ ability to distance themselves from their working environment and, in so doing,
not accept that established custom and practice are the “best way” (p. 193); they are selective, evaluative,
and elective. They are self-reliant and able to devise courses of action. According to Archer (2007),
autonomous reflexivity is particularly applicable when the subject encounters new experiences and novel
situations for which their natal context provides no guidelines (p. 194). An autonomous reflexive actor has
to learn to rely on their own resources in order to deal with the situation; for example, reflexively
generating an innovative solution to overcome a problem created by a breakdown of routine or to exploit
an opportunity. For instance, an opportunity arose in an IS under development (Njenga & Brown, 2012)
that led to the autonomous, spontaneous reconfiguration of the system with new functionality (McGann &
Lyytinen, 2008, p. 4). The spontaneous character of improvisation involves exploring open possibilities
where scripted, routine activity does not apply (Bansler & Havn, 2003). Thus, we view improvisation in
systems projects as moments in which developers’ simultaneously plan and execute actions as they break
free or “disembed” themselves from the routine flow of a project with varying degrees of success.

Alternatively, “scripts” may be actively adapted during improvisation as opposed to being ignored outright,
which consequently involves less autonomous reflexivity and rather more anchoring in established
practice. Research has shown as much during new product developments (NPD) where improvisation
involved mixing and matching established procedures in novel ways (Moorman & Miner, 1998b, p. 703;
Pavlou & El Sawy, 2010). Indeed, research has shown successful improvisations to draw on accumulated
knowledge (knowledgeability) and experience per se (Cunha, Cunha, & Kamoche, 1999; Dybå, 2000;
Zheng et al., 2011, p. 6; Weick, 1999; Bansler & Havn, 2003). Improvisation involves developers in an
unwitting entanglement with established organizational customs (Archer, 2007) that are part of their
repertoire (Zheng et al., 2011, p. 6).

The sway between autonomous reflexivity and established practice yields different levels of improvisation,
which generally range from radical improvisational creativity to modest shifts in behavior (Weick, 1993).
Moorman and Miner (1998b, p. 703) classify three degrees of improvisation: slight adjustments to
preexisting processes, stronger departure from existing practices, and the most extreme level where “the
improviser discards clear links to the original referent and composes new patterns”. Hence, in its extreme
form, improvisation connotes “producing something on the spur of the moment” (Weick, 1998, p. 544), a
definition that links back to the idea of spontaneity and autonomous reflexivity. Weick (1998) uses the
metaphor of jazz improvisation (cf. Gioia, 1988, p. 66) as a way to illustrate the various “degrees of
organizational improvisation”. For example, he argues that pure instances of improvisation are activities
that alter, revise, create, and discover; that are imaginative and creative; on the other hand, activities that
shift, switch, or add are at the less imaginative end of the continuum. Weick (1998, p. 554) claims that jazz
improvisation “teaches us that there is life beyond routines, formalization, and success”. Activities happen
outside organized routines or formal plans (Miner et al., 2001).

817 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

In literature review, we also found limited insights into how systems settings characterized by formal
quality standards accommodate improvisation. The IS literature often treats improvisation in systems
development projects as singular or homogeneous over their lifetime. We extend existing research by
studying the nature of improvisation occurrences across multiple development periods in a single safety-
critical project. We draw on Archer’s (2007) concept of autonomous reflexivity in order to flesh out an
aspect of improvisation that research has often pointed to but not unpacked to any significant extent; that
is, personal inspiration (Bansler & Havn, 2003; McGann & Lyytinen, 2008, p. 4), which is also an important
concept for our case analysis.

3 Research Design and Empirical Context
In this section, we describe: 1) our research approach, 2) site selection and the timeline of the research
project, 3) the case study company “ImproCo”, 4) the data collected, 5) how we analyzed the data.

3.1 Research Approach
We investigate a systems development process in its context and construct an understanding of the
participants’ activities in that particular setting over a period of time. As such, we conducted a longitudinal,
qualitative field study (Walsham, 1993) at ImproCo (a pseudonym), a high-tech company that operates in
Germany’s automotive industry. We collected detailed, qualitative data through a combination of
interviewing key actors involved in a new technology development project in their natural setting,
observing the practices, and reviewing documentation over a 31-month period at ImproCo.

3.2 Site Selection and Timeline
We selected the site after considering “theoretical relevance and purpose” (Orlikowski, 1993, p. 312). We
sought to investigate the challenges of the innovative development of new technologies in a “rigid” context
of quality-management standards characterized by routinized practices. We selected ImproCo because it
was an ISO 9001-certified organization with the relevant contextual elements. For example, senior
management implemented the core ISO 9001 processes business acquisition, design and development,
test, production, and delivery, and service and support and the supporting processes business
management, supplier management, inventory management, and configuration management. The
organization’s quality manual, which we used to help integrate ImproCo’s development processes,
documented these processes. ImproCo’s senior management regarded adherence to quality-
management standards as necessary to help manage organizations through structured processes.

3.3 The Case Study Company
ImproCo provided high-tech systems and services for the research and development centers of
automobile manufacturers in Germany. These services and products involved solutions for their
customers that ImproCo described as “innovative and tailor-made”; their business success led to an
expansion of the company—at the time of writing, ImproCo employed 180 people. Because of the growth
of ImproCo, it needed to better align its processes, and ImproCo managers introduced a quality-
management standard that was compliant with ISO 9001. ImproCo’s quality-management standard
covered generic processes for the entire organization and specific ones, including administrative
procedures and evaluations of employees and customers. ImproCo’s senior management team expected
the developers to follow the ISO 9001-certified procedures (clause 7.3 of ISO 9001; i.e., that design and
development should have distinct, linear stages). Hence, ImproCo’s developers principally followed a
linear lifecycle process that proceeded as follows: requirements definition, concept development, initial
proof of concept, and, in the final stage, testing and quality checks.

3.3.1 Project Description

Our study at ImproCo focused on exploring the improvisational practices that the organization carried out
when developing an in-car information system in a quality-management context. The in-car information
system, built on Linux, was designed to help developers collect and analyze data transmissions (i.e.,
between the various electronic units in a car, such as the central unit and the CD changer) during
automobile development. This system involved three different, interconnected subsystems and activities:
hardware development, embedded software development, and client software development (data
download). These different activities involved various internal stakeholders (software developers,

Journal of the Association for Information Systems 818

Volume 18 Issue 11

hardware developers, development managers, project managers, quality managers, and business
managers for marketing and customer relations) and external stakeholders (one principal organizational
customer with multiple divisions) and necessitated complex discussions and negotiations.

3.4 Data Collection at ImproCo
We interviewed and observed several actors involved in the systems development project that we studied
at ImproCo (Table 1). We did so as part of a larger research project that we conducted to better
understand improvisation during a new technology development project. One of the actors, Scott (a
pseudonym, as with all the names used in this study), occupied a role of critical importance in the project
we investigated. The company’s employees portrayed him as a “firefighter”, someone who helped them
whenever they were stuck on a problem. Scott described himself as “a self-taught person with experience
and passion”. Another actor, Robert, was Scott’s supervisor—he was responsible for the development
department that comprised 15 people involved in designing hardware and software for this system. Robert
engineered the system architecture, which strategically influenced the ongoing development of the in-car
IS device. Another actor, Jack, was the project manager; his role was vital to the success of the project
because he was also well acquainted with the customer.

Table 1. Data collection at ImproCo

Observations Details
248 visits Visits to ImproCo over a period of 31 months

Number of interviews Type of interview Name (pseudonym) Responsibility of
interviewees

Years of
experience

2 Group Group Project under study

8 Semi-structured Other developers Software & hardware
development

Ranged between
5 -15 years

2 Semi-structured Scott Software & hardware
development, “firefighter” > 15 years

3 Semi-structured Robert Development department
manager > 15 years

3 Semi-structured Jack Manager of the studied
project > 10 years

2 Semi-structured Mike
Software developer,

graphical user interface
specialist

> 5 years

Total: 20

Figure 1 depicts a timeline of the project and includes our data-collection activities. We conducted 20
interviews (two group interviews and 18 semi-structured interviews) that each lasted approximately 90
minutes at the research site. While ImproCo had more than 180 staff members, we focused on a team of
developers and managers that participated in one development project. The first author commenced the
field study with two group interviews that involved all developers and managers in order to introduce both
himself and the research project. In addition, in accordance with a non-disclosure agreement, the first
author assured participants of their anonymity. After these group interviews, the first author conducted 18
semi-structured interviews in which he asked open-ended questions to guide the interview and promote
the opportunity to collect rich data through more extensive responses. He carried out the interviews as
follows: early in the data–collection process, he conducted interviews that mainly focused on individuals’
perspectives of the development process, emerging issues, and the key socio-technical challenges in the
project context; towards the end of the data-collection process, he conducted interviews mainly to clarify
project participants’ perspectives of various observations made (see Figure 1). To support the research
process, he tape-recorded the interviews (about 26 hours) and transcribed and translated them from
German into English (more than 350 pages of transcription and notes).

819 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

Figure 1. Timeline of the Project with Data-collection Efforts

In addition, between December, 2004, and June, 2007, the first author spent two normal working days a
week at the research site with the development team to observe their environment and practices. In total,
he visited the site 248 times. Each visit involved mainly observing non-participants (Leidner & Jarvenpaa,
1993; Nandhakumar & Jones, 1997), and he took notes (more than 150 pages in total) of various events
and activities of people, including: 1) formal and informal meetings, 2) conversations between developers
and/or managers, and 3) behavior during the development activities (mainly related to the project under
study). Although he could not observe everything that happened, as the research progressed, he
identified and focused on key people and events and uncovered the team’s routines in their everyday
work setting. As such, he could gain personal experience of the research context under normal conditions
and to get behind the official picture (Goffman, 1959). Further, we analyzed company documents to obtain
better insights into the context and processes of ImproCo’s development activities and to support the
review of interview and observation notes.

3.5 Data Analysis
We read and re-read the field notes from observations, interview transcripts, and company documents to
become acquainted with the data and distinguish meaningful events and incidents. With the amassed field
notes, we could retell the story of ImproCo’s development activities in detail (Dyer & Wilkins, 1991).

Broadly speaking, the data analysis process involved three interconnected steps. First, as the data collection
progressed, we performed descriptive coding (Miles & Huberman, 1994) of the interview transcripts,
observation notes, and other material, such as project and training documentation. In order to address the
key research aim, in the initial coding, we focused on identifying and highlighting extracts that described
team members’ improvisational activities and the changes to their practices throughout the project. We also
analyzed the context of these activities and practices, such as associated emergent social and technological
constraints that pertained to hardware and software and tensions around ISO procedures and standards.

Second, by examining these codified extracts from interviews and field notes as the analysis progressed,
we identified early patterns of instances of different improvisational practices in their context. As such, we
identified clusters of improvisational practices (first-order categories) from the data and their related
contextual aspects, such as socio-technical issues, over time. In order to understand these emerging
patterns in the data, we traced the occurrence during the project of each form of improvisation when
analyzing the field data by zooming in (Nicolini, 2009) on developers’ day-to-day activities and noting
incidents of improvisation and when they ceased to occur.

Third, having identified various forms of improvisation, we further analyzed them in order to develop
higher-order categories (second-order themes) that reflected the tensions and “anchors” that related to
ongoing practices or developers’ spontaneous actions over the course of the project. This process was
iterative and nonlinear. Table 2 provides an example of how the analysis process unfolded; Appendix A
provides a more detailed version.

Stage&1&Interviews

Data&Collection

New&System&Development&Project

Observation

De
ce
m
be

r&
20

04
&

O
ct
ob

er
&

20
08

&

Stage&2&Interviews

O
ct
ob

er
&

20
04

&

Ju
ly
&2
00

7&

Ja
nu

ar
y&

20
08

&

Ap
ril
&2
00

6

!

Journal of the Association for Information Systems 820

Volume 18 Issue 11

Table 2. Stages of Data Analysis

Stage Analysis Outputs

1

Initial coding to identify and highlight extracts
describing team members’ improvisational
activities, socio-technical context, and the changes
to their practices.

Extracts from interviews and field notes identified as
instances of improvisational activities; unfolding of the
improvisational practices for the three development
periods (Sections 4.1 to 4.3) identified.

2

Identifying early patterns of instances of different
improvisational practices in their context and
clusters of improvisational forms (first-order
categories).

Ten different forms of improvisation; for example, see
Table 3 and Figure 3.

3

Identifying higher-order categories (second-order
themes) that reflected the tensions and “anchors”
that related to ongoing practices or developers’
spontaneous actions over the course of the
project.

Three levels of improvisation and the unfolding of forms
and levels of improvisation over project duration; see
Table 4 and Figure 4.

4 Empirical Findings
As we outline above, we focused on the unfolding of the improvisational practices at ImproCo over the
course of the development of an in-car information system. We present the process as having three
development “periods” (Langley, 1999, p. 703) based on our observation of three major tensions as the
process unfolded. Thus, the first period involved following formal plans of action while coping with
emerging requirements; the concreteness of the contractual planning activities between ImproCo and its
client contrasted with radically changing requirements as the development team carried out prototyping.
The second period involved the flexibility to change while stabilizing the system; having established a
proof of concept during the first period, the development team more concretely implemented the designs
during the second period and, thereby, stabilized the system, yet the client continued to relentlessly
request changes to it. The third period involved the developers’ finding imaginative workarounds while
enforcing quality standards; as the project came to a close with various sign-offs looming, developers’
workarounds to problems had to be ever more imaginative. Each of these periods had a cyclical element
in terms of ongoing testing, debugging, and review. We depict the timeline and key events per period in
Figure 2, which is not meant to be exhaustive but highlights some key events.

Figure 2. Timeline of the Development Process

While the quality-management context provided strict guidelines and plans for the evolving process, the project
involved continuous tensions between following a pre-arranged plan and adjusting to the need of the moment.
These tensions constituted a formative context for a variety of triggers and forms of improvisation. We
elaborate on these tensions as “roots” of improvisation on a period-by-period basis in the following sections.

4.1 Following Formal Plans of Action while Coping with Emerging Requirements
(First Period)

The development process started from a customer’s request to ImproCo, which initiated the development of
a custom system for that customer. The developers treated each request with great enthusiasm because

New$System$Development$Project$

Period1 Period2 Period3

Contract$
formaliza=on$
(signing,$
systems...)$

EVENTS&
Graphical$
interface$
andUSB

discussions$
Finalizing$proof$of$

concept$

Soldering$tracks$on$
thePCBhardware$

Prototype$MILESTONES&

Client$requests$
omissionofflash$
extensionbayFirst$scaleNup$of$

demanded$devices
(~90)$

Second$scaleNup$of$
demanded$devices

(~800$)$

Introduc=onof
weekly$mee=ng$

Design$ Test/Debug$
Post$Prototype$

Review$

Con=nuing$
Development$$

Client$
Communica=on$$

Review$

Final$
Review$

Test/Debug$ Test/debug$

Further$PCB$$
issues$

Introduc=on$of$$
system$tes=ng$$

!

821 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

they were eager to work on novel and innovative products. Development activities in the automotive industry
tend to be highly methodological, so developers mostly follow some sort of routine in their practices that is
consistent with quality-management procedures. Some of the formal elements were: 1) formal meetings to
discuss budgetary, time, and human resource constraints; 2) client sign-off of agreed milestones, costs to
the client, and human resource commitments on the part of the systems developer; 3) implementation and
circulation of these agreements to internal management and development teams; 4) assignment of work to
developers and the estimation of dependencies; 5) readying of the systems-management environment, such
as bug-tracking software to record and manage various system bugs accordingly. The first three formal
elements correspond to the core ISO 9001 process of business acquisition, and the fourth and fifth elements
correspond to the core ISO 9001 process of design and development. However, not all aspects of
development activities were foreseeable, and the developers had to “tinker” with the system. ISO-compliant
ImproCo did not officially encourage such tinkering practices, and, as the development process progressed,
it became increasingly hard to accommodate them.

The initial period of the project featured many unknowns, and the developers had to respond to fluctuating
requirements. They were still defining the proof of concept and “sketching” the embedded system
architecture. At this stage, the freshly formed project team found it challenging to make sense of the
customer’s vague design requirements while following the formal plans and development procedures for
the project. For instance, they had no clear requirements for any connectivity ports for the all-in-one
device under development. As Robert recalled:

The customer wanted to have a USB [Universal Serial Bus] connector at the beginning, and
when we stated that this would influence the electromagnetic characteristics of the sensible
environment within an automobile, the customer decided to skip this feature. Therefore, we
continued further development without a USB…, [but later on] the customer wanted to have this
feature again, although the system’s architecture provided no availability for a USB connection
in terms of hardware or software driver.

Such fluctuating requirements often forced the project team to change plans, to be more interactive with the
customer, and to think ahead. Hence, the developers continuously modified plans while executing them.

Individual developers perceived their key role as providing the best solution for the client even at the cost of
breaking some design rules. This self-perceived need to deliver “proper” solutions led to their constantly
“tinkering” with and revising the software code before the specifications became stabilized, which helped to
address the emerging issues and technical challenges in the customer’s context. For example, the
developers, of their own choice, revised software code as they became more knowledgeable about the
customer’s needs and what the customer needed to get the system working. They converted the initial
concept into a formal list of requirements for the three different development areas of hardware, embedded
software, and client software. Although the developers had extensive experience in developing the hardware
and embedded software aspects, they were unfamiliar with developing client software. Robert recalled:

I did not expect to extend the client software towards an application with a graphical interface. I
thought a line-based console application would just do the job!

Jack elaborated on the uncertainty:

For me, there was no doubt that we would need a graphical interface because the users of this
electronic device would like to have a simple solution which does not require additional training.
However, the initial ideas did not involve any user-friendly approach, so we needed to adapt to
that principal requirement.

Mike spontaneously developed code for this part of the software while tinkering with the latest models of
the physical device that comprised hardware and embedded software. However, the development of
these three main system aspects occurred independently and iteratively. Regardless of the original project
plan, we observed such voluntary tinkering in the development of the software throughout the project.
However, given the strict quality-control regime, the developers did not wish to disclose such contradictory
practices to management; they instead gave the impression that software releases for the customer
followed the quality procedures. Nevertheless, behind the scenes, a great deal of self-motivation and
inspiration triggered different forms of improvisational practice. For example, Scott lost his sense of time
during a weekend as he spontaneously and freely examined samples of the hardware while trying to
reveal the root cause of the recurrent errors. These errors involved one particular problem that had
perplexed the developers for some time: were the errors being “thrown” by the embedded software or the

Journal of the Association for Information Systems 822

Volume 18 Issue 11

hardware? Scott claimed that some of the printed circuit board (PCB) tracks were poorly designed and
exhibited mismatched processor clock-time and that the “paths” of some integrated circuit pins were too
long, all of which caused delays in the signals. In a developers’ meeting, they decided to keep that PCB
and experiment by soldering some tracks of the hardware. Doing so enabled the developers to continue
with their routine work on developing the embedded software. In addition, they decided to find another
supplier for the next hardware samples to try to eliminate quality problems. Jack and Mike were
unaffected by these problems, however, and they continued to design a new graphical interface. This
interface was not part of the initial idea nor was it a customer request, but Jack and Mike saw it as
important and developed it from scratch as an innovative solution. While they attempted to develop the
interface carefully, they admitted to applying some “shortcuts” for testing purposes. However, they said
that these shortcuts did not become part of the official releases. During various coffee breaks, the team
discussed Scott’s “bold move” in isolating the PCB-related error—they were relieved that the supplier and
not they had caused the error. They thought this fact important because they did not want the
management to doubt their technical ability to produce high-quality systems. Scott spent the rest of the
day in discussions with the hardware developers to further investigate the errors and try to identify a tactic
to mitigate them in any new hardware samples provided.

Although ImproCo’s ISO 9001-certified procedures and tactics prescriptively shaped their practices, the
designers found them less helpful for dealing with the day-to-day design challenges that emerged in the
project. The designers sought to appropriate known practices differently to cope with difficulties during the
development project, such as frequently changing requirements. For example, technical difficulties arose
when the developers created a key feature of the embedded system (although this would have worked
fine in a proof-of-concept environment following known practices). Subsequently, they had to twist the
known practices to exploit the emerging capabilities. For example, during the project, the entire hardware
platform presented an unexpected challenge as ImproCo moved from a 16-bit single-processor platform to
a 32-bit multiprocessor platform. The developers had to develop new software code to deal with the
technological leap, which created some challenges during the development because the complexity of the
hardware, the software, and its interaction all grew. The original agreements did not capture these
challenges, meetings had to be held, and budgets had to be flexed as a result.

As the project progressed, other new constraints that resulted from design features based on the
incomplete specification emerged. The draft specification was written shortly after the initial idea, and key
parts of the requirement were poorly defined and incomplete. Therefore, continuous adjustments of
development activities became part of the work during the initial period of the project. Developers
increasingly became more pragmatic and tried out new things and often discovered new ways of resolving
problems and appended them to the project. Many such discoveries needed to remain somehow in the
project scope because of time constraints and the need to realize the project goal. One of the developers
commented on this balancing act:

We had to follow a moving target. Unclear descriptions of the requirements obstructed our
development efforts. Those descriptions were unclear, because the customer did not really
know what he wanted. So he came out with the “wise” solution to integrate every possible idea.
It was our task to put the features into a state which was realizable. So, we had to investigate
and discover features to integrate and features to omit.

As activities became more structured over time and the design became more stable, the developers found
it harder to actualize their new “discoveries”.

4.2 Allowing the Flexibility to Change while Stabilizing the System (Second
Period)

The next tension we identified in the data relates to seeking the flexibility to change in a stabilizing system.
As the project team began to make good progress in resolving much of the ambiguity in the requirements
and stabilizing the product specification, they also faced increasing requests for changes from the
customer as they moved into the middle period of the development. Hence, during this period, the
designers tried to be flexible to alter hardware and software features in response to the customer’s
ongoing requests and related shifts in circumstances. While trying to stabilize the data storage aspects of
the system, the customer’s ambivalence necessitated the developers’ flexibility as Jack explained:

Another challenge was the undecidedness of the customer, which resulted in the problem of a
moving target. For example, besides the issue with the USB connector, we initially planned to

823 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

include a Compact Flash connector for the device, so that users might have been able to extend
the data storage capability by flash memory. Although the project stakeholders agreed on the
reasonableness of the extension bay, we needed to skip the Compact Flash connector at an
advanced stage of the development because the customer suddenly decided to leave it out.

A fortunate consequence of the episode that Jack described was that it stabilized the hardware
architecture. However, the developers still need to tailor the software architecture to the exact technical
setting of the system’s various chips and processors. In this context, the tailoring of the embedded
software architecture required frequent tinkering and learning by doing until the developers (and their
managers) were sufficiently confident of their solution.

In order to handle the increasing numbers of customer requests and as the products became more
complex and challenging, the managers and developers decided to change design practices in an effort to
adapt to the new situation. For example, Jack recalled:

This project was not planned to develop a system for mass production. The prototype
development involved only a handful of devices. After we had gotten the supplier’s contract, we
talked about 80 or 90 devices. However, we are now talking about 800 devices and we
originally thought that 80 or 90 devices would be the maximum. So, that’s a huge difference, not
only in terms of development, marketing, and production, but also in terms of maintenance.
Indeed, over time we were able to adapt our development approach to this increasing number.

The team had to scale up and adapt their practices as they dealt with the emerging situation. Although they
had a limited ability to prepare and plan for all eventualities, managers and developers were able to channel
their knowledge in response to the emerging challenges. For instance, the hardware element was becoming
more stable and they were aware of the potential side effects of increasing the system’s complexity. As
such, they had to respond quickly to new demands and challenges in order to keep the project on schedule.
A good example is how the graphical interface team dealt with incoming customer requests that disrupted
their workflow. Customers asked for advice on such things as working with the software, incidents with the
software, and solutions to bugs. Fortunately, the project team maintained a bug-tracking system so that they
recorded and could manage arising complexities such as incidents, requests, and bugs accordingly. We
describe another example of responding quickly to new demands and challenges surrounded the PCB
problem above. Continuous interruptions to deal with necessary administrative work and discussions with
hardware suppliers, other developers, and the project manager all thwarted Scott’s attempts to resolve it.
Although he managed to devise an innovative workaround, he explained to the team that it was only a
temporary solution, which could potentially introduce further problems.

4.3 Finding Imaginative Workarounds while Enforcing Quality Standards (Third
Period)

The next tension we identified in the data relates to imaginative and innovative workarounds in an ISO-
oriented culture. As the new system neared completion and with various sign-offs looming, the customer
became even more engaged and was making several last-minute requests for change. Interactions with
the customer became very tense as existing practices for responding to such requests became disruptive
to the work context. Therefore, the team rapidly devised imaginative ways of responding to urgent
requests for system changes. Jack explained:

On a whim, I invited the representative stakeholders to discuss urgent project issues. The
growing complexity required this meeting in order to find best approaches for further
progressing [the project]. In addition, we required another approach to stay on schedule. I
realized that the way we communicated during the project was getting unmanageable. In order
to get things done more properly, I started to invite the project stakeholders for meetings, so that
we were able to discuss the immediate issues and decide on how to proceed. Those issues
involved just another change in the requirements and the discussion of additional system
features. However, not all issues were resolved and, over time, it became a standard procedure
in the form of a weekly meeting, which now is part of our work setting.

This situation was imaginative in the following sense: at a point in the process when the project became
ever more structured and with ISO-based sign-offs looming, one would not expect such a radical meeting
to take place. Yet, Jack realized the need for the meeting “on a whim” as he put it. The tense interaction
with stakeholders also inspired the team to experiment with different ways to organize activities such as

Journal of the Association for Information Systems 824

Volume 18 Issue 11

customer support. For example, Jack tried out different modes of interaction with customers and
rearranged responsibilities to make this process better. This inspired new ways of handling interactions
with stakeholders and freed up developers’ time to deal with the design work more efficiently. However,
the growing stabilization of the system increasingly constrained their latitude to find effective workarounds.
For example, until this point in the project, the individual developers had tested their own code for the
various system components for which they were responsible, such as the controller area network (CAN)
chip, digital signal processing (DSP) chip, embedded Linux software, and client software. This approach
to testing had been successful in previous projects for the company, so it seemed normal to them, but the
current project was becoming increasingly complex. In order to coordinate testing practices and raise the
quality of the product, the senior developers decided to make team testing more regimented by
introducing system-integration testing.

As we outline above, despite all their efforts to resolve matters “on the hoof”, they were not always
successful; malfunctions sometimes occurred for no apparent reason, although the increasing complexity
of the system may have played a part. As a result, individual “star developers” had to come to the rescue
by creating solutions spontaneously.

Developers and managers considered Scott an important team member because he was able to deal with
project challenges spontaneously. Although most developers had their “eureka” moments, the developers
and managers were particularly impressed by Scott’s effort in spontaneously solving hardware and
software problems throughout the project but particularly during this critical, latter stage of the project
when resource budgets were running out. Scott admitted, however, that his skills were not confined to
know-how from the hardware and embedded software domains but also reflected an intense desire and
dedication to finding the cause of a problem. He described his approach not as “tinkering” but as “goal-
oriented tasking; somewhere between creative chaos and structure”.

4.4 Summary
The findings above that pertain to three periods of the development project highlight the key forms of
improvisation in a context that comprised a variety of socio-technical challenges, such as rigid quality-
management standards, ongoing shifts in customer circumstances, routinized practices, and hardware
and software constraints. Table 3 summarizes these findings in terms of the associated forms of
improvisation and their triggers, contexts, and anchors. Table 3 shows the 10 forms of improvisation that
we could induce and that arose from tensions in the development process and context; the table also
shows case examples of triggers for each form of improvisation (column 2). In the fourth column, we
introduce “anchors of improvisation”—conceptual descriptors for each improvisational form; drawing on
concepts from the literature review, they reflect whether each respective improvisational form was based
on autonomous reflexivity, ongoing practices, or a mixture of both. We discuss this table further in the next
section.

 Table 3. Triggers of Improvisation at ImproCo

Form of
improvisation Case example of triggers Socio-technical context Anchors of

improvisation
Tension: Following plans of action/Emerging requirements (first period)

1. Planning while
executing

Scheduled work interrupted by
fluctuating customer requests during
the USB episode.

Fluctuating requirements creating a
“second guess” environment of
features customers might need (e.g.,
USB port that interrupted scheduled
work for a time).

Mix of
autonomous
reflexivity and
ongoing practices.

2. Revising
voluntarily

Developers’ self-perceived need to
deliver proper solutions for the
customer (e.g., the anticipation that
the customer would prefer a graphical
interface for the software client).

Developers became more
knowledgeable of customer needs
while the hardware and software were
still malleable.

Based on
personal
inspiration and
autonomous
reflexivity.

3. Appropriating
known practices

differently
(remixing)

ISO 9001 tactics were less helpful and
the developers had to appropriate
practices differently, using common
sense, as the complexity of the
hardware/software grew.

Strict ISO regime and challenging 32-
bit hardware platform.

Based on ongoing
practices.

825 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

 Table 3. Triggers of Improvisation at ImproCo

4. Discovering
and appending

Unknown/unclear initial
requirements—developers decided to
integrate every possible idea to
discover features, then decide
whether to integrate or omit them.

Pressure to realize project goal while
the hardware and software still
afforded development of new features.

Based more on
personal
inspiration and
autonomous
reflexivity.

Tension: Allowing flexibility to change/Stabilizing system (second period)
5. Altering

design features
in response to

shifting
circumstances

Although the customer originally
wanted the feature that extends the
data storage capability by flash
memory, they later decided they did
not want it.

Indecisive customer and hardware
challenges.

Based on a mix of
autonomous
reflexivity and
ongoing practices.

6. Changing
design practices
and adapting to
new situations

The volume of the devices demanded
by the customer was massively
revised—the team had to scale up
their design practices to cope.

Shifting customer needs/development
circumstances and complexity of the
hardware and software.

Based on a mix of
autonomous
reflexivity and
ongoing practices.

7. Channeling
knowledge to

respond to
emerging

challenges

Refined requirements and
understanding but growing complexity.

Acquiring practical insights about the
contextual issues of customer
environment and better sense-making
of technical aspects.

Based more on
ongoing practices.

Tension: finding imaginative workarounds/enforcing quality standards (third period)

8. Devising
responses to
urgent needs

Communication overload with
customers due to their increased
demands. Weekly meeting routine
established.

Tense interaction with stakeholders
while the system was becoming more
stable.

Based more on
ongoing practices.

9. Experimenting
with work

organization

Having set up a weekly meeting
routine with customers, experimenting
with work organization inspired a new
approach to coping with customer
support, too. Concurrently, system
integration testing also introduced a
more structured approach.

Tense interactions and structured
work organization/expectation.

Based more on
ongoing practices.

10. Creating
solutions

spontaneously

Responding immediately to
malfunctions (e.g., the “paths” of some
connected pins from different
integrated circuits were too long,
which meant the signal transmission
was delayed and caused
malfunctions).

Management style supporting
individual problem solving and
approach to time and novel
technology experimentation.

Based on
personal
inspiration and
autonomous
reflexivity.

As Table 3 summarizes, each of the 10 forms of improvisational response was anchored in autonomous
reflexivity, ongoing practices, or a combination of the two. These forms of improvisation were also broadly
associated with specific periods of the project. By combining the anchors and periods in Figure 3, we
depict the unfolding patterns of the improvisational forms at ImproCo. One should consider Figure 3 more
as a “floor sketch” of movements over the project’s duration rather than as a graph. Hence, the downward
slope of the lines indicates improvisational forms’ changing their anchors over time from autonomous
reflexivity to becoming more related to ongoing practices. The improvisational forms at the top of the
figure are more anchored in developers’ autonomous reflexivity. We discuss Figure 3 in this section
according to the three periods and three associated anchors.

Journal of the Association for Information Systems 826

Volume 18 Issue 11

Figure 3. Unfolding Pattern of Improvisational Forms1

As Figure 3 shows, during the first period of the project, the improvisational forms “revising voluntarily”
(#2) and “creating solutions spontaneously” (#10) were anchored to autonomous reflexivity. The former
happened spontaneously during the design of the new graphical interface and other improvements, and
the latter involved the disregarding of organizational practices. Thus, the triggers for autonomously
reflexive improvisation were self-motivation and inspiration.

While the improvisational form “discovering and appending” (#4) occurred in the first period, it became
progressively more anchored in ongoing practices in the second period in that it mixed autonomous
reflexivity and ongoing practice. “Planning while executing” (#1) and “changing design practices and
adapting to new situations” (#6) occurred in the first and second periods and became progressively less
frequent with structural constraints. However, developers could still disregard some of these constraints and
devise innovative solutions as Scott’s temporary fix to the persistent PCB problem illustrates. Therefore,
there were improvisational forms in the early and middle period of the project that self-motivation and
inspiration initially triggered, but, as the project progressed, the triggers became more related to context.

Transitioning to the third and final period of the project, the improvisational forms “altering design features
in response to shifting circumstances” (#5) and “channeling knowledge to respond to emergent
challenges” (#7) became progressively more anchored in ongoing practices. Despite the increasing
degree of structure, “channeling knowledge to respond to emergent challenges” (#7) continued for longer
as the new product accommodated some of the changes. As per Figure 3, the improvisational form
“devising responses to urgent needs” (#8) became more observable in these final stages of the project
and more anchored in ongoing practices. Other forms, including “experimenting with work organization”
(#9) and “appropriating known practices differently” (#3), were also anchored more in established practice
(the latter was particularly based on ISO). These established practices involved the procedures of quality-
management standards in the automobile industry and the routinized practices of the systems
development project team. While these ISO-based practices and structures were present in the early and
middle periods as well, the developers could improvise around them. The triggers for the forms of

1 Numbers #: forms of improvisation (from Table 3): 1) planning while executing, 2) revising voluntarily, 3) appropriating known
practices differently, 4) discovering and appending, 5) altering design features in response to shifting circumstances, 6) changing
design practices and adapting to new situations, 7) channeling knowledge to respond to emerging challenges, 8) devising responses
to urgent needs, 9) experimenting with work organization, 10) creating solutions spontaneously.
Lines: represent duration of the occurrence of the improvisational form within the project’s duration.
Downward slope of lines: improvisational forms becoming less related to autonomous reflexivity and more anchored in ongoing
practices.

!

827 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

improvisation associated with this later stage related more to the socio-technical context with developers’
growing resistance to structural constraints shaping their efforts to find effective workarounds (e.g., the
introduction of system integration testing in the project’s third period).

In Table 4, we extend the discussion by deriving three “levels” of improvisation for the forms we
discovered in the data: fluid (based on autonomous reflexitivity; see top of Table 4), anchored (based on
the anchor of ongoing practice; see bottom of Table 4), or mélange (based on a mixture of the two; see
middle of Table 4). We discuss this table and its implications in Section 5.

Table 4. Forms of Improvisation at ImproCo

Forms of improvisation Occurrence and changes over time Level of improvisation
Creating solutions

spontaneously (#10)
From the start of the project and continued
throughout; several occurrences. Fluid improvisation

Revising voluntarily (#2) At the start of the project but became more
structured and ceased; many occurrences. Fluid improvisation

Discovering and
appending (#4)

In the early period but became more structured and
ceased; fewer occurrences as project became more
structured.

Fluid improvisation/
Improvisational mélange

Planning while executing
(#1)

At the start of the project and continued for some
time; many occurrences. Improvisational mélange

Altering design features
in response to shifting

circumstances (#5)

Middle period of the project but continued before
becoming more anchored and ceasing; many
occurrences.

Improvisational mélange

Changing design
practices and adapting to

new situations (#6)

Middle period of the project and continued for some
time; a few occurrences (compared to “Altering
design in response to shifting circumstances”
increased anchored improvisation).

Improvisational mélange

Experimenting with work
organization (#9)

Late period of the project and continued for some
time; few occurrences. Improvisational mélange

Channeling knowledge to
respond to emerging

challenges (#7)

Middle stages of the project but continued before
becoming more anchored and ceasing; fewer
occurrences as it became more anchored in practice.

Anchored improvisation

Appropriating known
practices differently (#3)

Throughout the project, anchored in ongoing
practices; multiple occurrences, but fewer as the
project progressed and new practices became
established.

Anchored improvisation

Devising responses to
urgent needs (#8)

Late period of the project but became more
anchored and ceased; fewer occurrences as it
became more anchored in practice.

Anchored improvisation

5 Discussion and Implications
In this section, by drawing on the patterns and forms of improvisation identified from the analysis we
describe above, we address our research questions: that is, what kinds of improvisation exist in a new
systems development project in the context of rigid quality-management standards and how these kinds of
improvisation unfold over time. We then outline the research implications of these findings.

5.1 The Unfolding of Forms and Levels of Improvisation over Project Time
As we discuss Section 4, we identified ten major forms of improvisation at ImproCo and their triggers and
their socio-technical context (Table 3). The triggers also reflected tensions of which we found three sets: 1)
following formal plans of action while coping with emerging requirements, 2) allowing flexibility to change
while stabilizing the system, and 3) finding imaginative workarounds while enforcing quality standards.

The improvisational responses were anchored in autonomous reflexivity, ongoing practices, or a
combination of the two (Figure 3). Only three forms of improvisation were anchored in autonomous
reflexivity; either ongoing practice or a hybrid of the two shaped the remaining forms of improvisation. We
illustrate in Figure 3 how the different forms of improvisation followed a pattern. Table 4 summarizes the

Journal of the Association for Information Systems 828

Volume 18 Issue 11

unfolding forms of improvisation and groups them into three levels: fluid improvisation, anchored
improvisation, and improvisational mélange. We elaborate on these improvisational levels below.

5.1.1 Fluid Improvisation

As we illustrate in our analysis, some forms of improvisation are more spontaneous (individuals’
autonomous reflexivity) and often seen by others as an innovative and “bold” move (see Section 4.1). We
call this level of improvisation “fluid improvisation” (see top of Table 4). This includes solo performances
and the initial stages of some other forms of improvisation, such as revising voluntarily and discovering
and appending. The triggers for these forms of improvisation are spontaneous in their nature because
they are based on personal inspiration and serendipity, which Scott illustrated in the first period of the
project by working on the weekend to find a solution. Improvisation in such cases demonstrated
imagination (which the developers’ ability to anticipate future requirements informed) and creativity (given
the developers’ ability to come up with a solution on most occasions).

5.1.2 Anchored Improvisation

At the bottom of Table 4, we show forms of improvisation that are more anchored in established, ongoing
practice. These established practices are, in part, embedded in quality-management standards such as
ISO 9001 and, at ImproCo, were in the schedules and routinized practices of the systems development
project team, too. We call this level of improvisation “anchored improvisation”, and it reflects associated
structural influences. This form of improvisation includes appropriating previous practices differently and
other forms of improvisation in the final stages (e.g., responding to urgent needs, responding to emergent
challenges). The triggers for the forms of improvisation associated with this level were more systemic;
they became stronger as the project became more developed and structured through repeated
improvisational occurrences and increasing systemic influences such as stabilizing technology as per the
case study’s third period.

5.1.3 Improvisational Mélange

Between the fluid and anchored levels, we show a cluster of improvisational forms that often start “fluidly”
but gradually become anchored in established practices in Table 4. We call this middle level
“improvisational mélange”. The triggers for these forms of improvisation were related to self-motivation
and inspiration at the project’s start but became more grounded in the socio-technical context. The
developers frequently sought to improvise solutions outside their “normal” work routine (as Scott’s work
illustrates), which helped to expand the possibilities of the hardware and software under development.
The amount of improvisational activity seemed to relate to various milestones throughout the project
lifecycle. Hence, developers’ and managers’ experience of project time, represented by the pressure to
meet certain milestones, helped to shape the improvisational forms, mainly at the improvisational mélange
level. Anchored improvisation increased as developers were able to evoke prior experiences and to
appropriate established practices. However, the fluid improvisational activities occurred less as they
became more anchored in structuring practices.

As Table 4 shows, most of the improvisation forms were at either the improvisational mélange or
anchored improvisation levels. This finding indicates that, while many of the forms of improvisation
occurred later in the project, the earlier forms of improvisation were qualitatively different (e.g., they were
based on autonomous reflexivity in contrast to the later ones that were anchored on structures such as
ongoing practices and procedures) (Pavlou & El Sawy, 2010). In Section 5.2, we capture this
phenomenon through the “paradox of progressive saturation”.

5.2 The Changing Nature of Improvisation: A Paradox of Progressive Saturation
Our analysis indicates that, as a systems development project progresses, fluid improvisational work
becomes increasingly saturated with structural influences such as ongoing practices and procedures. Yet,
while development team members expect to work in a more structured way, their increasing knowledge
about the project yields progressively more innovative forms of improvisation. For example, in our case
study, we found that developers used unconventional means to handle last-minute customer requests
despite looming ISO-based sign-offs.

At the beginning of the project, developers had greater latitude for autonomous reflexivity because
improvisation was only loosely anchored in structural influences; it was more fluid and subjective. In the middle

829 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

and later periods of the project as the influence of structural constraints (e.g., structuring processes such as the
sedimentation of routine practices and the stabilization of technology features) on the nature of improvisation
became stronger, improvisation became more anchored in practices. And yet, the developers’ increasing
knowledge about the project yielded progressively more innovative forms of improvisation. The developers
could, therefore, draw on their highly local and timely knowledge to improvise innovative solutions.

Finally, to illustrate the evolutionary process of improvisation and its constituent forms, we conceive of it
as a paradox funnel (see Figure 4).

Figure 2. The Progressive Saturation Paradox Funnel

Moving from left to right, we depict that the influence of structural constraints on improvisation increasingly
saturates the initial latitude for autonomous reflexivity and fluid improvisation. Yet, paradoxically, the
increasing project knowledgeability of the developers yields progressively more innovative forms of anchored
improvisation, which we call a “paradox of progressive saturation”. It is paradoxical because the nature of
improvisation over the course of a systems project reveals seemingly contradictory elements of the
improvisation; that is, it simultaneously becomes both more saturated (through the increasing influence of
structural constraints) and more dynamic (through developers’ being progressively more innovative by
drawing on their increasing knowledgeability). As new systems development projects progress, the nature of
improvisation can transform from fluid forms of improvisation to forms of improvisation that are anchored
more on ongoing practices and structures. This paradox funnel depicts the changing nature of improvisation
over the course of a single systems project in the context of rigid quality-management standards.

This conceptualization of the changing nature of improvisation has several research implications. First, our
characterization of the nature of improvisation as a paradox of progressive saturation (Figure 4)
complements existing views of improvisation paradoxes in the IS literature, such as “planned serendipity”
and “rehearsed spontaneity” (cf. Zheng et al., 2007), by adding another dimension to illustrate the
tensions and dynamics that occur as different forms of improvisation unfold. The systems development
literature often treats improvisation as homogeneous in the lifetime of a systems project. Research on
improvisation in systems projects can benefit from insights into the dynamics of tensions, triggers, and
their socio-technical context, their associated forms of improvisational practice, and how these
improvisational forms change over the course of a systems development project lifecycle, such as the one
we have empirically investigated.

Second, insights from the study also contribute to better explaining the paradoxical tensions between
control and improvisational flexibility in systems projects (cf. Stacey & Nandhakumar, 2009) in the context
of safety-critical, rigid quality-management standards. The literature on ISO 9001 suggests that the
imperatives for formal procedures (Benner & Tushman, 2002) and bureaucracy (Singels, Ruël, & van de

Project(time

Increasing(anchored(improvisation,
Increasing(knowledgeability(&(structural(

influences((

Decreasing(fluid(improvisation,
Decreasing(latitude(for(
autonomous(reflexivity

!

Journal of the Association for Information Systems 830

Volume 18 Issue 11

Water, 2001) discourage the autonomous, “creative” thinking that we observed. However, in our case, ISO
implementation actually forged improvisation due to the individual developers’ ingenuity and their localized
culture of experimentation. Their knowledgeability, in terms of project, domain, and technical knowledge,
enabled them to enter into particular “levels” of improvisation (i.e., more autonomously reflexive or more
anchored in practice); the projects earlier days provided more latitude for autonomous reflexivity and fluid
improvisation. While the scope for fluid improvisation decreased towards the end of the project, the forms
of improvisation became more innovative as the project ran out of time and structural influences took hold.
We found that the latitude to improvise later on in the project related more to the accumulated local project
knowledge and practices (including the practice of improvising), which higher degrees of fluid
improvisation earlier on in the process balanced (creating solutions spontaneously, discovering and
appending, and revising voluntarily). Therefore, accumulated knowledge was at a premium later on in the
project if the developers were to pull off any form of improvisation at all, which they did.

Finally, our findings also contribute to understanding the dynamic interplay between improvisation and
learning. According to Weick (1998, p. 546), “improvisation does not materialize out of thin air”—prior
experiences are key. As the bespoke ImproCo project progressed, the knowledge and learning of the
developers grew, which contributed to their producing increasingly innovative forms of improvisation.
Further, the actors could reflect on progressive “lessons” through their capacity to disembed from routines
and break away from structural constraints, which helped them to restructure the emergent structural
constraints. In every moment of improvisation, one has an opportunity to push the boundaries of what is
possible with the existing artifacts (Scarbrough, Panourgias, & Nandhakumar, 2015) and expertise and to
create new accumulations of knowledge (knowledgeability). Different forms of such knowledge are
associated with different levels of improvisation. For example, earlier in the project, the fluid level of
improvisation depended less on localized knowledge and the project’s structural settings and more on
broader knowledge and personal inspiration. As Moorman and Miner (1998b, p. 703) claim, this level of
improvisation discards links between existing practices and “composes new patterns”. That being the
case, anchored improvisation later in the project, which exploited previous practices, depended
significantly more on accumulated local knowledge and the recursive occurrence of practices, which
helped reproduce and legitimize the knowledge. Knowledge creation and increasing knowledgeability
could be seen as an unintended outcome improvisational act. This finding is interesting when compared to
Miner et al. (2001, p. 331), who argue that improvisation differs from other organizational learning, such as
a planned set of procedures to explore and retain knowledge.

6 Conclusion
In this paper, we conceptualize the changing nature of improvisation over the course of a systems
development project. Specifically, we identify ten major forms of improvised practice and their triggers and
socio-technical contexts in the context of safety-critical, rigid quality-management standards. We argue
that these forms of improvisation are anchored in autonomous reflexivity, ongoing practices, or a
combination of the two, which results in three “levels” of improvisation: fluid improvisation, anchored
improvisation, and improvisational mélange. We show how, as the project we examined progressed, the
increasing saturation of structural influences on improvisation constrained developers’ latitude to
improvise. Yet, paradoxically, their increasing knowledge yielded progressively more innovative forms of
improvisation, which we refer to as a “paradox of progressive saturation”.

Our research comes with several practical implications. The findings that developers could achieve
different forms of improvisation throughout the project (with varying success) despite reinforcing the rigid
context of planning and quality-management indicates that management cannot solely rely on detailed
planning to resolve complex development set-ups. Process-management frameworks (such as ISO 9001)
generate an overemphasis on tools, techniques, and methodologies, but the prescribed procedures alone
can rarely resolve all difficulties (cf. du Plooy, 2002). Improvisational activities help developers cope with
such difficulties by maintaining flexibility. However, placing sole trust in the improvisational capabilities of
developers and managers without planning might cause other problems, such as inconsistency, poor
coordination, and quality problems. To retain an innovative capability, firms must maintain the right
balance between the support structure (e.g., based on ISO framework) and the latitude for improvisation
needed to overcome these problems.

Further, we show that the process-management framework of ISO 9001 was sometimes at odds with the
improvisational practices at ImproCo because the company needed to maintain innovative capacity.
Nevertheless, the developers saw the frameworks as essential for maintaining a perception of quality (cf.

831 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

Nandhakumar & Avison, 1999) and satisfying annual ISO 9001 assessments. Such use of process-
management frameworks as “scaffolding” seems to allow, nurture, and contain some improvisations in the
daily work of system development. At ImproCo, the developers and managers followed the process-
management framework just enough to sustain the ISO certification process but left enough room to
practice a variety of improvisations.

Our research also comes with some limitations. In particular, we examined only a single case study and
focused on improvisation at the project level. Studies in multiple contexts may facilitate cross-comparisons
to identify possible variation in how improvisation unfolds over time in other settings. Further, individual
project team members’ experiences seemed to differ, yet we captured this phenomenon only partially.
Future research could seek to develop and analyze multiple, overlapping narratives (cf. Brown, Stacey, &
Nandhakumar, 2008) of project members’ experiences, which could help to build on this work to develop a
richer perspective of how improvisational forms unfold over the course of a project.

Journal of the Association for Information Systems 832

Volume 18 Issue 11

References
Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development methods:

Review and analysis. Espoo, Finland: VTT Publications.

Archer, M. S. (2007). Making our way through the world. Cambridge, UK: Cambridge University Press.

Bansler, J., & Havn, E. (2003). Improvisation in action: Making sense of IS development in organizations.
In Proceedings of the International Workshop on Action in Language, Organisations and
Information Systems (pp. 51-63).

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & Slaughter, S. (2003). Is Internet-speed software
development different? IEEE Software, 20(6), 70-77.

Benner, M., & Tushman, M. (2002). Process management and technological innovation: A longitudinal
study of the photography and paint industries. Administrative Science Quarterly, 47(4), 676-706.

Berente, N., & Yoo, Y. (2012). Institutional contradictions and loose coupling: Postimplementation of
NASA's enterprise information system. Information Systems Research, 23(2), 376-396.

Bhardwaj, A., Bhattacherjee, S., Chavan, A., Deshpande, A., Elmore, A., Madden, S., & Parameswaran,
A. (2015). DataHub: Collaborative data science & dataset version management at scale. In
Proceedings of the Biennial Conference on Innovative Data Systems Research.

Brown, A. D., Stacey, P., & Nandhakumar, J. (2008). Making sense of sensemaking narratives. Human
Relations, 61(8), 1035-1062.

Cunha, M., Cunha, J., & Kamoche, K. (1999). Organizational improvisation: what, when, how and why.
International Journal of Management Reviews, 1(3), 299-341.

du Plooy, N. (2002). Information systems as social systems. In Cano, J. (Ed.) Critical reflections on
information systems. London, UK: Idea Group.

Dybå, T. (2000). Improvisation in small software organizations. IEEE Software, 17(5), 82-87.

Dyer, W. G., & Wilkins, A. L. (1991). Better stories, not better constructs, to generate better theory.
Academy of Management Review, 16(3), 613-619.

Effah, J., & Abbeyquaye, G. (2014). How FOSS replaced proprietary software at a university: An
improvisation perspective in a low-income country. African Journal of Information Systems, 6(1), 9-
25.

Gioia, T. (1988). The imperfect art: Reflections on jazz and modern culture. Stanford, CA: Stanford Alumni
Association.

Goffman, E. (1959). The presentation of self in everyday life. Garden City, NY: Doubleday.

Karlström, D., & Runeson, P. (2005). Combining agile methods with stage-gate project management.
IEEE Software, 22(3), 43-49.

Langley, A. (1999). Strategies for theorizing from process data. Academy of Management Review, 24(4),
691-710.

Lanzara, G. (1999). Between transient constructs and persistent structures: Designing systems in action.
Journal of Strategic Information Systems, 8(4), 331-349.

Leidner, D. E. L., & Jarvenpaa, S. L. (1993). The information age confronts education: Case studies on
electronic classrooms. Information Systems Research, 4(1), 24-54.

Louridas, P. (1999). Design as bricolage: Anthropology meets design thinking. Design Studies, 20(6),
517–535.

Magni, M., Proserpio, L., Hoegl, M., & Provera, B. (2009). The role of team behavioral integration and
cohesion in shaping individual improvisation. Research Policy, 38(6), 1044-1053.

Marjanovic, O., & Hallikainen, P. (2013). Disaster recovery—new challenges and opportunities for
business process management research and practice. Pacific Asia Journal of the Association for
Information Systems, 5(1), 23-44.

833 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

McGann, S. T., & Lyytinen, K. (2008). The improvisation effect: A case study of user improvisation and its
effects on information system evolution. In Proceedings of the International Conference on
Information Systems.

Mendonça, D. (2007). Decision support for improvisation in response to extreme events: Learning from
the response to the 2001 World Trade Center attack. Decision Support Systems, 43(3), 952-967.

Miles, M., & Huberman, M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage.

Miner, A., Bassoff, P., & Moorman, C. (2001). Organizational improvisation and learning: A field study.
Administrative Science Quarterly, 46(2), 307-337.

Mirvis, P. (1998). Practice improvisation. Organization Science, 9(5), 586-592.

Moorman, C., & Miner, A. (1998a). The convergence of planning and execution: Improvisation in new
product development. Journal of Marketing, 62(3), 1-20.

Moorman, C., & Miner, A. (1998b). Organizational improvisation and organizational memory. Academy of
Management Review, 23(4), 698-723.

Mutch, A. (2010). Technology, organization, and structure—a morphogenetic approach. Organization
Science, 21(2), 507-520.

Nandhakumar, J., & Avison, D. (1999). The fiction of methodological development: A field study of
information systems development. Information Technology & People, 12(2), 176-191.

Nandhakumar, J., & Jones, M. (1997). Too close for comfort? Distance and engagement in interpretive
information systems research. Information Systems Journal, 7(2), 109-131.

Nicolini, D. (2009). Zooming in and out: Studying practices by switching theoretical lenses and trailing
connections. Organization Studies, 30(12), 1391-1418.

Njenga, K., & Brown, I. (2012). Conceptualising improvisation in information systems security. European
Journal of Information Systems, 21(6), 592-607.

Orlikowski, W. J. (1993). CASE tools as organizational change: Investigating incremental and radical
changes in systems development. MIS Quarterly, 17(3), 309-340.

Paulk, M. C., Curtis, W., Chrissis, M., & Weber, C. B. (1993). Capability maturity model, version 1.1. IEEE
Software, 10(4), 18-27.

Pavlou, P. A., & El Sawy, O. A. (2010). The “third hand”: IT-enabled competitive advantage in turbulence
through improvisational capabilities. Information Systems Research, 21(3), 443-471.

Rakitin, S. R. (2006). Coping with defective software in medical devices. Computer, 39(4), 40-45.

Rodon, J., Sese, F., & Christiaanse, E. (2011). Exploring users' appropriation and post-implementation
managerial intervention in the context of industry IOIS. Information Systems Journal, 21(3), 223-
248.

Saltz, J. S. (2015). The need for new processes, methodologies and tools to support big data teams and
improve big data project effectiveness. In Proceedings of IEEE International Conference on Big
Data (pp. 2066-2071).

Scarbrough, H., Panourgias, N. S., & Nandhakumar, J. (2015). Developing a relational view of the
organizing role of objects: A study of the innovation process in computer games. Organization
Studies, 36(2), 197-220.

Schrenker, R. A. (2006). Software engineering for future healthcare and clinical systems. Computer, 39,
26–32.

Singels, J., Ruël, G., & van de Water, H. (2001). ISO 9000 series—certification and performance.
International Journal of Quality and Reliability Management, 18(1), 62-75.

Stacey, P., & Nandhakumar, J. (2009). A temporal perspective of the computer game development
process. Information Systems Journal, 19, 479-497.

Stacey, P., & Nandhakumar, J. (2008). Opening up to agile games development. Communications of the
ACM, 51(12), 143-146.

Journal of the Association for Information Systems 834

Volume 18 Issue 11

Teoh, S. Y., Wickramsinghe, N., & Pan, S. L. (2012). A bricolage perspective on healthcare information
systems design: An improvisation model. ACM SIGMIS Database, 43(3), 47-61.

Walsham, G. (1993). Interpreting information systems in organizations. Chichester, UK: Wiley.

Weick, K. (1993). The collapse of sensemaking in organizations: The Mann Gulch disaster. Administrative
Science Quarterly, 38(4), 628-652.

Weick, K. (1998). Improvisation as a mindset for organizational analysis. Organization Science, 9(5), 543-
555.

Weick, K. E. (1999). That's moving: Theories that matter. Journal of Management Inquiry, 8(2), 134-142.

Weick, K. (2001). Making sense of the organization. Maldon, MA: Blackwell Publishing.

Zheng, Y., Venters, W., & Cornford, T. (2007). Distributed development and scaled agility: Improvising a
grid for particle physics. Retrieved from http://is2.lse.ac.uk/wp/pdf/wp163.pdf

Zheng, Y., Venters, W., & Cornford, T. (2011). Collective agility, paradox and organizational improvisation:
The development of a particle physics grid. Information Systems Journal, 21(4), 303-333.

835 A Paradox of Progressive Saturation: The Changing Nature of Improvisation over Time in a Systems
Development Project

Volume 18 Issue 11

Appendix

Figure A1. Snapshot of the Evolution Analysis Process

Journal of the Association for Information Systems 836

Volume 18 Issue 11

About the Authors
Wolfgang A. Molnar works as a researcher at Warwick Business School and practitioner in the
automotive industry for ZF in Germany. Previously, he was a Research Fellow at the Luxembourg Institute
of Science and Technology. He earned his PhD in Information Systems and Management from the
Warwick Business School, University of Warwick. His research expertise focuses on socio-technical
aspects in developing Information Systems.

Joe Nandhakumar is Professor of Information Systems at Warwick Business School, University of
Warwick. He earned his PhD from the University of Cambridge, Department of Engineering. His primary
research and teaching interests focus on the digital innovation and organizational and societal
transformation. His recent work has been published in the journals such as Information System Research,
Journal of the Association for Information Systems, Information Systems Journal and Organization
Studies.

Patrick Stacey is an Associate Professor of Information Management at the School of Business and
Economics, Loughborough University. His expertise lies in managing games development and a variety of
epi-phenomena that stem from this, most particularly emotion and improvisation. Over the course of his
25-year career in industry and academia, he has won a number of prestigious prizes, fellowships and
scholarships from institutions including the Association for Computing Machinery, Engineering and
Physical Sciences Research Council, Imperial College London, Warwick Business School, and the
National Computer Board of Singapore. The varied positions he currently holds includes: Senior Editor of
IT and People, Program Director for Masters in Information Management and Business Technology,
Academic Lead on the Digital and Health Helix for EU Vision2020 and Research Challenge Advocate for
Enabling Technologies.

