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Abstract: 

Faces are important in both human communication and computer-mediated communication. In this study, I analyze 
the influence of emotional expressions in faces on knowledge-sharing decisions in a computer-mediated environment. 
I suggest that faces can be used for affect infusion and affect detection, which increases the effectiveness of 
knowledge-management systems. Using the affect infusion model, I discuss why emotions can be expected to 
influence knowledge-sharing decisions. Using the two-step primitive emotional contagion framework, I found that 
emotional facial expression attached to a knowledge-sharing request influenced knowledge-sharing decisions. This 
influence was mediated by the decision maker’s emotional valence in the facial expression tracked by Face Reader 
technology and held for females but not males. I discuss implications for designers of emotionally intelligent 
information systems and research. 
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1 Introduction 
Our ability to recognize human faces is remarkably quick, precise, and effortless. Despite their complexity 
and similarity (e.g., they comprise the same objects such as a mouth, nose, and eyes), we can tell who 
someone is, whether we have seen someone before or not, and what someone’s relationship to us is. 
With a short glance at a face, we can usually even tell someone’s age, gender, and emotional state (Hole 
& Bourne, 2012; Zhao, Chellappa, Phillips, & Rosenfeld, 2003; Fridlund, 1991). In this study, I examine 
the influences of gender and emotional state on social interactions that involve knowledge-sharing 
decisions in an electronic communication environment that contains pictures of faces. 

Studying knowledge sharing is important because knowledge is the foundation of a firm’s competitive 
advantage (Spender, 1996). However, knowledge inherently resides in the individual, and individual 
knowledge does not always easily transform into organizational knowledge (Hahn & Subramani, 2000; 
Bock, Zmud, Kim, & Lee, 2005). Thus, determining mechanisms that influence individual knowledge 
sharing is an important step towards improving knowledge management. 

I contribute to the knowledge sharing literature by exploring a mechanism based on affect. With that said, 
affect does not influence all judgments and decisions (Forgas, 1995). I suggest that affect influences 
knowledge-sharing decisions because the act of sharing knowledge is rather complex and strategic and 
can, thus, be infused by affect according to the affect infusion model (AIM) (Forgas, 1995). 

Specifically, I examine whether facial expressions (happy vs. angry) can induce affect that influence 
knowledge sharing. Nowadays, individuals can easily communicate facial expressions in electronic 
communication and do so regularly. Research has also shown that facial expressions communicate and 
transfer emotions (Seidel, Habel, Kirschner, Gut, & Derntl, 2010). I draw on the two-step primitive 
emotional contagion theory (Hatfield, Cacioppo, & Rapson, 1994). This theory suggests that, in a first step 
people engage in mimicry behavior based on facial expressions, and, in a second step, they then begin to 
feel the emotions that they mirror in others. 

Importantly, this research addresses the question of whether the two-step model differs by gender. 
Researchers see the role of gender differences as important to more completely understand user behavior 
in information systems (Gefen & Straub, 1997; Venkatesh & Morris, 2000; Riedl, Hubert, & Kenning, 
2010b). Yet, research has found conflicting results of gender differences (Croson & Gneezy, 2009). As 
such, guided by the emotional contagion framework, I study 1) gender differences in individuals’ tendency 
to “catch” the emotions displayed in the picture of a face and 2) gender differences in the way such 
emotions influence knowledge sharing. 

To study this model, I use a 2 (requestor’s facial expression) x 2 (receiver’s gender) + 1 (control) 
experimental design. The stimuli of the requestor’s facial expression comprise pictures that show either 
happy or angry faces. I used face-detection technology (Face Reader by Noldus) to test for the presence of 
the mimicking behavior. Research has shown facial-detection technology to serve as an acceptable proxy 
for facial electromyography (EMG), which directly captures the contractions of facial muscles by inserting the 
electrodes to the face (D’Arcey, 2013). In this study, I conducted an experiment in which I asked participants 
about their willingness to share knowledge with a colleague who showed “free-riding” behavior. 

This paper proceeds as follows: in Section 2, I review the background literature and, in Section 3, develop 
the research model. In Section 4, I explain the method used. In Section 5, I present and discuss the 
results. In Section 6, I discuss the study’s limitations. In Section 7, I discuss the study’s contributions to 
research and practice. 

2 Background and Hypothesis Development 

2.1 Knowledge Sharing 
According to the knowledge-based view of the firm (Spender, 1996), knowledge is the foundation of a firm’s 
competitive advantage. However, knowledge inherently resides in the individual (Bock, Zmud, Kim, & Lee, 
2005). Researchers have been interested in organizational knowledge sharing because the ability to integrate 
specialized individual knowledge into organizational uses and routines to produce a competitive advantage 
depends on effective knowledge-sharing behaviors (Sarma, Subramani, & Aldrich 2001; Whelan, 2007). 

Organizations have formalized knowledge sharing through implementing organizational knowledge-
management systems (e.g., knowledge repositories or intranet networks) (Hahn & Subramani, 2000). These 



Journal of the Association for Information Systems 705  
 

Volume 18   Issue 10  
 

technologies focus on improving knowledge sharing and largely coded forms of knowledge. However, 
individual knowledge does not always easily transform into organizational knowledge (Bock et al., 2005) 
partly because knowledge can comprise rich information that one cannot codify (Hislop, 2002) and the 
transfer of information often occurs informally through direct interactions and discussions. Thus, research 
has critically debated organizations’ reliance on information technologies to share knowledge (Hislop, 2002). 
Researchers have also suggested that informal knowledge sharing depends on motivational factors in 
particular, which they have claimed we do not fully understand (Kalling & Styhre 2003). Consequently, we 
need to understand knowledge-sharing behavior and its determinants more completely. 

Knowledge sharing comes with beliefs about expected costs and benefits. These beliefs are important in 
determining knowledge-sharing behaviors (Bock et al., 2005). If the benefits exceed the costs, then 
knowledge sharing is likely (or unlikely otherwise). The costs of knowledge sharing can relate to both time 
and effort (Lin, 2007), such as time taken and mental effort required to share knowledge. In an 
organizational setting, those who have the option to share knowledge may lose their unique value and power 
in the organization from sharing it (Kankanhalli, Tan, & Wei, 2005); they also face the risk that others will 
deem the knowledge they share to be inaccurate or irrelevant, which can damage their reputation (Bock et 
al., 2005). Benefits of sharing knowledge can come in the form of recognition and social capital and can 
provide benefits to individuals by enabling them to signal their competence (Haas & Hansen, 2007). Next to 
a simple cost-benefit view, one can also view knowledge sharing as a strategic decision. 

Researchers have discussed a strategic view of knowledge sharing through the lens of a public goods 
dilemma (Cabrera & Cabrera, 2002; Wasko & Faraj, 2000). Defined as a product or good created by a 
group, a public good is accessible to all members of a group whether or not each individual contributed to 
its creation. For example, one can view a public park as a public good because all individuals can enjoy 
it—even those who do not pay taxes. Because knowledge and/or resource sharing between employees 
frequently leads to improved performance and the development of novel ideas, methods, and tools, it is 
often in the best interest of organizations for employees to share knowledge with each other regardless of 
whether they assisted in developing that knowledge or not. 

Because of unrestricted access to public goods in organizations, “free-riding” (i.e., consuming the public 
good without having contributed to its creation) can often occur (Sweeney, 1973). Therefore, the highest 
individual utility occurs when organizations withhold cooperation among group members regardless of the 
remaining members’ actions. Non-contributors can maximize their utility of the public good if the majority 
of the group members contribute to producing the public good. However, if all group members contribute 
little, a non-contributor can save the effort of useless contribution. Thus, from the perspective of 
maximizing economic utility (Dawes, 1980), a dominant strategy involves not contributing to a public good 
(e.g., knowledge) (i.e., defecting). 

However, in reality, most group members are willing to sacrifice their individual contribution in order to 
enjoy the public good (compared to retaining their individual contribution and not using the public good). If 
all members in a group believed the others would all contribute equally, then the majority would actually 
contribute to creating the public good. This argument serves as the source of the dilemma. Individuals 
often perceive defecting as the dominant strategy (i.e., where all members of the group suffer by not being 
able to use the public good). As more individuals in the group defect, the individual incentive to contribute 
to the public good (and, therefore, reap the benefits) declines. 

Thus, from both the cost-benefit perspective and the public goods perspective, knowledge sharing is a 
rather complex decision individuals make. The affect infusion model (AIM) (Forgas, 1995), which I 
introduce in more detail below, states that tasks that require little to no constructive thinking and 
processes, such as performing routine actions, should largely be impervious to affect infusion. However, 
emotions should readily influence complex and strategic tasks (Forgas & George, 2001). 

2.2 Facial Expressions and Emotional Contagion 
Body and facial expressions (and their effects) are of great interest to researchers (Fridlund, 1994; 
Hatfield, Cacioppo, & Rapson, 1994; Seidel et al., 2010) because they are vital methods of 
communicating and conveying information in a non-verbal manner. Facial expressions are specific 
configurations of the facial muscles’ contracting and relaxing. Consequently, they are a key aspect of 
social interaction, communication, and information transmission because they contain information that can 
influence the behavior of others (Fridlund, 1994). Further, facial expressions can frequently provide insight 
into an individual’s emotional state (Russell, 1994), which may partly explain the emotional labor mantra of 
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“service with a smile” (Pugh, 2001), which assumes that service from positive, happy staff/employees 
leads to happy, satisfied customers. 

The emotional contagion theory describes the way in which facial expressions can influence behavior 
(Hatfield et al., 1994), which relates to the flow of emotions from one person to another. Research that 
involves emotional contagion explores how emotions are transmitted between people in social interactions 
and how the flow (or “catching”) of other individuals’ emotions can alter behavioral patterns. Research has 
identified both conscious and subconscious processes to influence emotional contagion (Barsade, 2002). 
Conscious processes include social comparisons between people (Barsade, 2002), whereas people 
subconsciously mimic and match the facial expressions, vocal tones, and body movements of others to 
approach and enter the same emotional state (Hatfield et al., 1994). The subconscious, automatic process 
of contagion is the result of a two-step process. 

First, the tendency to mimic the facial expressions and behaviors of others is believed to be innate. 
Researchers have observed such mimicry behavior in direct interactions between two or more individuals 
and in response to the presentation of photographs of expressive faces (Hatfield et al., 1994; Wild, Erb, & 
Bartels, 2001). Researchers have offered a neuroscientific explanation for this mimicry based on the actions 
of “mirror neurons” located in the human motor cortex, which they believe to be responsible for imitation 
behaviors. Mirror neurons are activated both when an individual observes an action and when they initiate 
the same action themselves (Rizzolatti & Craighero, 2004). Consequently, if individuals see a smiling, happy 
individual, they tend to mimic this behavior and display a smile ourselves. Therefore, the observation of 
others’ behaviors and the realization of our own behaviors appear to be closely linked via neurological 
processes. Such processes underline the theory that mimicking behavior is innate and autonomic. 

Second, when people engage in mimicry behavior, they then begin to feel the emotions that they mirror. 
This emotional shift results from physiological feedback from muscular, visceral, and glandular responses 
(Barsade, 2002; Hatfield et al., 1994; Horstmann, 2003). Consequently, observing a human smile can 
induce similar emotional states in the observer. Because emotions drive human behavior (Lazarus, 1991; 
Weiner, 1992), the behavioral effects of observing faces may result from the activation of emotional states 
in individuals’ perceiving facial expressions (Fridlund, 1994; Seidel et al., 2010). 

2.3 Emotions and Knowledge Sharing 
Research on the interplay of feeling and thinking in relation to complicated cognitive processes such as 
decision making, learning, and memory has experienced a considerable rise in the last decade. 
Researchers have proposed several models to help explain the influence of affective states on cognition 
(Cohen, 2005; Forgas & Eich, 2013; Forgas & George, 2001). They have found that emotional processing 
interacts with (and, in some cases, overrides) cognitive decision making1. 

Researchers have identified that affect influences cognition in at least two ways. First affect can influence 
what people think (i.e., what kind of information people recall, attend to, select, interpret, and learn) 
through a greater availability and use of affectively colored information (the content of cognition; Bower, 
1981). Second, affect may influence the process of thinking (i.e., how people deal with a given task) 
(Forgas, 1998). Some evidence suggests that positive affect promotes a more internally driven, top-down, 
flexible, and generative processing style, while negative affect facilitates a more externally oriented, 
bottom-up, and systematic thinking style (Bless, 2000; Fiedler, 2000). 

Forgas’ (1995) affect infusion model (AIM) provides an integrated model to explain in which circumstances 
feeling colors judgment. Affect infusion refers to the process whereby affectively loaded information exerts 
an influence on and becomes incorporated into a person’s processes and deliberations, which eventually 
colors the person’s decisions (Forgas, 1995). Affect infusion occurs because planning and executing 
complex social (and organizational) behaviors usually requires constructive cognitive processes for which 
pre-existing knowledge, memories, and associations play a part in interpretation and response (Forgas & 
George, 2001). The AIM argues that the extent of affect infusion critically depends on what kind of 
processing strategy one uses for a particular task. 

                                                        
1 The literature differentiates between moods and emotions in terms of intensity and time. It describes emotions as more intense and 
shorter than moods. It often uses the term affect as a generic label to refer to both (Forgas & George, 2001). In terms of emotional 
states visible in human faces, the literature also regularly uses the term valence to describe whether the emotional state is “good” 
(positive) or “bad” (negative) (Loijens & Krips, 2014; Cowie et al., 2001). 
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The AIM identifies four processing strategies that vary by the degree of openness or constructiveness, 
effort involved in seeking a solution, and likelihood of affect infusion (Forgas & Eich, 2013; Forgas, 1995). 
While analyzing and reviewing the model in this paper falls outside its scope, we need to understand the 
model’s main premises. The AIM states that tasks that require little to no constructive thinking and 
processes, such as performing routine actions, should largely be impervious to affect infusion. However, 
in contrast, affect should readily influence complex and strategic tasks (Forgas & George, 2001). The 
model posits that complex tasks require constructive thinking and interpretation of ambiguous or 
indeterminate information for which feelings can help guide interpretations and judgments, whereas 
simple processes follow a more automatic style of response. Research in the organizational setting has 
demonstrated the influence of affect infusion on a number of complex processes including work 
motivation, performance, judgments, group functioning, and withdrawal behaviors (Forgas & George, 
2001). Thus, since knowledge sharing is a complex and strategic decision that depends several factors, 
we may expect feelings to influence knowledge sharing in a way consistent with the AIM. Having 
established that affect is likely to influence outcomes with regards to knowledge sharing, I turn to the 
question of whether gender moderates such influence. 

2.4 The Moderating Role of Gender 
IS research considers gender differences to be an important factor in understanding user behavior 
(Venkatesh & Morris, 2000), human-computer interaction (Sproull, Subramani, Kiesler, Walker, & Waters, 
1996), and technology adoption in their entireties (Gefen & Straub, 1997). Recently, Riedl et al. (2010b) 
observed that women activated more brain areas in their study on decisions on trustworthiness of eBay 
offers. Similarly, Pavlou (2010) has called for more research into the moderating role of gender after 
observing brain activation for his constructs in relation to the perception of online product recommendation 
agents mainly for female rather than male users. 

The academic literature at large and not just the IS literature also continues to debate whether men and 
women have any universally different social behaviors. While we have strong evidence that males and 
females differ in social preferences (for a review, see Croson & Gneezy, 2009), we have conflicting results 
about how men and women differ in their social preferences (Croson & Gneezy, 2009). 

Regarding knowledge-sharing behavior, research has already shown that men and women differ. As such, 
we have established that gender roles influence knowledge sharing as a social behavior (Miller & 
Karakovsky, 2005). Further, Lin (2008) has found that the influences of courtesy and sportsmanship on 
knowledge sharing are stronger for men than for women and that the influence of altruism on knowledge 
sharing is stronger for women than for men. These findings generally suggest that men and women have 
different motivations to share knowledge. I take the lens of the emotional contagion framework (Hatfield et 
al., 1994) and examine whether men and women differ in knowledge-sharing behavior and suggest a 
mechanism through emotions for gender differences in knowledge sharing. 

3 Hypotheses 
First, I suggest that individuals exhibit emotional contagion when presented with a happy versus angry 
face along with a knowledge-sharing request and that gender moderates this emotional contagion such 
that men are less susceptible to the emotional stimuli from someone who requests them to share 
knowledge than women. Consistent with Croson and Gneezy (2009 p. 463) who state that “the cause 
of…conflicting [gender] results is that women are more sensitive to cues…than are men” and consistent 
with psychology research that suggests that women are more sensitive to social cues (Kahn, Hottes, & 
Davis, 1971), I suggest that women exhibit more emotional contagion. 

H1: A receiver’s emotional valence response is more strongly associated with a requestor’s facial 
expression (angry vs. happy) when the receiver is female rather than male. 

Second, as I discuss above, knowledge sharing is a rather strategic and complex decision, and, thus, the 
AIM would predict that emotions are likely to play a role in knowledge-sharing decisions. In light of 
evidence that negative emotions can induce avoidance behavior, that positive emotions lead to approach 
behavior such as trust or cooperation (Forgas & Eich, 2012), and that individuals more often accept offers 
in strategic games accompanied by a smiling rather than a neutral or angry face (Mussel, Goeritz, & 
Hewig, 2013), one can derive that decision makers’ emotional valence is associated with knowledge-
sharing behavior. In particular, I expect that gender moderates this relationship. 
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Allen and Haccoun (1976) studied gender differences in emotional intensity and found gender differences 
in the “functional significance of emotions” (p. 711) whereby women experienced emotions at higher levels 
than men. Literature on emotional intensity generally agrees that “women report more intense experience 
of emotions than men” (Grossman & Wood 1993, p. 1010; see also Allen & Hamsher, 1974; Diener, 
Sandvik, & Larsen, 1985; Larsen & Diener, 1987). Psychophysiology evidence supports that woman and 
men experience emotions differently in that they activate different parts of the brain under the same mood 
(Blackhart, Kilne, Donohue, LaRowe, & Joiner, 2001). 

Recall that, as derived from the AIM, infused affect is likely to color knowledge-sharing decisions. Drawing 
on the literature on differences in the functional significance of emotions in women and men (Allen & 
Hamsher, 1974; Allen & Haccoun, 1976), I predict that women experience the infused affect more strongly 
than men, which leads to a higher significance of the emotion for women than men in the decision making 
process and to a stronger emotional effect for women than men. 

H2: A receiver’s emotional valence is more positively associated with a receiver’s knowledge-
sharing willingness when the receiver is female rather than male. 

As such, H1 and H2 together describe an indirect effect of a requestor’s facial expression on a receiver’s 
knowledge-sharing willingness through a receiver’s emotional valence. Gender fully moderates this 
indirect effect. The moderation in stage 1 draws on gender differences in the sensitivity to social cues 
(Kahn et al., 1971; Croson & Gneezy, 2009), and the moderation in stage 2 draws on gender differences 
in the intensity and the functional significance of the emotional experience (Grossman & Wood, 1993; 
Allen & Haccoun, 1976). Figure 1 depicts the research model. 

 
Figure 1. Research Model 

4 Method 
I conducted a scenario-based experiment in which I asked participants to work through a scenario and 
make a knowledge-sharing decision. I analyzed the experiment based on a 2 (requestor’s facial 
expression) x 2 (receiver’s gender) + 1 (control) design. I randomly assigned participants to either a 
positive or a negative requestor’s facial expression condition. In all, I assigned an approximately equal 
number of female and male participants to each treatment condition. The control condition displayed a 
neutral emotion as I explain below. 

4.1 Participants and Sample Description 
I successfully collected face-reader, eye-tracking, and behavioral data from 56 participants. The 56 
participants—students from a second-year accounting information systems class—took part on a 
voluntary basis. On average, the participants were 20.68 years’ old; further, 44.6 percent were male and 
55.4 percent were female. 

4.2 Experimental Materials 
I conducted the study in a laboratory of a large university. The laboratory contained separate cubicles with 
Tobii T120 eye trackers. Separate cubicles ensured that participants worked on the case material without 
disturbance. I asked participants to leave their belongings outside of the cubicles. The participants used 
17-inch displays with eye trackers and video cameras built into their rims.  

Figure 2 (next page) illustrates the two sensors (i.e., eye trackers and video cameras) and their role in the 
experimental set-up. I used the video cameras to produce video footage of participants’ faces. I used the 
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eye trackers to detect when participants fixated on the stimuli. Thus, by using the eye trackers in 
combination with the video footage, I could record the faces of the participants and the exact tracing of 
when they looked at the stimuli when completing the experimental scenario. The combination of the eye-
tracking and face-reading technologies enabled the experimental set-up to overcome limitations of a 
variety of other systems in the context-dependent tracking and detection of facial emotions. In reviewing 
the state of the art of facial detection, Calvo and D’Mello (2010, p. 24) state: “almost none of the systems 
integrated contextual cues with facial feature tracking”. My system could track the context (i.e., 
participants’ interaction with the system) via tracking their eye movements. 

I used the Tobii Studio 3 software package to analyze participants’ gazes at the stimuli. I used the Face 
Reader 5 software package from Noldus to analyze their video footage. Research has shown this 
software to serve as an acceptable proxy for facial electromyography (EMG), which directly captures the 
contractions of facial muscles by inserting the electrodes to the face (D’Arcey, 2013). Rather than using 
electrodes, Face Reader identifies the face before creating a three-dimensional active appearance model 
(AAM) (Cootes & Taylor, 2004) of the face. During processing, it uses the AAM to compute scores of 
intensity and probability of facial expressions on a continuous scale from 0 to 1. van Kuilenburg, Wiering, 
and den Uyl (2005) describe the algorithms that the Face Reader uses in detail. Research has also shown 
the Face Reader to be as accurate as a human when it comes to correctly recognizing emotions 
(Lewinski, den Uyl, & Butler, 2014). Researchers have used the technology in psychology (He, Boesveldt, 
de Graaf, & de Wijk, 2014), marketing (Lewinski, Tan, Fransen, Czarna, & Butler, 2016), and information 
systems user experience research related to screen complexity (Goldberg, 2014). 

The Face Reader classifies participants’ facial expressions in line with the seven basic emotions that 
Ekman (1970) describes: happy, sad, angry, surprised, scared, disgusted, and neutral. Ekman classifies 
“happy” as a positive emotion and “sad”, “angry”, “scared”, and “disgusted” as negative emotions. 
“Surprise” can be either positive or negative, whereas “neutral” is neither positive nor negative. 

4.3 Procedure and Task 
I asked participants to sit in a cubicle and read through case instructions and answer the presented 
questions. I adapted the case from Constant, Kiesler, and Sproull (1994). It asks participants to assume 
the role of a junior level programmer. Specifically, participants received the following information about the 
department the case asked them to assume they worked in: 

You and Alex are junior-level computer programmers. You and Alex are in the same department 
and are assigned to the same programming project. About a month ago, Alex refused to help 
you fix a program bug. 

Then, they learnt that Alex had asked them for help. The knowledge they needed to share was codified 
knowledge (Wasko & Faraj, 2000); that is, a software program. Specifically: 

You have just put 40 hours of work into a particularly difficult computer program to be used in 
your project. Now, Alex would love to have a copy of the program for a project you are not 
involved in and asks you for a copy. 

The public good in this case is the company’s aggregate programming knowledge and expertise. Alex is a 
colleague who conducted free-riding in not sharing her knowledge in an earlier situation. Participants had 
to decide whether to defect as well or to contribute to the public good. 

The subsequent page displayed a picture of Alex with either a happy or angry facial expression (stimulus). 
Below the picture, Alex asked: “Could you please send me a copy of your program?” (see Figure 3). 
Human faces are powerful stimuli and are increasingly employed in research studies (Wild et al., 2001; 
Furl, Gallagher, & Averbeck, 2012). I sourced the face pictures from the Radboud Faces Database. The 
database collects pictures of faces in different emotional states. Langner et al. (2010) confirmed the 
validity of the emotional expressions in the faces of the database. I chose Alex as the name because it is 
gender neutral. I chose an alternating design such that the system would choose either an angry/happy 
female or male in a random fashion such that it would match the sender’s and receiver’s gender about half 
the time. The randomization was successful, and there was no difference in the number of participants 
who received a request from the same or from the opposite gender across requestor's facial expression 
conditions (p > .25). The control condition displays a neutral emotion, and I designed it to receive half the 
number of participants than the treatment conditions. 
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Figure 2. Illustration of Experimental Set-up (Lagnet et al., 2010; Tobii Technology AB, 2012)  
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Figure 3. Requestor’s Facial Expression Manipulation (Langner et al., 2010; Microsoft Word 2010)  

4.4 Measures, Manipulation Checks, and Control Analysis 
The study used two independent variables. The first was the requestor’s facial expression (angry, happy). 
In order to check whether participants perceived the faces as intended, I asked participants: “How happy 
do you think Alex is?”. The responses were significantly different for the angry (N = 19, mean = 2.263) and 
happy treatments (N = 23, mean = 4.609, t = 5.185, p < .01). Responses to the question “How angry do 
you think Alex is?” were also significantly different between the angry (N = 19, mean = 5.105) and happy 
treatments (N = 23, mean = 2.565, t = 5.046, p < .01). 

The second independent variable was participants’ gender. The random assignment was successful, and 
about half of the male and female participants were in the angry and happy conditions (see Table 1). The 
Chi-square test of participants’ gender per requestor’s facial expression was not significant (Chi-square = 
.423, p > .51). 

The study also used two dependent variables: emotional valence and the knowledge-sharing willingness 
of the individuals who received the knowledge-sharing request and responded to it (i.e., the receivers). I 
calculated the receiver’s emotional valence by deducting the highest negative emotion (from sad, angry, 
scared, and disgusted) from the happy emotion, which follows Loijens and Krips’ (2014) suggestion for 
calculating emotional valence. Accordingly, the valence values theoretically range from -1 to +1 (see also 
Figure 2). For instance, if there were no happy emotions (value 0) and one negative emotion reached 1, 
the valence would be -1. If the happy emotions reached 1 and all negative emotions were 0, the valence 
would be +1. 

I used the Face Reader valence data from the point in time when participants looked at the stimuli for the 
first time (first fixation) until participants fixated the stimuli for the last time (last fixation). The size of the 
stimuli was 470 x 530 pixels across all conditions (Figure 3). Tobii T120 eye trackers recorded the first 
and last fixations. I used the time stamps of these fixations to calculate the valence between the time 
stamps frame by frame based on the video footage. 

I captured knowledge-sharing willingness via a question adapted from Constant et al. (1994): “What is the 
likelihood you would give a copy of the program to Alex?” (1 = not at all likely to 7 = very likely).  

In order to gain confidence that the differences in emotional valence were robust and actually resulted 
from the manipulations and not from individual differences in facial expressions, I conducted two further 
tests. First, I compared whether the valences in the happy and angry conditions were statistically different 
from the control condition. I found a difference in valence between the control condition (N = 14, mean = -
.135) and the happy condition (N = 23, mean = -.039, t = 2.080, p < .043). Thus, the valence was higher in 
the happy condition as compared to the control condition. However, I found no statistical difference 
between the control condition and the angry condition (N = 19, mean = -.094, t = .843, p > .403), which 
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may point to the circumstance that positive mimicking may have been stronger than negative mimicking 
behavior. I discuss this finding more below. 

Second, I compared the valence of the participants in the happy and the angry conditions before I presented 
the participants with the facial stimuli. Before I presented them with the emotional stimuli, I should not have 
observed a difference in emotional valence. I used the first 30 seconds of the study—well before the emotion 
treatment took place. During this time frame, the mean valence of the angry condition was almost the same 
as of the happy condition (in both conditions, approximately -.05, untabulated data) and the difference was 
not significant p > .86. This result further supports Face Reader’s validity since the difference in the 
receiver’s emotional valence in response to the stimuli (requestor’s facial expression) was significant (see 
below) whereas the difference in valence before I presented the stimuli was small and not significant. 

5 Results 

5.1 Analysis Method and Descriptive Statistics 
Tables 1 and 2 show the means and standard deviations for the dependent variables by receiver’s gender 
(male, female) and by requestor’s facial expression (angry, happy). Table 1 shows the receiver’s 
emotional valence; Table 2 shows the receiver’s knowledge-sharing willingness. To test the hypotheses, I 
employed a partial least square (PLS) path approach using SmartPLS 3. The sample size was 42. This 
sample size satisfies the heuristic to be at least 10 times the largest number of paths directed at any one 
construct. The largest number of paths directed at any one construct was 4. PLS allows one to test all 
relationships of a proposed model (see Figure 1) simultaneously even under conditions of small to 
medium sample sizes (Chin, 1998). I used a bootstrapping resampling procedure of 500 samples to test 
the significance of the paths (Chin, 1998). I expected gender to moderate both paths of the mediation in 
the research model (see Figure 1), which constitutes a stage 1 (H1) and stage 2 (H2) moderation of 
mediation (Edwards & Lamberts, 2007). I tested the moderation by introducing two product terms into the 
PLS model as Chin, Marcolin, and Newsted (2003) suggest2. If a product term is significant in the PLS 
model, one can take this result as evidence for moderation (method 1 in Table 6). I further evaluated the 
model by splitting the sample according to gender and using the subgroup approach (method 2 in Table 
6). Research in the methodological literature of moderation has recommended the subgroup approach in 
the context of mediations and structural equation modeling (Rigdon, Schumaker, & Wothke, 1998; 
Wegener & Fabrigar, 2000). In the subgroup approach, gender would moderate the mediation if the 
evidence for the mediation differed between the subgroups (i.e., for male as compared to female). I 
evaluated the statistical difference of the strengths of the paths between the subgroups using Wynne 
Chin’s t-statistic described in Keil et al. (2000). I assessed evidence for the mediation using Sobel’s test 
(Preacher & Leonardelli, 2001). 

Table 1. Mean and Standard Deviation of Receiver’s Emotional Valence per Condition 

 
Receiver’s 

gender 

Requestor’s 
facial 

expression 
 

Mean 
 

Std. deviation 
 

N 

Male 
(coded 0) 

 

Angry (coded 0) -.036 .045 8 
Happy (coded 1) -.050 .158 12 

Total -.045 .123 20 

 
Females 
(coded 1) 

Angry (coded 0) -.136 .156 11 
Happy (coded 1) -.026 .025 11 

Total -.081 .123 22 

Total 

Angry (coded 0) -.094 .130 19 
Happy (coded 1) -.039 .114 23 

Total -.064 .123 42 
 

                                                        
2 I thank the anonymous reviewers for suggesting this approach. 
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Table 2. Mean and Standard Deviation of Receiver’s Knowledge-sharing Willingness 
per Condition 

 
Receiver’s 

gender 
Requestor’s facial 

expression 
 

Mean 
 

Std. Deviation 
 

N 

Male 
(coded 0) 

 

Angry (coded 0) 3.250 1.389 8 
Happy (coded 1) 3.583 1.505 12 

Total 3.450 1.432 20 

 
Females 
(coded 1) 

Angry (coded 0) 2.636 1.502 11 
Happy (coded 1) 3.455 1.635 11 

Total 3.045 1.588 22 

Total 

Angry (coded 0) 2.895 1.449 19 
Happy (coded 1) 3.522 1.534 23 

Total 3.238 1.511 42 

5.2 H1: Requestor’s Facial Expression and Receiver’s Emotional Valence 
H1 posits that a female receiver’s emotional valence response to a requestor’s facial expressions (angry 
vs. happy) is stronger than a male’s valence response. My interest was not in general differences between 
men and women but in whether they would react differently to the happy and angry faces3. In statistical 
terms, I was interested in the interaction of a receiver’s gender with a requestor’s facial expression. In 
males, the difference in emotional valence between happy and angry was -.014; in females, the difference 
was larger: .11 (see Table 1). The PLS model presented in Table 3 shows that the path from the 
interaction term (requestor’s facial expression x receiver’s gender) was significant (beta = .445, t = 2.383, 
p <.01), which supports H1. 

Table 2. Path Analysis 

Variables Path to Path to R square 

 Receiver’s emotional 
valence 

Receiver’s knowledge-
sharing willingness  

Requestor’s facial 
expression -.051 (t = .256) .107 (t = .676)  

Receiver’s gender -.409 (t = 2.280)** .015 (t = .081)  
Requestor’s facial 

expression x receiver’s 
gender 

.445 (t = 2.383)*** 
   

Receiver’s emotional 
valence  -.094 (t = .437) .132 

Receiver’s emotional 
valence x receiver’s 

gender 
 .362 (t = .557) 

  

Receiver’s knowledge-
sharing willingness   .121 

 
Notes: the effects were one-tailed. One can term the form of the research model a “first and second stage moderated mediation 
model” (Edwards & Lamberts, 2007, p. 4). I included the main effect paths in the model because the analysis needs the main 
effect variables to predict interaction path coefficients (Chin et al., 2003). However, one does not need to evaluate them. 
Variables: requestor’s facial expression was binary with 0 = angry and 1 = happy; receiver’s gender was binary with 0 = male and 
1 = female; receiver’s emotional valence captured the emotional state and ranged from -1 to +1; knowledge-sharing willingness 
ranged from 1 to 7. 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 

                                                        
3 In a PLS model without interaction terms using requestor’s facial expression and receiver’s gender as predictors and receiver’s 
emotional valence as outcome, the t-statistic of the path requestor’s facial expression à receiver’s emotional valence was 1.465 (p > 
.142, two-tailed) and the t-statistic of the path receiver’s gender à receiver’s emotional valence was .866 (p > .386, two-tailed). 
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I also split the sample into female (Figure 4, Table 4) and male (Figure 5, Table 5). In the female-only 
model (Figure 4, Table 4), the path from a requestor’s facial expression to a receiver’s emotional valence 
was significant (beta = .459, t = 3.735, p < .01). In the male-only model (Figure 5, Table 5), this path was 
not significant (beta = -.055, t = .181, p > .42). These results support the interactive expectation of H1 that 
female emotional responses are stronger. From using Chin’s t-statistic to compare paths strengths across 
samples, I found a statistical difference of the paths strengths at the 0.01 level (t = 25.82, Table 6, Keil et 
al., 2000). While the results for the male participants were not significant in the male-only path model, 
theory would not predict that there are no responses for male participants. Table 6 summarizes the results 
for both the product term and subgroup methods. 
 

 
Figure 4. Female-only model 

 

 

Figure 5. Male-only model 

 

 

Table 3. Path Analysis: Female Only 

Variables Path to Path to R square 

 Receiver’s emotional 
valence 

Receiver’s knowledge-
sharing willingness  

Requestor’s facial 
expression .459 (t = 3.735)*** .104 (t = .463)  

Receiver’s emotional 
valence  .347 (t = 1.722)** .133 

Requestor’s knowledge-
sharing willingness   .185 

Note: *** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 

 

Note:  *** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level 
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Table 4. Path Analysis: Male Only 

Variables Path to Path to R square 

 Receiver’s emotional 
valence 

Receiver’s knowledge-
sharing willingness  

Requestor’s facial 
expression -.055 (t = .181) .112 (t = .466)  

Receiver’s emotional 
valence  -.098 (t = .654) -.005 

Requestor’s knowledge-
sharing willingness   .047 

 

Table 5. Summary of Moderated Mediation Results based on PLS 

 Method 1 
Full-sample method 

(Chin et al. 2003) 

Method 2 
Subgroup method (Wegener and Fabrigar, 
2000; Rigdon et al., 1998; Keil et al., 2000) 

 

Supported 
 
.445 (t = 2.383)*** 

Supported (stage 1)  
 
Female: .459 (t = 3.735)***  
Male: -.055 (t = .181) n.s. 
Test for difference: t = 25.82*** 
 

 

Not supported 
 
.362 (t = .557) 

Supported (stage 2) 
 
Female: .347 (t = 1.722)**  
Male: -.098 (t = .654) n.s. 
Test for difference: t = 26.37*** 

Mediation test by subgroup 

Supported 
 
Moderation of mediation supported by differences in Sobel’s t- test: 
Female: t = 6.48***  
Male: t = 1.06 n.s. 

Note: Method 1: to evaluate the moderation of the mediating paths, I used the product terms that are part of the model summarized in 
Table 3: (requestor’s facial expression x receiver’s gender) and (receiver’s emotional valence x receiver’s gender). 
Method 2: I split the sample into subgroups based on gender. Gender moderates the mediation if evidence for the mediation differs 
between the subgroups. I assessed evidence for the mediation using Sobel’s test. The methodological literature on moderation in the 
context of structural equation modeling (Rigdon et al., 1998) and mediation (Wegener & Fabrigar, 2000) recommends the subgroup 
approach. The test for statistical difference of path coefficients between samples is suggested by Wynne Chin and documented in 
Keil et al. (2000). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 

5.3 Receiver’s Emotional Valence and Knowledge-sharing Willingness 
H2 posits that a receiver’s emotional valence is more positively associated with knowledge-sharing 
willingness when the receiver is female rather than male. The PLS model in Table 3 shows that the path 
from the product term (receiver’s emotional valence x receiver’s gender) to a receiver’s knowledge-
sharing willingness was insignificant (beta = .362, t = .557, p > .55). Yet, the female-only model showed a 
significant path from valence to  knowledge-sharing willingness (Figure 4, Table 4, beta = .347, t = 1.722, 
p <.05), whereas the male-only model again did not show a significant link (Figure 5, Table 5, beta = -
.098, t = .654, p > .25). Thus, the subgroup method (Rigdon et al., 1998; Wegener & Fabrigar, 2000) 
supports H2 (i.e., that there is a difference in the way males and females translate their emotional 
experience into knowledge sharing). Chin’s t-statistic also supports a significant difference of the strength 
of the path coefficients across samples (t = 26.37, p < .01, Table 6). Table 6 summarizes the results. 

5.4 Moderated Mediation 
In accordance with the emotional contagion framework, the hypotheses H1 and H2 together imply a mediation 
that gender moderates. To test the significance of the mediation paths, I used Sobel’s t-test (Preacher & 
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Leonardelli, 2001). I found evidence for such a mediation for female participants (Sobel’s t-test = 6.48, p < .01) 
but not for male participants (Sobel’s t- test 1.06, p > .14). Figure 6 summarizes the research model. 

 
Figure 6. Research Model Evaluation 

6 Limitations and Future Research 
Next to the usual limitations of a laboratory experiment, some specific limitations of this study seem worth 
mentioning, which provide opportunities for future research. In this study, I used the face as an affect-
detection channel. Calvo and D’Mello (2010) review six different affect-detection channels that emotionally 
intelligent systems can use: facial expressions, voice, body language and posture, physiology, brain 
imaging and EEG, and text. Thus, with regards to the affect-detection channel, I used only one channel in 
this study. However, as for affect’s influence on knowledge-sharing decisions, this study may be more 
generalizable to other channels as well. For instance, if a system tells the affect of a decision maker 
through different means, the AIM would have the same prediction with respect to knowledge sharing. 

Further, I examined knowledge sharing as a form of sharing codified knowledge. There can be different 
costs and benefits associated with sharing codified knowledge versus sharing personal advice in terms of 
improvements to work quality, signaling of competence, and time savings (Sproull, Subramani, Kiesler, 
Walker, & Waters, 1996; Haas & Hansen, 2007). Thus, it is important to examine emotional effects in 
different forms of knowledge sharing to refine our understanding of emotional effects in knowledge sharing. 

Further, I observed mimicry behavior using face reader technology and observe theory-consistent behavioral 
responses in the knowledge-sharing domain. Thus, using face-reader technology, I could open the “black 
box” and observe objective data (as opposed to subjective self-reported data) directly from the human body 
(Dimoka et al., 2012). Doing so responds to calls for IS research to use more objective rather than self-
assessed subjective data (Marsden, Pakath, & Wibowo, 2006). However, the objective data I observed still 
only reflects what occurs in the brain and is only one step towards unpacking the “black box” of human 
behavior. For instance, I show the second step of the emotional contagion framework only indirectly via 
showing theory-consistent behavioral consequences in knowledge sharing originating from the stimuli. 
Future research may work towards triangulating additional objective measures to support the findings. 

In my control analysis, I found indication that positive mimicking might be stronger than negative 
mimicking behavior. While one might consider this finding to be good news from an organizational 
perspective because it is rather of interest to organizations to induce positive emotional conditions to 
support knowledge sharing than to induce negative emotional conditions, future research needs to explore 
this indication and potential implications for emotionally intelligent systems. 

7 Discussion 
Table 7 summarizes this study’s contributions to research and practice. Table 7 references related 
literature and outlines previous findings that are associated with this study. I discuss contributions to 
research below in relation to the first two research areas in Table 7. I discuss contributions to and 
implications for practice below in relation to the latter two research areas in Table 7. 
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7.1 Psychological Motivations in Knowledge Sharing 
First, this study contributes to the literature that examines the psychological motivations associated with 
knowledge sharing. Such a contribution is particularly important in light of the limited evidence on the role 
of emotions in knowledge sharing, which van den Hooff, Schouten, and Simonovski (2012, p. 148) stress 
in stating: “The connection between emotions and knowledge sharing…has not been the subject of much 
empirical research to date”. The current study is arguably most closely related to van den Hooff et al.’s 
(2012) findings: they found that the emotions pride and empathy affect willingness to share knowledge. 
Admittedly, as compared to measurement scales such as pride and empathy, my measure of emotional 
valence as a composite measure of one positive and four negative emotional states seems quite crude. 
Still, I show that even a crude classification of valence on a continuum from negative to positive can 
predict individuals’ tendency to share knowledge. Importantly, I perform this classification by observing 
physiological responses of humans (for a review on the use of neurophysiological tools in information 
systems, see, for example, Dimoka et al., 2012; Riedl et al., 2010a; Riedl, Davis, & Hevner, 2014a), which 
is important for our research perspective because much research in the literature doubts that 
questionnaires can capture gender differences in emotions because of social desirability response 
behavior. As such, Manstead (1992, p. 364) contends: “it is entirely possible (or even likely) that the way 
in which males and females respond to [emotion] questionnaires will, consciously or unconsciously, be 
influenced by their knowledge of sex stereotypes”. 

As a theoretical lens, I use the AIM to predict that emotions influence knowledge-sharing decisions 
because these decisions are strategic and rather complex in nature. In a real-life context, this complexity 
is magnified rather than mitigated, which is why these results are likely to be stronger in real life. 

7.2 Gender Differences and Knowledge Sharing 
Second, this study contributes to literature by exploring gender differences in knowledge sharing (Miller & 
Karakovsky, 2005; Lin, 2008) and offering another explanation why males and females can differ in their 
knowledge-sharing behavior (i.e., because of the different role of emotions in men and women). I draw on 
gender differences in the sensitivity to social cues (stage 1; Kahn et al., 1971; Croson & Gneezy, 2009) 
and on gender differences in the intensity and the functional significance of the emotional experience 
(stage 2; Grossman & Wood, 1993, Allen & Haccoun, 1976). I also draw on the theory of emotional 
contagion in predicting and evidencing gender differences in mimicry behavior and how emotions color 
subsequent knowledge-sharing behavior. Consistent with expectations, I found evidence that females 
exhibit stronger mimicry behavior than men and, thus, that, for women, this stronger mimicry behavior 
results in a knowledge-sharing behavior colored more by emotions. 

Information systems scholars have observed gender differences in physiological responses. For instance, 
we have evidence that brain activation related to information systems tasks can be higher in females than 
in males (Riedl et al., 2010b; Pavlou 2010). Information systems scholars have also found evidence that 
gender has a moderating role in important behavior for information systems success. For instance, in the 
domain of technology acceptance, research has found that the relation between perception of usefulness 
and technology adoption is stronger in men than in women and that the relation between subjective norm 
and technology acceptance is stronger in women than in men (Venkatesh & Morris, 2000). The current 
study combines both: it evidences gender differences in physiological responses related to emotions and 
shows effects of these gender differences on behavior relevant to information systems management. As 
such, it particularly contributes to the knowledge-sharing literature. 
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Table 7. Contributions to Research and Practice 

Research areas Current thinking (closely associated and relevant 
findings)* Contribution of this study 

1: Psychological 
motivations in knowledge 

sharing 

Pride and empathy influence knowledge sharing 
(Van den Hooff et al., 2012) 
 
Psychological climate and knowledge repository 
characteristics influence knowledge sourcing 
(Durcikova & Fadel, Forthcoming) 
 
Usefulness of neuroscience tools to use objective 
data from the human body to open the “black box” of 
human behavior (Dimoka et al., 2012) 

Emotional valence influences 
knowledge sharing (theoretic 
perspective: affect infusion model) 
 
Use of emotional valence as an 
objective measure in the domain of 
knowledge sharing: step towards 
reducing the reliance on self-
reported subjective measures 

2: Gender differences and 
knowledge sharing 

Gender moderates the influence of courtesy, 
sportsmanship, and altruism on knowledge sharing 
(Lin, 2008) 
 
Gender roles influences feedback-seeking in teams 
(Miller & Karakovsky, 2005) 
 
Gender moderates the influence the effect of 
perception of usefulness, ease of use, and social 
norm on technology use (Venkatesh & Morris, 2000) 
 
Women activate more brain areas than men to judge 
trustworthiness of eBay offers (Riedl et al., 2010b) 
 
Brain activation constructs in relation to the 
perception of online product recommendation agents 
higher for female than male users (Pavlou, 2010) 

Emotional valence serves as a 
mediator to predict knowledge 
sharing for females (theoretic 
perspective: emotional contagion) 
 
Gender moderates the effect of 
facial stimuli on emotional valence 
 
Gender moderates the effect of 
emotional valence on knowledge-
sharing willingness  

3: Faces in information 
systems 

Interfaces with faces change user perceptions 
(Sproull, Subramani, Kiesler, Walker, & Waters, 
1996) 
 
Human faces are considered more trustworthy than 
faces of avatars (Riedl, Mohr, Kenning, Davis, & 
Heekeren, 2014b) 
 
Positive faces are associated with website loyalty 
(Gregor, Lin, Gedeon, Riaz, & Zhu, 2014) 

Facial expressions accompanying 
knowledge-sharing requests can 
change knowledge-sharing 
behavior 
 
Use of faces can improve the 
effectiveness of knowledge-
management systems 

4: Affect detection 
channels and emotionally 

intelligent information 
systems 

There are six ways of detecting affect. Almost none 
of the reviewed systems integrate contextual cues 
with facial feature tracking (Calvo & D’Mello, 2010) 
 
Development and demonstration of a neuro-adaptive 
information system supporting financial decision 
making (Astor, Adam, Jercic, Schaaff, & Weinhardt, 
2014) 

Demonstration of a system that 
detects affect context dependent by 
using the face as an affect 
detection channel and the eye 
tracker to detect human interaction 
with context 
 
Triangulating facial data with eye-
tracking data can predict 
knowledge-sharing behavior 

Note: I do not describe the references closely associated with this study that appear in this table in their entirety. I include the 
displayed findings as “relevant” not because they are generally the most relevant findings but because they are closely associated 
with this study. Accordingly, the categorization of references to particular research areas can vary according to which aspect of the 
references one stresses. Contributions to theory and research relate to the first two research areas. Implications for practice relate to 
the latter two research areas. 
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7.3 Faces and Information Systems 
Third, this study contributes to the investigation of faces in information systems. Research has shown that 
individuals consider human faces to be more trustworthy than faces of digital avatars (Riedl et al., 2014b), 
that faces influence website loyalty (Gregor et al., 2014), and that humanization of interfaces change user 
perceptions (Sproull et al., 1996). This study contributes to this literature in showing that facial 
expressions that accompany knowledge-sharing requests can change knowledge-sharing behavior. 
Surely, in reality, a simple smile with a picture attached to, for example, an email may not help in 
situations where individuals incur high costs from individual knowledge sharing. In organizations, a whole 
set of strategic considerations may be present, and face-to-face communication includes a lot of other 
non-verbal cues besides facial expressions, such as voice tones and body gestures, which may influence 
people’s perceptions. Still, holding everything else constant, a smile—including a virtual smile—can make 
a difference. For instance, profile pictures that often accompany messages exchanged through 
communication and collaboration systems such as Skype, Slack, or Jammer can improve the nature of the 
information exchange with regards to participants’ level of cooperation and helpfulness, which may 
become even more important in the future because of increasing virtualization and digitization of work. 
Generally, for information systems practitioners, the results underscore the importance of emotionally 
“positive” systems design. 

7.4 Affect Detection Channels and Emotionally Intelligent Information Systems 
Forth, and in part as a consequence of the above, this study informs designers of information systems in 
general and designers of knowledge-management systems in particular about how and in which contexts 
emotional stimuli in information systems may influence behavior. Thereby, it contributes to the literature of 
affect detection channels. Researchers have suggested several hybrid systems that process not only 
content data but also emotional data (for a review, see, for example, Cowie et al., 2001; Calvo & D’Mello, 
2010). The potential of reliably telling important emotions in an automated and digital fashion is obvious 
because systems can use such information to interact with humans in an emotionally intelligent way. 
Information systems’ capability of recognizing and adequately responding to emotions “can enhance the 
quality of the interaction, thereby making a computer interface more usable, enjoyable, and effective” 
(Calvo & D’Mello, 2010, p. 19). I suggest a set-up with a commercially available face reader and eye 
tracker (see Figure 2) that can overcome limitations of context dependence in affect detection (Calvo & 
D’Mello, 2010). In the case of knowledge-management systems, deploying affect information can support 
knowledge exchange in organizations, which is more important than ever in our knowledge-intensive 
environment, and can increase the effectiveness of users and organizations. 

Moreover, the role of emotions in information systems will likely receive more and more attention with 
increasing technological possibilities. For instance, Kurzweil (2005, p. 37) states that “the human ability to 
understand and respond appropriately to emotion (so-called emotional intelligence) is one of the forms of 
human intelligence that will be understood and mastered by future machine intelligence”. Some 
researchers are working on integrating emotions into information systems in order to use them as bio-
feedback and to enhance dynamic learning environments (Astor et al. 2013). Therefore, we need to 
understand the possibilities and limits associated with tracing emotions via face readers. This study shows 
that simple facial stimuli can influence emotions and that resulting emotions can influence decisions highly 
important for organizations and communities (i.e., knowledge sharing). Importantly, this study contributes 
in showing a full path (that holds for females) from facial stimuli to an expression of knowledge-sharing 
willingness via the mediator valence. 

8 Conclusion 
This study examines affect infusion and affect detection in knowledge-sharing behavior. I show that face 
reader technology can detect affect infused by facial expressions and that this affect influences responses 
of a receiver of a knowledge-sharing request. The effects observed concur with the primitive emotional 
contagion and affect infusion models. Importantly, I found evidence that there are gender differences in 
the exhibition of mimicry behavior, the infusion of affect, and knowledge-sharing responses. 

Thus, the appropriate use of faces to design systems and the appropriate detection of facial emotion can 
increase the effectiveness of knowledge-management systems. Pictures of faces can be used as part of 
information presentation in systems to make humans more responsive to information that computers 
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present. In turn, systems can detect human faces to tell human affective states. These affective states can 
be factored into system behavior to make computers more responsive to humans. 

Research has long stated that faces are very important to people in social and emotional communication 
(Darwin, 1872; James, 1884). With the advent of emotionally intelligent systems, faces will probably 
continue to play a crucial communication role, and the integration of facial information will provide 
opportunities for enhanced system designs in the future. 
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