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Abstract Convolutional neural network has been widely

investigated for machinery condition monitoring, but its

performance is highly affected by the learning of input

signal representation and model structure. To address these

issues, this paper presents a comprehensive deep convo-

lutional neural network (DCNN) based condition moni-

toring framework to improve model performance. First,

various signal representation techniques are investigated

for better feature learning of the DCNN model by trans-

forming the time series signal into different domains, such

as the frequency domain, the time–frequency domain, and

the reconstructed phase space. Next, the DCNN model is

customized by taking into account the dimension of model,

the depth of layers, and the convolutional kernel functions.

The model parameters are then optimized by a mini-batch

stochastic gradient descendent algorithm. Experimental

studies on a gearbox test rig are utilized to evaluate the

effectiveness of presented DCNN models, and the results

show that the one-dimensional DCNN model with a fre-

quency domain input outperforms the others in terms of

fault classification accuracy and computational efficiency.

Finally, the guidelines for choosing appropriate signal

representation techniques and DCNN model structures are

comprehensively discussed for machinery condition

monitoring.

Keywords Machinery condition monitoring � Deep

convolutional neural network � Model structure � Signal

representation

1 Introduction

The recent advancement in the Industrial Internet of Things

(IIoTs) (Wang et al. 2015; Tao et al. 2018a), Cloud

Computing (Ren et al. 2017; Matt 2018; Ye et al. 2016) and

the Cyber Physical System (CPS) (Lu et al. 2014; Richter

et al. 2018) reshapes modern manufacturing. Manufactur-

ing machines are increasingly equipped with sensors to

increase system reliability and improve operational per-

formance. Thus, an unprecedented volume of manufactur-

ing data is generated. This not only creates new

opportunities for machinery condition monitoring (Tao

et al. 2018b; Ye et al. 2018), but also brings challenges for

handling proliferated multi-source manufacturing data.

Much effort has been put on data analytics for

machinery condition monitoring. To automatically extract

fault features from monitored signal, a machine learning

based condition monitoring approach has been widely

adopted. Some previous applications of machine learning

models have been conducted (Gangsar and Tiwari 2017;
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Heinrich and Schwabe 2018). However, conventional

machine learning models highly rely on handcrafted fea-

tures. The empirical feature extraction in conventional

machine learning highly relies on domain expertise, which

has great influence on classification performance (Nalchi-

gar and Eric 2018). Additionally, conventional machine

learning usually has a shallow structure with at most three

layers, performs feature extraction and model construction

in a separated manner, and constructs each module step-by-

step (Residual et al. 2018). Thus, they have difficulties to

deal with the unprecedented volume of manufacturing data

(Tao et al. 2018b; Ye et al. 2018) which renders conven-

tional condition monitoring approaches impractical.

As a breakthrough in artificial intelligence, deep learn-

ing has achieved great success in various fields in recent

years. It has distinctive differences from traditional

machine learning regarding feature extraction and classi-

fication, as shown in Fig. 1. Deep learning incorporates

feature extraction and classification into a deep hierarchical

structure. Thus, high dimensional and abstracted repre-

sentation is selected automatically from raw data by means

of a multi-layered structure. Therefore, deep learning pro-

vides a new solution to intelligent condition monitoring of

machinery. Different deep learning models including con-

volutional neural network (CNN), auto encoder (AE),

restricted Boltzmann machine (RBM), and Recurrent

Neural Network (RNN) have been investigated in the field

of machinery condition monitoring (Zhao et al. 2019;

Wang et al. 2018). As a typical model, CNN attracts much

attention due to its superiority in the abstract feature rep-

resentation learning and high classification accuracy (Le-

Cun et al. 2005).

Since CNN models were originally designed for image

analysis, two-dimensional CNN models are widely adopted

for machinery condition monitoring by transforming the

one-dimensional time series signal into two-dimensional

signal representation (Wang 2016; Ding and He

2017;Wang et al. 2017). However, the inherent information

hidden in the raw signal may be lost, and even increase the

computational complexity of the CNN model. To address

this issue, a one-dimensional CNN model is developed in

(Liu et al. 2016) and has been applied to machinery con-

dition monitoring. However, the literature referred to is

mostly devoted to obtaining better fault diagnosis accuracy

through either changing signal representation techniques

under the same CNN model or alerting the structures and

hyper-parameters of a certain dimensional CNN model. A

comprehensive analysis of the effects of signal represen-

tation and CNN model structure is still lacking. In general,

two major challenges exist for CNN based fault diagnosis.

First, choosing an appropriate signal representation tech-

nique mainly relies on experience and much valuable

information hidden in the raw signal may be lost during the

transformation. Second, it is hard to choose a suitable CNN

model structure, and there has been no attempt to study the

differences of feature extraction between one-dimensional

and two-dimensional CNN models in depth.

To mitigate the research gap, this paper presents a

comprehensively deep convolutional neural network

(DCNN) based condition monitoring framework to

improve model performance. Firstly, various signal repre-

sentation techniques are investigated to improve the DCNN

models feature learning by transforming the time series

signal into different domains, such as frequency domain,

time–frequency domain, and reconstructed phase space.

Next, the DCNN models with different dimensions are

studied for sensitive feature extraction. The model struc-

tures are custom designed and the model parameters are

then optimized by mini-batch stochastic gradient descen-

dent algorithms. Experimental studies on a gearbox test rig

Input OutputFeatures

Input Output

Feature Engineering 
(Manual Extraction+Selection)

Classifier with 
shallow structure

Feature Learning + Classifier
(End-to-End Learning)

(a)

(b)

Fig. 1 Comparison between a conventional intelligent fault diagnosis and b deep learning based fault diagnosis
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are utilized to evaluate the effectiveness of the presented

DCNN models, and the results show that the one-dimen-

sional DCNN model with frequency domain input outper-

forms the others in terms of fault classification accuracy

and computational efficiency. In particular, this paper seeks

to shed light on how different dimensional DCNNs work in

machinery condition monitoring and provide the guidelines

for choosing appropriate signal representation techniques

and DCNN models.

The intellectual contribution of this paper includes: (1) a

comprehensive machinery condition monitoring frame-

work is proposed to enhance the performance of DCNN

models, (2) the effects of different signal representation

techniques on DCNN models are compared and the dif-

ferences among different DCNN models are studied in

depth, and (3) comprehensive experiments and a detailed

analysis of a gearbox fault diagnosis have been performed.

The rest of this paper is constructed as follows. First the

theoretical background of one-dimensional and two-di-

mensional DCNN is briefly described in Sect. 2. A DCNN

based machinery condition monitoring framework is for-

mulated in Sect. 3. Then the framework is experimentally

validated based on a gearbox fault dataset in Sect. 4, and

the results are further discussed in Sect. 5. Finally, con-

clusions are drawn in Sect. 6.

2 Related Work

Inspired by visual neuroscience, CNN is initially designed

to deal with the variability of two-dimensional shapes

(LeCun et al. 1998). However, the time series signal

measurements in machinery condition monitoring are

usually one-dimensional. To introduce the CNN model for

machinery condition monitoring, different techniques have

been widely investigated which can be categorized as

signal transformation and model structure alternation.

Various signal representation techniques have been

investigated to generate two-dimensional model inputs. By

decomposing a one-dimensional signal into a two-dimen-

sional time-scale plane, wavelet coefficients are firstly

employed as input of the two-dimensional CNN model for

compressor fault diagnosis (Wang 2016). Then different

wavelet transform techniques including wavelet packet

energy (WPT) images and continuous wavelet transform

(CWT) images have also been used as input of CNN

models for machinery fault classification (Ding and He

2017; Wang et al. 2017). The image of a one-dimensional

vibration time series signal is also investigated as the input

of a two-dimensional CNN model for machinery fault

classification (Fu et al. 2017). In order to obtain better

representation of raw data, time–frequency images gener-

ated from short-time Fourier transform (SIFT), wavelet

transform and Hilber–Huang transform (HHT) have been

fed into a two-dimensional CNN for rolling element

bearing fault diagnosis (Verstraete et al. 2017).

Moreover, the construction of CNN models has been

studied with hyper-parameters optimization. An improved

fault diagnosis model composed of multi two-dimensional

CNN models has been investigated to classify bearing fault

severity (Guo et al. 2016). Considering the difference of

feature representation between images and time series

signals, a specific DTS-CNN with a dislocated layer has

been proposed for electric machine fault diagnosis (Liu

et al. 2016). This model can extract periodic fault infor-

mation between nonadjacent signals by continuously dis-

locating the input raw signals. Typical two-dimensional

input requires a deep layer model structure and a large

number of model parameters to train the CNN model,

leading to a high computational complexity able to tackle

high-dimensional input.

As a result, a one-dimensional CNN model has been

proposed by incorporating one-dimensional convolutional

kernels in the convolutional layers for machinery condition

monitoring. A pre-trained one-dimensional CNN model fed

with frequency domain signals has been tested regarding

various types of input signals for gearbox fault diagnosis

(Jing et al. 2017). A one-dimensional CNN model has also

been investigated for fault diagnosis of rolling element

bearing with the typical time series signal or its frequency

spectrum as input (Zhang et al. 2017; Wang et al. 2018).

An adaptive one-dimensional CNN model fed with pre-

processed motor current signals has been investigated for

motor anomaly detection, in which a variant learning rate

was added to improve the feature extraction capability

(Ince et al. 2016). A decentralized structural damage

detection system using one-dimensional CNN with the

input of raw acceleration signals has been proposed to

identify the damaged joint, in which each one-dimensional

CNN model is designed for a specific joint damage (Ab-

deljaber et al. 2017).

As discussed above, the majority of these studies has

been devoted to achieving better fault diagnosis accuracy

through either changing signal representation techniques or

alternating the structures and hyper-parameters of a CNN

model. Thus, it is of significance to develop a compre-

hensive framework to investigate the effects of signal

representation and model construction for improved per-

formance of machinery condition monitoring.

3 DCNN Based Condition Monitoring Framework

The developed DCNN based condition monitoring frame-

work is shown in Fig. 2. Firstly, the different signal rep-

resentation techniques are proposed by transforming the
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raw signals into different dimensions of model input for

improving the fault sensitive features representation. Then

a variety of DCNN model structures are constructed

including one-dimensional and two-dimensional CNN

models. The decisive factors for model construction as well

as the differences in feature extraction between one-di-

mensional and two-dimensional DCNN models are also

discussed. Finally, several typical performance metrics are

designed to evaluate the performance of different DCNN

models.

3.1 Signal Representation

To facilitate the feature learning of DCNN models, various

signal representation techniques are employed to remove

irrelevant and redundant information of raw time series

signals. Frequency domain signals transformed through

fast Fourier transform (FFT) are used as the input for one-

dimensional DCNN. Two-dimensional inputs including

time–frequency domain signals and reconstruction phase

space signals are fed into two-dimensional DCNN.

Continuous wavelet transform (Konar and Chattopad-

hyay 2011) is used to transfer a one-dimensional vibration

signal into a two-dimensional one, named wavelet scalo-

gram. The obtained wavelet scalogram is fed into two-

dimensional DCNN for machinery condition monitoring.

The wavelet transform of a signal x(t) with finite energy

can be performed through convolution of x(t) with the

complex conjugate of a family of wavelets

wt s; sð Þ ¼ jsj�1=2

Z
xðtÞw t � s

s

� �
dt ð1Þ

In the above equation, wð�Þ represents the complex

conjugate of the scaled and shifted base wavelet. The

wavelet scalogram is defined as the square of wavelet

coefficients wt(s,s).

Gx s; sð Þ ¼ wtðs; sÞj j2 ð2Þ

The wavelet scalogram can be regarded as a spectral

map with constant relative bandwidth, which can reflect the

time frequency information of the signal and is widely used

used for machinery condition monitoring (Su et al. 2018;

Yan et al. 2014).

In fact, the collected signals from machinery are gen-

erally time series signals with strong correlations between

nonadjacent signals. For the sake of capturing time

invariant features behind dynamic machinery monitored

signals, the reconstructed phase space based on dynamical

systems and chaos theory (Kliková and Raidl 2011) is

employed for signal representation. The most commonly

used method of reconstructed phase space is the method of

time delay (Povinelli et al. 2004), in which the time series

signal xn can be constructed as follows:

Xn ¼ xn�ðd�1Þs; . . .xn�s; xn
� �

ð3Þ

where Xn denotes the reconstructed vector in the phase

space, n = (1 ? (d - 1)s) … N, s represents the time

delay. With the properly selected time delay steps and

embedding dimension in phase space, valuable information

of correlated machinery signals can be represented. The

investigated signal representation techniques are summa-

rized in Table 1.

3.2 DCNN Model Construction

DCNN is a powerful multi-layered neural network that

leverages three architectural ideas including sparse con-

nectivity, shared weights, and pooling (Lee and Kim 2017;

Monitoring Object Data Acquisition Signal Representation

Raw time 
domain 

Frequency 
domain Vibration 

signal

FFT

CWT images

Reconstructed 
time domain 

Model Construction

2D input

Model Training

Epoch Epoch
1D CNN 2D CNN

Model testingPerformance EvaluationDiagnosis & Maintenance

1D input

1D CNN

2D CNN

Classification 
accuracy

Training time

Model 
performence

X

W1

W2

W3

Z1=S(X*W1)

Z2

Z3

Forward Pass

Backpropagation Pass

Fig. 2 DCNN based machinery condition monitoring framework
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Ko and Sim 2018). As shown in Fig. 3, a typical DCNN

model consists of convolutional layers, pooling layers and

fully connected layers. The convolutional layers with dif-

ferent convolutional kernels are used to extract features of

input. Each convolutional kernel is specific to a feature

map. After that, the pooling layers are used to reduce the

size of extracted features and model parameters of the

network. Finally, the fully connected layers perform as the

classifier.

In one-dimensional CNN, one-dimensional counterparts

(conv1D) are adopted to perform a convolutional operation.

The output of the convolutional layer can be defined as:

x1D;k ¼ f
X
i2M

conv 1D x1D;i;w1D

� �
þ b

 !
ð4Þ

where M represents the input feature map, and the ‘‘valid’’

is the type of convolutional operation. x1D,i is the one-

dimensional input. w1D denotes the convolutional kernel.

Input 
CWT image

Softmax classificationFlatten

Type 1

Type 2

Type 3

Type 4

2D convolution 2D pooling Fully connection

Type 1

Type 2

Type 3

Type 4

(a)

(b)

Softmax classification1D convolution 1D pooling Fully connection

Fig. 3 Comparison of different model structures including a 1D DCNN and b 2D DCNN

Table 1 Summary of signal representation techniques

Signal representation Pros. Cons.

Raw time domain Strong periodicity Irrelevant noisy and redundant information

Frequency domain Important characteristics of frequency components Only suitable for steady state analysis and time domain

information is lost

Time–frequency

domain

Capture of high-resolution information in time–

frequency domain

Affected by wavelet base and wavelet scale

Reconstructed phase

space

Capture deep correlations between nonadjacent signals Hard to select the optimal parameters
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Each output feature map is given an additive bias b. In the

one-dimensional DCNN, one-dimensional max pooling is

used in the structure, which can be described as follows:

xlþ1
k ¼ 1Dmax xlk

� �
ð5Þ

The pooling layer takes the maximum value of distinct

pooling regions with the width n, thus the pooling output is

n-times shorter along the only one spatial dimension.

Similarly, the two-dimensional convolution (conv2D) is

adopted in the two-dimensional CNN (Bouvrie 2006). The

output of the two-dimensional convolutional layer can be

defined as:

x2D;k ¼ f
X
i2M

conv2D x2D;i;w2D

� �
þ b

 !
ð6Þ

The two-dimensional max pooling can be computed as:

xlþ1
k ¼ 2Dmax xlk

� �
ð7Þ

In the two-dimensional pooling layer, the input features

are sub-sampled by distinct n-by-n blocks with a suit-

able factor n. Hence, the pooling output is n-times smaller

along both spatial dimensions.

After extracting features through convolutional layers

and pooling layers, several fully connected layers are

employed as the final classifier. Each fully-connected layer

is followed by a ReLU activation function. The softmax

function is used for multiclass classification both in one-

dimensional and two-dimensional DCNN models. The

softmax activation of the kth output unit is given as below:

o
ðnÞ
k ¼

exp z
ðnÞ
k

� �
P

i exp z
ðnÞ
i

� � ;
xlk ¼ ReLU zlk

� �
; with zlk ¼

X
i

wl
ikx

l�1
k þ bl

ð8Þ

where zk is the layer l-1 input to unit k of the layer l.

3.3 Performance Evaluation Metrics

The performances of DCNN models are mainly evaluated

in terms of classification accuracy and computational

complexity. Two definitions including the recall ratio r and

the precision ratio p should be considered before intro-

ducing the metric of classification accuracy. The recall

ratio r and precision ratio p are defined as:

r ¼ TP

TPþ FN
ð9Þ

p ¼ TP

TPþ FP
ð10Þ

where true positive (TP) is correctly classified as positives

samples, false positive (FP) is misclassified as positives

samples, true negative (TN) is correctly classified as neg-

atives samples, and false negative (FN) is misclassified as

negatives samples. Based on these two definitions, the

classification accuracy of each class can be calculated as:

accuracy ¼ FPþ FN

TPþ FPþ TN þ FN
� 100% ð11Þ

In addition, the metric of computational complexity

consists of the number of model parameters and total

model training time. The total model parameters Ntotal is

the sum of numbers of parameters in all convolutional

layers and fully connected layers. It can be obtained by:

Ntotal ¼
Xm
i¼1

noc � nic � nw þ 1ð Þð Þþ
Xn
j¼1

nos � nis þ 1ð Þð Þ

ð12Þ

where noc and nic denotes the number of output channels

and input channels in convolutional layer respectively. nw
represents the convolutional kernel width. nos and nis rep-

resents the size of fully connected layer. m and n denote the

total numbers of convolutional layers and fully connected

layers respectively. The total model training time T is

defined as follows:

T ¼
XN
i¼1

ti ð13Þ

where ti is the training time of each epoch, N is the total

number of training epochs, and T is the model training

time.

4 Experimental Study

In this section, experimental studies on a gearbox fault

simulator are conducted to evaluate the performance of

developed DCNN approach.

4.1 Experimental Setup

The gearbox fault simulator consists of four components

including a speed controller, an altering current (AC) servo

motor, a load motor and a gearbox. The experimental setup

of the gearbox fault simulator is shown in Fig. 4. Three

different levels of gear fault severities are created by

adding different sizes of cracks to a gear tooth (Sun et al.

2016). In the first two cases, slight and medium cracks are

added to the root of the gear tooth, while the third case is

simulated with a broken tooth. Four vibration sensors are

placed in the housings of two ends of input and output

shafts to acquire the vibration signal of the gearbox. The

vibration signals are collected at the sampling rate of
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8192 Hz, and a total of 1920 data sets are generated while

each data set contains 2048 points.

4.2 Data Processing

Different signal representation techniques including FFT,

continuous wavelet transformation and reconstructed phase

space are employed to transform time series signals into

different domains. An illustration of a vibration signal

under these representation techniques is shown in Fig. 5.

The frequency domain signal is generated by transforming

the time series signal into its spectrum by the FFT method.

Thus, there are 1920 samples and each transformed sample

contains 1024 points in frequency domain input. Both the

raw time series signal and frequency domain signal are

used as input for one-dimensional DCNN.As for the gen-

eration of inputs for two-dimensional DCNN, The Morlet

wavelet is selected for base wavelet and the wavelet scale

is set as 96. Hence, a total of 1920 time–frequency domain

signals with the size of 96 9 96 are generated through

continuous wavelet transformation. Before creating the

reconstruction phase space signal for the two-dimensional

DCNN model, the optimal value of the phase space

parameters is estimated. The time lag s is optimized as 40

and the embedding dimension d is selected as 12 (Kliková

and Raidl 2011). Therefore, the reconstructed time domain

input contains 1920 samples in total and the dimension of

each sample is 1608 9 12.

4.3 Model Structure

The DCNN models are customized considering the

dimension of the models, the depth of layers, and the

convolutional kernel functions. The convolutional kernel

width and the number of convolutional feature maps are

optimized to enhance model performance. Details about

these DCNN models are illustrated in Fig. 6. In order to

enhance the model performance of one-dimensional DCNN

with raw time domain input, the convolutional kernel

widths are set as 257 9 1 and 127 9 1, and feature maps

are selected as 24 and 48 respectively. Considering the

sparsity of frequency domain input, the convolutional

kernel widths are set as 3 9 1 and 4 9 1, and feature maps

in the one-dimensional DCNN model are selected as 12

and 24, respectively. To effectively extract features from

the time–frequency domain input, the two-dimensional

DCNN is composed of two groups of stacked convolutional

layers. The convolutional kernel width of each convolu-

tional layer is 3 9 3 and the feature maps of each convo-

lutional group are 32 and 64, respectively. Since valuable

information may be magnified in the reconstructed phase

space signal, two-dimensional DCNN is designed with

wide convolutional kernel width and large feature maps, in

which the convolutional kernel widths are set as 127 9 3

and 66 9 2, and feature maps are selected as 32 and 64

respectively.

Gearbox

AC motor

Load motor

Coupling

Driven gear 

Driving gear

Vibration sensor

Fig. 4 Experimental setup of

gearbox fault simulator
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4.4 Result Analysis

To confirm the effectiveness of presented DCNN models,

two different neural networks including a Multi-layers

Perceptron (MLP) and a Stacked Denoising Auto-encorder

(SDA) (Leng and Jiang 2016) are used for comparison.

Thus, a total of six different models are investigated and

their detailed implementation are discussed below.

1. MLP: The MLP model consists of two fully connected

layers for feature extraction and the size of each layer

is set as 500.

2. SDA: The SDA model is composed of two stacked

Auto-encoders, with each Auto-encoder containing an

encoder layer and a decoder layer. The sizes of the first

encoder layer and the second encoder layer are 500 and

100, respectively. These two Auto-encoders are trained
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Fig. 5 Illustration of different signal representations from: a raw time domain, b frequency domain, c time–frequency domain, and

d reconstructed phase space
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Fig. 6 Illustration of DCNN model structure: a one-dimensional

DCNN with time domain signal, b one-dimensional DCNN with

frequency domain signal, c two-dimensional DCNN with time–

frequency domain signal, and d two-dimensional DCNN with

reconstructed phase space signal
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with corrupted input and the learned parameters are

used to fine-tune (Leng et al. 2018) the whole SDA

model.

3. One-dimensional DCNN with time series signal input:

This one-dimensional DCNN model consists of two

consecutive feature extraction couples, and each

couple contains a convolutional layer and a max

pooling layer. This model is designed with greater

convolutional kernel width.

4. One-dimensional DCNN with frequency domain input:

This one-dimensional DCNN model consists of two

consecutive feature extraction couples, and each

couple contains a convolutional layer and a max

pooling layer. This model is designed with convolu-

tional kernel width.

5. Two-dimensional DCNN with time–frequency domain

input: The two-dimensional DCNN model containing

two groups of stacked convolutional layers is

employed to extract features from high-dimensional

time–frequency domain input.

6. Two-dimensional DCNN with reconstructed time

domain input: The two-dimensional DCNN is designed

with greater convolutional kernel width and large

feature maps to effectively extract features from

reconstructed phase space signals.

These models are trained using the same training strat-

egy. Half the samples of each fault severity are used as

training data, and the rest are set as testing data. A mini-

batch stochastic gradient descent algorithm is used for

model optimization. Dropout is a dropout layer added

between the fully connected layer and the softmax layer to

prevent the network from overfitting. The ReLU function is

selected as the activation function and a softmax layer is

used for fault classification. The training epoch is set as 50,

and a batch size of 40 samples is used during training

optimization. The TensorFlow neural network toolbox is

used for developing these models.

The classification results of these models are shown in

Table 2. It is found that the classification accuracies of

both the MLP and the SDA are lower than those of the

DCNN models under these signal representations. The

SDA model performs better than the MLP model in terms

of classification accuracy, which indicates that the SDA

model is more suitable to extract features than the MLP

model. As for the DCNN models, classification accuracy of

the one-dimensional DCNN model with frequency domain

input achieves 99.86% and requires lower computational

complexity, which is the best performing DCNN model.

The two-dimensional DCNN with reconstructed time

domain signal outperformes the two-dimensional DCNN

with time–frequency domain input in terms of classifica-

tion accuracy. However, the reconstructed time domain

input requires more model parameters, resulting in

increased model training time. In addtion, it is worth noting

that the classification accuracy of the SDA with frequency

domain input reaches 99.79%, which is only 0.07% lower

than that of the one-dimensional DCNN with the same

input. However, model training time of the SDA is still

higher than that of the 1D DCNN and more model

parameters are generated.

5 Discussion

In this section, the effects of signal representation and

model construction on DCNN model performance are

discussed in detail. Then, an intuitive understanding of the

learned features of the DCNN models are mapped to a low-

dimensional space via t-SNE (van der Maaten and Hinton

2008). Finally, the model convergence of these DCNN

models are analyzed.

Table 2 Performance

comparison of different models
Model Signal representation Accuracy (%) Training time (s) Total parameters

MLP Raw time domain 75.14 11.98 1,277,004

Frequency domain 64.89 11.29 765,004

Time–frequency domain 49.28 89.26 4,861,004

Reconstructed phase space 73.33 51.94 9,901,004

SDA Raw time domain 79.87 41.08 1,075,004

Frequency domain 99.79 38.88 563,004

Time–frequency domain 65.31 68.45 4,659,004

Reconstructed phase space 77.19 78.56 20,302,004

1D DCNN Raw time domain 88.75 37.72 2,323,208

Frequency domain 99.86 18.51 366,688

2D DCNN Time–frequency domain 93.54 95.19 14,179,496

Reconstructed phase space 98.43 216.03 21,917,128
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5.1 Effect of Signal Representation

As shown in Fig. 7, to reach an intuitive understanding of

the effectiveness of signal representation techniques for

these DCNN models, learned features of input signals,

convolutional layers and softmax layers are mapped to a

low-dimensional space via t-SNE for visualization. The

bFig. 7 Feature visualization of the DCNN models via t-SNE: a one-

dimensional DCNN with input of time domain signals, b one-

dimensional DCNN with input of frequency domain signals, c two-

dimensional DCNN with input of wavelet domain signals, and d two-

dimensional DCNN with input of reconstructed phase space signals
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Fig. 8 Classification results of the DCNN models: a one-dimensional

DCNN with input of time doamin signals, b one-dimensional DCNN

with input of frequency domain signals, c two-dimensional DCNN

with input of wavelet doamin signals, and d two-dimensional DCNN

with input of reconstructed phase space signals
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graph shows that there are obvious differences in feature

distribution between different signal representation inputs.

Features of raw time series signal are intermingled. While

the time domain signal is transformed into a frequency

domain, features begin to cluster roughly. After trans-

forming the time series signal into different domains, fea-

tures of the three other inputs in the final softmax layer are

separated well, fewer testing samples are clustered to

wrong samples. These visualizations results confirm the

effectiveness of signal representation techniques on DCNN

model performance on machinary condition monitoring.

Moreover, the classification results which use testing

inputs of the DCNN models are shown in Fig. 8. It can be

observed that the feature extraction capabilities between

different DCNN models are different. The classification

accuracy DCNN model with time domain input reaches

88.75%, which is lower than that of the other DCNN

models. The reason may be that raw vibration signals

contain noisy components, thus the feature extraction

capability of one-dimensional DCNNs is restricted. In

comparison, noises are suppressed in frequency domain

and frequency domain representation becomes sparse

(Deng et al. 2013). Thus, this signal representation can

yield clearer features and the best performing one-dimen-

sional DCNN achieves remarkable classification accuracy

with low computational complexity. Moreover, as shown in

Fig. 8, the two-dimensional DCNN with input of recon-

structed time domain signals achieves 98.43% classifica-

tion accuracy, which is 4.89% higher than that of two-

Table 3 Results of two-dimensional DCNN with time–frequency

domain input

Signal

representation

Wavelet

scale

Test accuracy

(%)

Training time

(s)

Time–frequency

domain

64 90.13 86.49

96 93.54 95.19

128 89.72 94.04

Table 5 Classification results of two-dimensional DCNN with reconstructed phase space signal under different convolutional kernel widths and

feature maps

Conv kernel width Feature maps Conv kernel width Feature maps Accuracy (%) Training time (s) Total parameters

127 9 3 6 66 9 2 12 95.69 71.36 4,070,312

127 9 3 12 66 9 2 24 97.37 93.97 8,157,128

127 9 3 24 66 9 2 48 97.53 167.49 16,387,784

127 9 3 32 66 9 2 64 98.43 216.23 21,917,128

127 9 3 40 66 9 2 82 97.29 351.62 28,166,826

257 9 3 32 127 9 2 64 97.39 309.22 18,147,464

Table 4 Classification results of one-dimensional DCNN under different convolutional kernel widths and feature maps

Input Index Conv kernel width Feature maps Conv kernel width Feature maps Accuracy (%) Training time (s)

Time domain 1 127 12 67 24 79.86 27.97

2 257 12 35 24 81.98 25.39

3 257 6 127 12 74.81 22.37

5 257 12 127 24 83.54 25.41

6 257 24 127 48 88.75 37.72

7 257 32 127 64 74.11 44.69

8 3 24 3 48 62.13 29.51

Frequency domain 9 3 6 4 12 99.13 19.14

10 3 12 4 24 99.86 18.51

11 3 24 4 48 99.79 24.11

12 3 32 4 64 99.75 24.55

13 15 12 8 24 99.72 20.42

14 127 12 66 24 99.53 20.72

15 257 12 127 24 99.03 20.89
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dimensional DCNN with time–frequency domain input.

The results indicate that this signal reconstruction tech-

nique is suitable for mining intrinsic correlations between

machinery vibration signals.

As for the two-dimensional DCNN with time–frequency

domain input, the wavelet scale influences the model

classification performance. The more stretched the wavelet,

the coarser the signal features measured by the wavelet

coefficients. Thus, the effect of the wavelet scale is

investigated in Table 3. It is observed that the classification

accuracies are 86.49% and 90.14% under the wavelet scale

of 64 and 128, respectively. Both of these classification

accuracies are lower than when the wavelet scale is 96.

Fig. 9 Convergence of the DCNN models: a one-dimensional DCNN

with time domain signals, b one-dimensional DCNN with frequency

domain signals, c two-dimensional DCNN with time–frequency

domain signals, and d two-dimensional DCNN with reconstructed

phase space signals
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5.2 Comparison of Different Model Structures

To demonstrate the performance of the DCNN models, the

effects of convolutional kernel width and number of feature

maps on the classification results are investigated in

Table 4. It can be seen that the one-dimensional DCNN

model with time domain input can achieve an average

classification accuracy of 80.51% when the convolutional

kernel is large. However, a small convolutional kernel size

3 9 1 can only achieve a 62.13% classification accuracy.

This may be explained by the fact that the large convolu-

tional kernel in the convolutional layer is able to filter high

frequency noise, while one-dimensional DCNN with fre-

quency domain input is robust for convolutional kernel

size.

Generally, classification accuracy can be rectified by

increasing the number of convolutional feature maps.

However, as shown in Table 4, classification accuracy is

not always improved as the number of convolutional fea-

ture maps increase. The reason may lie in that redundant

and useless information is extracted as features and causes

the drop of classification accuracy. Additionally, larger

numbers of feature maps also result in an increasing

computational complexity. These results demonstrate the

importance of the right selection of convolutional kernel

width and feature maps so as to ensure the DCNN model

performance.

As for the model structure of two-dimensional CNN

with reconstructed time domain input, the effects of the

convolutional kernel width and the number of feature maps

are also investigated in Table 5. Since the reconstructed

time domain input contains more valuable information than

other signal representations, large number of feature maps

are required to extract these features. As shown in Table 5,

when the numbers of convolutional feature maps are set as

32 and 64 respectively, a maximum classification accuracy

of 98.43% can be reached.

5.3 Model Convergence

To evaluate the convergence of different models, a com-

puter is utilized with the setup of intel Xeon CPU

(1.70 GHz), 16 GB DDR3 RAM, and GeForce GTX 1060

6 GB. The model convergence results are shown in Fig. 9.

It can be seen that the classification accuracy of the one-

dimensional DCNN with time domain input is hard to

improve and that large fluctuations exist. However, two-

dimensional DCNN models are almost saturated after 40

epochs with slight fluctuation. Compared to the one-di-

mensional DCNN, two-dimensional DCNN models have a

large number of model parameters. Therefore, lower

computational efficiency is generated. In comparison with

the other three DCNN models, one-dimensional DCNN

with frequency domain input shows faster convergence and

is almost saturated after 20 epochs, which indicates that

this model is stable and possesses high computational

efficiency.

6 Conclusions

This paper presents a comprehensive condition monitoring

framework based on deep convolutional neural network

(DCNN) which aims at improving model performance. The

raw vibration signals are transformed by means of different

signal representation techniques before being fed into

DCNN models to classify health conditions. Experimental

studies on a gearbox test rig are utilized to evaluate the

effectiveness of the presented DCNN models, and major

conclusions can be drawn as follows:

1. Classification performance of DCNN models for the

classification of gearbox health conditions is investi-

gated. The results indicate that classification accuracy

of the one-dimensional DCNN fed with frequency

domain signal outperforms the other DCNN models

and shows lower computational complexity.

2. The effect of different signal representation techniques

on classification performance of DCNN models is

investigated. The results suggest that the classification

accuracy of the one-dimensional DCNN with fre-

quency domain signals outperforms that of raw time

domain signals by over 11.11%. At the same time the

classification accuracy of two-dimensional DCNN

with reconstructed time domain signals is 4.89%

higher than that of two-dimensional DCNN with

time–frequency domain input.

3. The structure of the DCNN models has been investi-

gated for selecting the optimal convolutional kernel

width and the number of feature maps. Both one-

dimensional and two-dimensional DCNN model struc-

tures with suitable convolutional kernel width and

feature maps can achieve better classification

performance.

There are still some challenges which need to be further

investigated. First, the varying operating conditions may

cause a variety of signal measurements which may dete-

riorate the performance of the presented DCNN model. On

the other hand, the computational burden of DCNN models

will increase with the size of input data. The new DCNN

structures such as VGG-net (Simonyan and Zisserman

2014), Res-net (Wu et al. 2017) and inception-v4 (Szegedy

et al. 2017) have been proposed. With the development of

deep learning techniques, the effectiveness of the new

variants of CNN models will be studied for machinery
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condition monitoring under different operating conditions

in our future research.
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Kliková B, Raidl A (2011) Reconstruction of phase space of

dynamical systems using method of time delay. In: Proceedings

of 20th annual conference Dr students—WDS 2011, pp 83–87

Ko KE, Sim KB (2018) Deep convolutional framework for abnormal

behavior detection in a smart surveillance system. Eng Appl

Artif Intell 67:226–234

Konar P, Chattopadhyay P (2011) Bearing fault detection of induction

motor using wavelet and Support Vector Machines (SVMs).

Appl Soft Comput J 11(6):4203–4211

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2323

LeCun Y, Bengio Y, Hinton G (2005) Deep learning. Nature

521:436–444

Lee SJ, Kim SW (2017) Localization of the slab information in

factory scenes using deep convolutional neural networks. Expert

Syst Appl 77:34–43

Leng J, Jiang P (2016) A deep learning approach for relationship

extraction from interaction context in social manufacturing

paradigm. Knowl Based Syst 100:188–199

Leng J, Chen Q, Mao N, Jinag P (2018) Combining granular

computing technique with deep learning for service planning

under social manufacturing contexts. Knowl Based Syst

143:295–306

Liu R, Meng G, Yang B, Sun C, Chen X (2016) Dislocated time series

convolutional neural architecture: an intelligent fault diagnosis

approach for electric machine. IEEE Trans Ind Inform

13(3):1310–1320

Lu Y, Xu X, Xu J (2014) Development of a hybrid manufacturing

cloud. J Manuf Syst 33:551–566

Matt C (2018) Fog computing. Bus Inf Syst Eng 60(4):351–355

Nalchigar S, Eric Y (2018) Designing business analytics solutions—a

model-driven approach. Bus Inf Syst Eng. https://doi.org/10.

1007/s12599-018-0555-z

Povinelli RJ, Johnson MT, Lindgren AC, Ye J (2004) Time series

classification using Gaussian mixture models of reconstructed

phase spaces. IEEE Trans Knowl Data Eng 16:779–783

Ren L, Zhang L, Wang L, Tao F, Chai X (2017) Cloud manufac-

turing: key characteristics and applications. Int J Comput Integr

Manuf 30:501–515

Residual F, Using V, Neural A (2018) Decision support for the

automotive industry. Bus Inf Syst Eng. https://doi.org/10.1007/

s12599-018-0527-3

Richter A, Heinrich P, Stocker A, Schwabe G (2018) Digital work

design. Bus Inf Syst Eng 60(3):259–264

Simonyan K, Zisserman A (2014) Very deep convolutional networks

for large-scale image recognition. In: Proceedings of interna-

tional conference on learning Representations, pp 1–14. https://

arxiv.org/abs/1409.1556. Accessed 14 Mar 2019

Su H, Li X, Yang B, Wen Z (2018) Wavelet support vector machine-

based prediction model of dam deformation. Mech Syst Signal

Process 110:412–427

Sun C, Wang P, Yan R, Gao RX (2016) A sparse approach to fault

severity classification for gearbox monitoring. In: Proceedings of

the 19th international conference on information fusion. Heidel-

berg, IEEE, pp 2303–2308

Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4,

Inception-ResNet and the impact of residual connections on

learning. In: 31st AAAI conference on artificial intelligence, San

Francisco, pp 4278–4284

Tao F, Cheng J, Qi Q (2018a) IIHub: an industrial Internet-of-Things

hub toward smart manufacturing based on cyber-physical

system. IEEE Trans Ind Inform 14(5):2271–2280

Tao F, Qi Q, Liu A, Kusiak A (2018b) Data-driven smart manufac-

turing. J Manuf Syst 48:157–169. https://doi.org/10.1016/j.jmsy.

2018.01.006

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE.

J Mach Learn Res 1(620):267–284

Verstraete D, Engineering M, Engineering M (2017) Deep learning

enabled fault diagnosis using time-frequency image analysis of

rolling element bearings. Hindawi Shock Vib 2017:1–29

Wang J (2016) A multi-scale convolution neural network for

featureless fault diagnosis. In: Proceedings of the international

symposium on flexible automation. IEEE, Cleveland, pp 65–70

Wang L, Torngren M, Onori M (2015) Current status and advance-

ment of cyber-physical systems in manufacturing. J Manuf Syst

37:517–527

Wang P, Ananya Yan R, Gao RX (2017) Virtualization and deep

recognition for system fault classification. J Manuf Syst

44:310–316

Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning for

smart manufacturing: methods and applications. J Manuf Syst

48:144–156. https://doi.org/10.1016/j.jmsy.2018.01.003

123

J. Wang et al.: Performance Analysis and Enhancement of Deep Convolutional…, Bus Inf Syst Eng 61(3):311–326 (2019) 325

http://cogprints.org/5869/1/cnn_tutorial.pdf
https://doi.org/10.1109/icassp.2013.6639344
https://doi.org/10.1109/icassp.2013.6639344
https://doi.org/10.1007/s12599-018-0555-z
https://doi.org/10.1007/s12599-018-0555-z
https://doi.org/10.1007/s12599-018-0527-3
https://doi.org/10.1007/s12599-018-0527-3
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.jmsy.2018.01.006
https://doi.org/10.1016/j.jmsy.2018.01.006
https://doi.org/10.1016/j.jmsy.2018.01.003


Wu S, Zhong S, Liu Y (2017) Deep residual learning for image

steganalysis. Multimed Tools Appl 77(9):10437–10453

Yan R, Gao RX, Chen X (2014) Wavelets for fault diagnosis of rotary

machines: a review with applications. Sig Process 96:1–15

Ye Y, Hu T, Zhang C, Luo W (2016) Design and development of a

CNC machining process knowledge base using cloud technol-

ogy. Int J Adv Manuf Technol 94:3413–3425

Ye Y, Hu T, Yang Y, Zhu W, Zhang C (2018) A knowledge based

intelligent process planning method for controller of computer

numerical control machine tools. J Intell Manuf 2018:1–17.

https://doi.org/10.1007/s10845-018-1401-3

Zhang W, Peng G, Li C (2017) Rolling element bearings fault

intelligent diagnosis based on convolutional neural networks

using raw sensing signal. In: Proceeding of the twelfth interna-

tional conference on intelligent information hiding and multi-

media signal processing, Springer, Cham, pp 77–84

Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep

learning and its applications to machine health monitoring. Mech

Syst Signal Process 100:439–453

123

326 J. Wang et al.: Performance Analysis and Enhancement of Deep Convolutional…, Bus Inf Syst Eng 61(3):311–326 (2019)

https://doi.org/10.1007/s10845-018-1401-3

	Performance Analysis and Enhancement of Deep Convolutional Neural Network
	Application to Gearbox Condition Monitoring
	Abstract
	Introduction
	Related Work
	DCNN Based Condition Monitoring Framework
	Signal Representation
	DCNN Model Construction
	Performance Evaluation Metrics

	Experimental Study
	Experimental Setup
	Data Processing
	Model Structure
	Result Analysis

	Discussion
	Effect of Signal Representation
	Comparison of Different Model Structures
	Model Convergence

	Conclusions
	Acknowledgements
	References




