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Abstract Analyzing data streams has received consider-

able attention over the past decades due to the widespread

usage of sensors, social media and other streaming data

sources. A core research area in this field is stream clus-

tering which aims to recognize patterns in an unordered,

infinite and evolving stream of observations. Clustering can

be a crucial support in decision making, since it aims for an

optimized aggregated representation of a continuous data

stream over time and allows to identify patterns in large

and high-dimensional data. A multitude of algorithms and

approaches has been developed that are able to find and

maintain clusters over time in the challenging streaming

scenario. This survey explores, summarizes and categorizes

a total of 51 stream clustering algorithms and identifies

core research threads over the past decades. In particular, it

identifies categories of algorithms based on distance

thresholds, density grids and statistical models as well as

algorithms for high dimensional data. Furthermore, it dis-

cusses applications scenarios, available software and how

to configure stream clustering algorithms. This survey is

considerably more extensive than comparable studies,

more up-to-date and highlights how concepts are interre-

lated and have been developed over time.

Keywords Stream clustering � Data streams � Online
clustering � Pattern recognition � Decision support � Data
representation

1 Introduction

Cluster analysis is an unsupervised learning technique

which aims to find groups of similar objects. It is a com-

mon tool to support decision makers by structuring the

large and high-dimensional data into manageable groups

and thus generating an optimized data representation.

Common application scenarios include identifying prof-

itable market segments, anomaly and fraud detection or

sensor analysis. Most clustering algorithms require a fixed

set of data and evaluate each point multiple times to gen-

erate the clusters. In practice, however, many systems are

continuously generating new observations. As an example,

sensors generate thousands of observations each second

and countless of interactions happen every day in social

networks. In order to account for new data points and the

possible shift in cluster structures, classical clustering

algorithms need to be run periodically. This is computa-

tionally expensive and requires that all relevant data is

stored for periodic re-evaluation. A more suitable approach

is to update existing clusters and integrate new observa-

tions into the existing model by identifying emerging

structures and removing outdated structures incrementally.

This is the goal of stream clustering where data points are

assumed to arrive as a continuous stream of new obser-

vations where the order cannot be influenced. This stream

is possibly unbounded which makes unlimited storage and

re-evaluation of data points infeasible (Silva et al. 2013).

In this scenario, the main task is to optimize the number

and location of clusters in order to represent the underlying

data best and to extract the relevant information from a

stream without storing and re-evaluating all observations.

The underlying optimization task of these algorithms is

to find clusters such that the within-cluster similarity is

high. At the same time, similarity between-cluster
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similarity should be low. In the stream clustering scenario,

these two optimization tasks are subject to restrictions with

regard to the availability, order, speed and volume of the

data as well as limitation regarding available memory and

computational power. In the following we discuss algo-

rithms which are able to deal with these restrictions. The

main contribution of our survey is as follows: We provide

an overview of available algorithms for stream clustering.

Our survey is much more extensive and up-to-date than

comparable studies and includes all algorithms applicable

to numerical data that we are aware of. The only category

which we consider out of scope for this paper are stream

clustering algorithms for textual data since they usually

rely on considerably different approaches. In addition, we

identify different research threads and highlight interrela-

tions between algorithms making it easier to understand

how the field developed and what kind of trends exist.

Furthermore, we discuss problems when applying stream

clustering in practice. In particular, we see that most

algorithms require numerous parameters which are unin-

tuitive and difficult to choose appropriately. We discuss

automatic algorithm configuration as one approach on how

to tackle this problem. As an accompanying document to

this paper we also provide a website1 which compiles

relevant information about stream clustering such as

common datasets, available implementations and a curated

list of algorithms and corresponding publications in the

field.

The remainder of this paper is organized as follows:

Sect. 2 introduces the basic concepts of stream clustering.

Then, Sect. 3 gives an overview of related work and

introduces a number of related surveys. Next, four different

categories of algorithms are identified and a total of 51

algorithms presented. First, Sect. 4 introduces algorithms

that use a distance threshold to build clusters. Next, Sect. 5

presents algorithms that utilize density-grids to map

observations into a discrete space. Then, Sect. 6 presents

algorithms that rely on statistical models and Sect. 7 dis-

cusses algorithms that deal with high dimensional data

streams. Section 8 presents available software tools and

implementations of the algorithms and also discusses

common problems during application and how to over-

come them. Finally, Sect. 9 concludes with a summary of

the findings.

2 Methodological Background

In this section, we introduce the basics of stream clustering.

Most importantly, we describe how data streams are typi-

cally aggregated and how algorithms adapt to changes over

time. For a consistent notation, we denote vectors by

boldface symbols and formally define a data stream as an

infinite sequence X ¼ ðx1; x1; . . .; xNÞ where xt is a single

observation with d dimensions at time t. To calculate the

distance between clusters, an appropriate distance measure

needs to be used. For numerical data, the Euclidean dis-

tance between the centroids of the clusters is common.

However, for binary, ordinal, nominal or text data, appro-

priate distance measures such as the Jaccard index, simple

matching coefficient or Cosine similarity could be used.

In general, finding a good clustering solution is defined

as an optimization task. The underlying goal is to maxi-

mize intra-cluster homogeneity while simultaneously

maximizing inter-cluster heterogeneity. This ensures that

objects within the same cluster are similar but different

clusters are well separated. There are various strategies that

aim to achieve this task. Popular strategies include mini-

mizing intra-cluster distances, minimizing radii of clusters

or finding maximum likelihood estimates. A popular

example is the k-means algorithm which minimizes the

within-cluster sum of squares, i.e., the distance from data

points to their cluster centroids.

In a streaming scenario, these optimization objectives

are subject to several restrictions regarding availability and

order of the data as well as resource and time limitations.

For example, the large volume of data makes it undesirable

or infeasible to store all observations of the stream. Typi-

cally, observations can only evaluated once and are dis-

carded afterwards. This requires to extract sufficient

information from observations before discarding them.

Similarly, the order of observations cannot be influenced.

As an illustrative example, let us consider the case of eye

tracking which is typically used in order to analyze how

people perceive content such as websites or advertise-

ments. It records the movement of the eye and detects

where a person is looking. An example of a stream of eye

tracking data is visualized in Fig. 1, showing the pupil

positions at three different points in times (grey points) (-

Steil et al. 2018). In this context, stream clustering can be

applied in order to find the areas of interest or subjects that

the person is looking at.

Throughout this paper, we discuss common strategies

that can be used to identify clusters under the streaming

restrictions. For example, we could use similarity thresh-

olds in order to decide whether an observation fits into an

existing cluster (Fig. 2a). Alternatively, we could split the

data space into a grid and only store the location of densely

populated cells (Fig. 2b). Other approaches include fitting

a model to represent the observed data (Fig. 2c) or pro-

jecting high-dimensional data to a lower dimensional space

(Fig. 2d).

Generally, these strategies allow to capture the location

of dense areas in the data space. These regions can be1 http://www.matthias-carnein.de/streamClustering.
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considered clusters and they can even be merged when they

become too similar over time. However, it is not possible to

ever split a clusters again since the underlying data was

discarded and only the centre of the dense region was

stored (Aggarwal 2007). To avoid this problem, many

stream clustering algorithms divide the process in two

phases: an online and an offline component (Aggarwal

et al. 2003).

2.1 Two-Phase Clustering

In the two-phase clustering approach, an online component

evaluates arriving data points in real time and captures

relevant summary statistics as outlined above. The result is

a number of micro-clusters that represent a large number of

preliminary clusters in the stream (Circles in Fig. 1). The

number of micro-clusters is much smaller than the number

of data points in the stream but larger than the final number

of clusters. This gives sufficient flexibility to merge or split

clusters, without the need to store all observations. Note

that some publications refrain from using the term micro-

clusters for grid-based approaches to highlight the different

type of information that is maintained.

Upon request, an offline component then ‘reclusters’ the

micro-clusters to derive a final set of macro-clusters

(Crosses in Fig. 1). This process is usually not considered

time-critical which allows to use variants of existing

clustering algorithms. While most algorithms explicitly

specify an offline component, the online and offline steps

can usually be combined arbitrarily. The two-phase clus-

tering approach is visualized in Fig. 3 by summarizing the

data in a grid-structure. While the vast majority of algo-

rithms apply such a two-phase process, some rely on

incremental approaches where macro-clusters are gener-

ated incrementally without an intermediate step.

2.2 Time Window Models

As shown in our eye tracking example, the underlying

distribution of the stream will often change over time. This

is also known as drift or concept-shift. To handle this,

algorithms can employ time window models. This

approach aims to ‘forget’ older data to avoid that historic

data is biasing the analysis to outdated patterns. There exist

four main types of time window models (Fig. 4) (Silva

et al. 2013; Nguyen et al. 2015).

(a) (b) (c)

Fig. 1 Stream of eye tracking

data (Steil et al. 2018) at three

different points in time. Grey

points denote the normalized

pupil centers and their opacity

and size is relative to their

recency. Circles mark the

centers of micro-clusters and

crosses the centers of macro-

clusters. Both are scaled relative

to the number of observations

assigned to them

(a) (b) (c) (d)

Fig. 2 Categories of stream

clustering algorithms

Fig. 3 Exemplary two-phase stream clustering using a grid-based

approach (Carnein et al. 2017a)
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The damped time window assigns a weight to each

micro-cluster based on the number of observations

assigned to it. In each iteration, the weight is faded by a

factor such as 2�k, where decay factor k influences the rate

of decay. Since fading the weight in every iteration is

computationally costly, the weight can either be updated in

fixed time intervals (Cao et al. 2006) or whenever a cluster

is updated (Chen and Tu 2007). In this case, the fading can

be performed with respect to the elapsed time

xðDtÞ ¼ 2�kDt (Cao et al. 2006), where Dt denotes the

time since the cluster was last updated. In Fig. 1, we

applied the same fading function to reduce the size and

opacity of older data. In some cases, clusters are implicitly

decayed over time by considering their weight relative to

the total number of observations (Gao et al. 2005; Amini

et al. 2012).

An alternative is the sliding time window which only

considers the most recent observations or micro-clusters in

the stream. This is usually based on a First-In-First-Out

(FIFO) principle, where the oldest data point in the window

is removed once a new data point becomes available. The

size of this window can be of fixed or variable length.

While a small window size can adapt quickly to concept

drift, a larger window size considers more observations and

can be more accurate for stable streams.

In addition, a landmark time window is a very simple

approach which separates the data stream into disjunct

chunks based on events. Landmarks can either be defined

based on the passed time or other occurrences. The land-

mark time window summarizes all data points that arrive

after the landmark. Whenever a new landmark occurs, all

the data in the window is removed and new data is cap-

tured. This category also includes algorithms that do not

specifically consider changes over time and therefore

require the user to regularly restart the clustering.

Finally, the pyramidal time model (Aggarwal et al.

2003) or tilted time window (Nguyen et al. 2015) uses

different granularity levels based on the recency of data.

This approach summarizes recent data more accurately

whereas older data is gradually aggregated.

3 Related Work

Due to the increasing relevance of stream clustering, a

number of survey papers began to summarize and structure

the field. Most notably Amini et al. (2014b) provide an

overview of the two largest research threads, namely dis-

tance-based and grid-based algorithms. In total, the authors

discuss ten distance-based approaches, mostly extensions

of DenStream (Cao et al. 2006), and nine grid-based

approaches, mostly extensions of D-Stream (Chen and

Tu 2007; Tu and Chen 2009). The authors describe the

algorithms, name input parameters and also empirically

evaluate some of the algorithms. In addition, the authors

highlight interrelations between the algorithms in a time-

line. We utilize this timeline and extend it with more

algorithms and additional categories. However, their paper

focusses only on distance and grid-based algorithms while

we have taken more categories and more algorithms into

account.

Additionally, Silva et al. (2013) introduced a taxonomy

that allows to categorize stream clustering algorithms, e.g.,

regarding the reclustering algorithm or used time window

model. The authors describe a total of 13 stream clustering

algorithms and categorize them according to their taxon-

omy. In addition, application scenarios, data sources and

available toolsets are presented. However, a drawback is

that many of the discussed algorithms are one-pass clus-

tering algorithms that need extensions to suit the streaming

case.

In Ghesmoune et al. (2016) the authors discuss 19

algorithms and are among the first to highlight the research

area of Neural Gas (NG) for stream clustering. However,

only a single grid-based algorithm is discussed and other

popular algorithms are missing. Further, the authors in

Nguyen et al. (2015) focus on stream clustering and stream

classification and present a total of 17 algorithms. Con-

siderably shorter overviews are also provided in Mousavi

et al. (2015), Ma (2014), Amini and Wah (2011, 2012) and

Amini et al. (2011).

In this survey, we cover a total of 51 different stream

clustering algorithms. This makes our survey much more

exhaustive than all comparable studies. In addition, our

paper identifies four common work streams and how they

(a) (b) (c) (d)

Fig. 4 Overview of time

window models (Zhu and

Shasha 2002; Silva et al. 2013)
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developed over time. We also focus on common problems

when applying stream clustering. As an example, we point

to a total of 26 available algorithm implementations, as

well as three different frameworks for data stream clus-

tering. Furthermore, we address the problem of configuring

stream clustering algorithms and present automatic algo-

rithm configuration as an approach to address this problem.

Table 1 briefly summarizes the relevant dimensions of our

survey.

In previous work (Carnein et al. 2017a), we have also

performed a rigorous empirical comparison of the most

popular stream clustering algorithms. In total, we evaluated

ten algorithms on four synthetic and three real-world data

sets. In order to obtain the best results, we performed

extensive parameter configuration. Our results have shown

that DBSTREAM (Hahsler and Bolaños 2016) produces the

highest cluster quality and is able to detect arbitrarily

shaped clusters. However, it is sensitive to the insertion

order and has many parameters which makes it difficult to

apply in practice. As an alternative, D-Stream (Chen and

Tu 2007; Tu and Chen 2009) can produce competitive

results, but often requires more micro-clusters due to its

grid based approach.

4 Distance-Based Approaches

Many approaches in stream clustering are distance-based.

These algorithms typically threshold the distance of a new

observation to existing micro-clusters and either insert it or

initialize a new cluster. The main challenge for algorithms

Table 1 Overview of relevant characteristics of this survey

Number of algorithms 51

Years 1987–2018

Algorithm categories 4

Algorithm implementations 26

Software frameworks 3

Table 2 Overview of distance-based stream clustering algorithms

Algorithm Year Time window model Offline clustering

BIRCH (Zhang et al. 1996) 1996 Landmark Hierarchical clustering

ScaleKM (Bradley et al. 1998) 1998 Landmark –

Single-pass k -means (Farnstrom et al. 2000) 2000 Landmark –

STREAM (O’Callaghan et al. 2002) 2002 Landmark k-median

CluStream (Aggarwal et al. 2003) 2003 Pyramidal k-means

HCluStream (Yang and Zhou 2006) 2006 Pyramidal k-means

DenStream (Cao et al. 2006) 2006 Damped DBSCAN

E-Stream (Udommanetanakit et al. 2007) 2007 Damped –

SWClustering (Zhou et al. 2007a) 2007 Pyramidal k-means

Olindda (Spinosa et al. 2007) 2007 Landmark k-means

RepStream (Lühr and Lazarescu 2009) 2008 Sliding –

C-DenStream (Ruiz et al. 2009) 2009 Damped C-DBSCAN (Ruiz et al. 2007)

rDenStream (Liu et al. 2009) 2009 Damped DBSCAN

HDenStream (Lin and Lin 2009) 2009 Damped DBSCAN

SDStream (Ren and Ma 2009) 2009 Pyramidal DBSCAN

ClusTree (Kranen et al. 2009) 2009 Damped Not specified

LiarTree (Hassani et al. 2011) 2011 Damped Not specified

HUE-Stream (Meesuksabai et al. 2011) 2011 Damped –

SOStream (Isaksson et al. 2012) 2012 Damped –

StreamKM?? (Ackermann et al. 2012) 2012 Pyramidal k-means

FlockStream (Forestiero et al. 2013) 2013 Damped –

BICO (Fichtenberger et al. 2013) 2013 Landmark k-means

LeaDen-Stream (Amini and Wah 2013) 2013 Damped DBSCAN

G-Stream (Ghesmoune et al. 2014) 2014 Damped –

Improved BIRCH (Ismael et al. 2014) 2014 Landmark Hierarchical clustering

DBSTREAM (Hahsler and Bolaños 2016) 2016 Damped Shared density

A-BIRCH (Lorbeer et al. 2017) 2017 Landmark Hierarchical clustering

evoStream (Carnein and Trautmann 2018) 2018 Damped Evolutionary algorithm
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in this category is to summarize and maintain clusters over

time without storing each individual observation. Common

strategies include the use of a synopsis data structure which

allows to calculate location and radius. Alternatively, the

centroids or representatives of clusters can be maintained

directly. More recently also competitive learning strategies

became popular which can update the centers of clusters

over time. Table 2 gives an overview of 28 popular dis-

tance-based stream clustering algorithms. In the following,

each algorithm and its clustering strategy is discussed in

more detail. In addition, Fig. 5 highlights the relationship

between the algorithms and shows how concepts have been

refined and improved over time. It becomes obvious that

the vast majority of algorithms use concepts introduced by

BIRCH, CluStream or DenStream.

4.1 Clustering Feature

BIRCH (Balanced Iterative Reducing and Clustering using

Hierarchies) (Zhang et al. 1996, 1997) is one of the earliest

algorithms applicable to stream clustering. It reduces the

information maintained about a cluster to only a few

summary statistics stored in a so called Clustering Feature

(CF). The CF consists of three components: ðn;LS; SSÞ,

where n is the number of data points in the cluster, LS is a

d-dimensional vector that contains the linear sum of all

data points for each dimension and SS is a scalar that

contains the sum of squares for all data points over all

dimensions. Some variations of this concept also store the

sum of squares per dimension, i.e., as a vector SS. A CF

provides sufficient information to calculate the centroid

LS=n and also a radius, i.e., a measure of deviation from

the centroid. In addition, a CF can be easily updated and

merged with another CF by summing the individual

components.

To maintain the CFs, BIRCH incrementally builds a

balanced-tree as illustrated in Fig. 6, where each node can

contain a fixed number of CFs. Each new observation

descends the tree by following the child of its closest CF

Fig. 5 Development of

distance-based stream clustering

algorithms

Fig. 6 Structure of a CF tree with at most 2 Clustering Features per

node
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until a leaf node is reached. The observation is either

merged with its closest leaf-CF or used to create a new

leaf-CF. For reclustering, all leaf-CF can be used as an

input to a traditional algorithm such as k-means or hierar-

chical clustering.

Improved BIRCH (Ismael et al. 2014) is an extension

which uses different distance thresholds per CF which are

increased based on entries close to the radius boundary.

Similarly, A-BIRCH (Lorbeer et al. 2017) estimates the

threshold parameters by using the Gap Statistics (Tibshi-

rani et al. 2001) on a sample of the stream.

ScaleKM (Bradley et al. 1998) is an incremental

algorithm to cluster large databases which uses the concept

of CFs. The algorithm fills a buffer with initial points and

initializes k clusters as with standard k-means. The algo-

rithm then decides for every point whether to discard,

summarize or retain it. First, based on a distance threshold

to the cluster centers and by creating a worst case pertur-

bation of cluster centers, the algorithm identifies points that

are unlikely to ever change their cluster assignments. These

points are summarised in a CF per cluster and then dis-

carded. Second, the remaining points are used to identify a

larger number of micro-clusters by applying k-means and

merging clusters using agglomerative hierarchical cluster-

ing. Each cluster is again summarised using a CF. All

remaining points are kept as individual points. The freed

space in the buffer is then filled with new points to repeat

the process.

Single pass k -means (Farnstrom et al. 2000) is a

simplified version of scaleKM where the algorithm dis-

cards all data points with every iteration and only the k CFs

are maintained.

4.2 Extended Clustering Feature

CluStream (Aggarwal et al. 2003) extends the CF from

BIRCH which allows to perform clustering over different

time-horizons rather than the entire data stream. The

extended CF is defined as ðLS; SS; LSðtÞ; SSðtÞ; nÞ, where
LSðtÞ and SSðtÞ are the linear and squared sum of all

timestamps of a cluster. The online algorithm is initialized

by collecting a chunk of data and using the k-means

algorithm to create q clusters. When a new data point

arrives, it is absorbed by its closest micro-cluster if it lies

within an adaptive radius threshold. Otherwise, it is used to

create a new cluster. In order to keep the number of micro-

clusters constant, outdated clusters are removed based on a

threshold on their average time stamp. If this is not pos-

sible, the two closest micro-clusters are merged.

To support different time-horizons, the algorithm regu-

larly stores snapshots of the current CFs following a

pyramidal scheme. While some snapshots are regularly

updated, others are less frequently updated to maintain

information about historic data. A desired portion of the

stream can be approximated by subtracting the current CFs

from a stored snapshot of previous CFs. The extracted

micro-clusters are then used to run a variant of k-means to

generate the macro-clusters.

HCluStream (Yang and Zhou 2006) extends Clu-

Stream for categorical data by storing the frequency of

attribute-levels for all categorical features. Based on this, it

defines a separate categorical distance measure which is

combined with the traditional distance measure for con-

tinuous attributes.

SWClustering (Zhou et al. 2007a) uses the extended

CF and pyramidal time window from CluStream. The

algorithm maintains CFs in an Exponential Histogram of

Cluster Features (EHCF) which stores data in different

levels of granularity, depending on their recency. While the

most recent observation is always stored individually, older

observations are grouped and summarized. In particular,

this step is organized in granularity levels. Once more than

1=�þ 1 CFs of a granularity level exist, the next CF con-

tains twice as many entries (cf. Fig. 7). A new observation

is either inserted into its closest CF or used to initialize a

new one based on a radius threshold, similar to BIRCH. If

the initialization creates too many individual CFs, the

oldest two individual CFs are merged and this process

cascades down the different granularity levels. An old CF

is removed if its time-stamp is older than the last N ob-

served time stamps. To generate the final clustering all CFs

are used for reclustering, similar to BIRCH.

SDStream (Ren and Ma 2009) combines the EHCF

from SWClustering to represent the potential core and

outlier micro-clusters from DenStream. The algorithm

also enforces an upper limit on the number of micro-

clusters by either merging the two most similar micro-

clusters or deleting outlier micro-clusters. The offline

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

CF1 CF2 CF3 CF4 CF5

Fig. 7 Granularity levels in an EHCF with � ¼ 1. Recent observations are stored individually, whereas older data points are iteratively

summarized

123

M. Carnein, H. Trautmann: Optimizing Data Stream Representation, Bus Inf Syst Eng 61(3):277–297 (2019) 283



component applies DBSCAN to the centers of the potential

core-micro clusters.

4.3 Time-Faded Clustering Feature

DenStream (Cao et al. 2006) presents a temporal

extension of the CFs from BIRCH. It maintains two types

of clusters: Potential core micro-clusters are stable struc-

tures that are denoted using a time-faded CF

LSðxÞ; SSðxÞ; nðxÞ
� �

. The superscript ðxÞ denotes that each
entry of the CF is decayed over time using a decay function

xðDtÞ ¼ b�kDt. In addition, their weight nðxÞ is required to

be greater than a threshold value. Outlier micro-clusters are

unstable structures whose weight is less than the threshold

and they additionally maintain their creation time.

At first, DBSCAN (Ester et al. 1996) is used to initialize

a set of potential core micro-clusters. Similar to BIRCH, a

new observation is assigned to its closest potential core

micro-cluster if the addition does not increase the radius

beyond a threshold. If it does, the same attempt is made for

the closest outlier-cluster and the outlier-cluster is pro-

moted to a potential core if it satisfies the weight threshold.

If both cannot absorb the point, a new outlier-cluster is

initialized. In regular intervals, the weight of all micro-

clusters is evaluated. Potential core-micro clusters that no

longer have enough weight are degraded to outlier micro-

clusters and outlier micro-clusters that decayed below a

threshold based on their creation time are removed. Macro-

clusters are generated by applying a variant of DBSCA-

N (Ester et al. 1996) to potential core micro-clusters.

C-DenStream (Ruiz et al. 2009) is an extension of

DenStream which allows to include domain knowledge

in the form of instance-level constraints into the clustering

process. Instance-level constraints describe observations

that must or cannot belong to the same cluster.

Another extension is rDenStream (Liu et al. 2009).

Instead of discarding outlier micro-clusters which cannot

be converted into potential core micro-clusters, the algo-

rithm temporarily stores them away in an outlier buffer.

After the offline component, the algorithm attempts to

relearn the data points that have been cached in the buffer

in order to refine the clustering.

HDenStream (Lin and Lin 2009) combines D-

Stream with the categorical distance measure of

HCluStream to make it applicable to categorical

features.

E-Stream (Udommanetanakit et al. 2007) uses the

time-faded CF from DenStream in combination with a

histogram which bins the data points. New observations are

either added to their closest cluster or used to initialize a

new one. Existing clusters are split if one of the dimensions

shows a significant valley in their histogram. When a

cluster is split along a dimension, the other dimensions are

weighted by the size of the split. Additionally, clusters can

be merged if they move into close proximity.

HUE-Stream (Meesuksabai et al. 2011) is an exten-

sion of E-Stream which also supports categorical data

and can also handle uncertain data streams. To model

uncertainty, each observation is assumed to follow a

probability distribution. In this case, the vectors of linear

and squared sum become the sum of expectation, faded

over time.

ClusTree (Kranen et al. 2009, 2011a) uses the time-

faded CF and applies it to the tree structure of BIRCH.

Additionally, it allows to handle data streams where entries

arrive faster than they can be processed. A new entry

descends into its closest leaf where it is inserted as a new

CF. Whenever a node is full, it is split and its entries

combined in two groups such that the intra-cluster distance

is minimized. However, if a new observation arrives before

a node could be split, the new entry is merged with its

closest CFs instead. If a new observation arrives while an

entry descends the tree, that entry is temporarily stored in a

buffer at its current location. It remains there until another

entry descends into the same branch and is then carried

further down the tree as a ‘hitchhiker’. Again, the leafs can

be used as an input to a traditional algorithm to generate

the macro-clusters.

LiarTree (Kranen et al. 2011b; Hassani et al. 2011)

is an extension of ClusTree with better noise and nov-

elty handling. It does so by adding a time-weighted CF to

each node of the tree which serves as a buffer for noise.

Data points are considered noise with respect to a node

based on a threshold on their distance to the node’s mean,

relative to the node’s standard deviation. The noise buffer

is promoted to a regular cluster when its density is com-

parable to other CFs in the node.

FlockStream (Forestiero et al. 2013) employs a

flocking behavior inspired by nature to identify emerging

flocks and swarms of objects. Similar to DenStream, the

algorithm distinguishes between potential core and outlier

micro-clusters and uses a time-faded CF. It projects a batch

of data onto a two-dimensional grid where each data point

is represented by a basic agent. Each agent then makes

movement decisions solely based on other agents in close

proximity. The movement of agents is similar to the

behavior of a flock of birds in flight: (1) Agents steer in the

same direction as their neighbors; (2) Agents steer towards

the location of their neighbors; (3) Agents avoid collisions

with neighbors. When agents meet, they can be merged

depending on a distance or radius threshold. After a num-

ber of flocking steps, the next batch of data is used to fill

the grid with new agents in order to repeat the process.

LeaDen-Stream (Amini and Wah 2013) (Leader

Density-based clustering algorithm over evolving data
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Stream) can choose multiple representatives per cluster to

increase accuracy when clusters are not uniformly dis-

tributed. To do so, the algorithm maintains two different

granularity levels. First, Micro Leader Clusters (MLC)

correspond to the concept of traditional micro-clusters.

However, they maintain a list of more fine granular

information in the form of Mini Micro Leader Clusters

(MMLC). These mini micro-clusters contain more detailed

information and are represented by a time-faded CF. For

new observations, the algorithm finds the closest MLC

using the Mahalanobis distance. If the distance is within a

threshold, the closest MMLC within the MLC is identified.

If it is also within a distance threshold, the point is added to

the MMLC. If one of the thresholds is violated, a new MLC

or MMLC is created respectively. For reclustering all

selected leaders are used to run DBSCAN.

4.4 Medoids

An alternative to storing Clustering Features is to maintain

medoids of clusters, i.e., representatives. RepStream

(Lühr and Lazarescu 2008, 2009), for example, incre-

mentally updates a graph of nearest neighbors to identify

suitable cluster representatives. New observations are

inserted as a new node in the graph and edges are inserted

between the node and its nearest-neighbors. The point is

assigned to an existing cluster if it is mutually connected to

a representative of that cluster. Otherwise it is used as a

representative to initialize a new cluster. Representatives

are also inserted in a separate representative graph which

maintains the nearest neighbors only between representa-

tives. To split and merge existing clusters, the distance

between them is compared to the average distance to their

nearest neighbors in the representative graph. In order to

reduce space requirements, non-representative points are

discarded using a sliding time window. In addition, if a

new representative is found but space limitations prevent it

from being added to the representative graph, it can replace

an existing representative depending on its age and number

of nearest neighbors.

streamKM?? (Ackermann et al. 2012) is a variant of

k-means?? (Arthur and Vassilvitskii 2007) which com-

putes a small weighted sample that represents the data

called coreset. The coreset is constructed in a binary tree

by using a divisive clustering approach. The tree is ini-

tialized by selecting a random representative point from the

data. To split an existing cluster, the algorithm starts at the

root node and iteratively chooses a child node relative to

their weights until a leaf is reached. From the selected leaf,

a data point is chosen as a second centre based on its

distance to the initial centre of the cluster. Finally, the

cluster is split by assigning each data point to the closest of

the two centers.

To handle data streams, the algorithm uses a similar

approach as SWClustering (see Sect. 4.2). First, new

observations are inserted into a coreset tree. Once the tree

is full, all its points are moved to the next tree. If the next

tree already contains points, the coreset between the points

in both trees is computed. This cascades further until an

empty tree is found. For reclustering, the union of all points

is used to compute a coreset and the representatives are

used to apply the k-means?? algorithm (Arthur and

Vassilvitskii 2007).

BICO (Fichtenberger et al. 2013) combines the data

structure of BIRCH (see Sect. 4.1) with the coreset of

streamKM??. BICO maintains the coreset in a tree

structure where each node represents one CF. The algo-

rithm is initialized by using the first data point in the stream

to open a CF on the first level of the empty tree and the data

point is kept as a representative for the CF. For every

consecutive point, the algorithm attempts to insert it into an

existing CF, starting on the first level. The insertion fails if

the distance of the new point to the representative of its

closest CF is larger than a threshold. In this case, a new CF

is opened on the same level, using the new point as the

reference point. Additionally, the insertion fails if the

cluster’s deviation from the mean would grow beyond a

threshold. In this case the algorithm attempts to insert the

point into the children of the closest CF. The final clus-

tering is generated by applying k-means?? to the repre-

sentatives of the leafs.

4.5 Centroids

A simpler approach to maintain clusters is to store their

centroids directly. However, this makes it generally more

difficult to update clusters over time. As an example,

STREAM (O’Callaghan et al. 2002; Guha et al. 2003) only

stores the centroids of k clusters. Its core idea is to treat the

k-Median clustering problem as a facility planning prob-

lem. To do so, distances from data points to their closest

cluster have associated costs. This reduces the clustering

task to a cost minimization problem in order to find the

number and position of facilities that yield the lowest costs.

In order to generate a certain number of clusters, the

algorithm adjusts the facility costs in each iteration by

using a binary search for the costs that yield the desired

number of centers k.

To deal with streaming data, the algorithm processes the

stream in chunks and solves the k-Median problem for each

chunk individually. Assuming n different chunks, a total of

nk clusters are created. To generate the final clustering or if

available storage is exceeded, these intermediate clusters

are again clustered using the same approach.

OLINDDA (Spinosa et al. 2007) (Online Novelty and

Drift Detection Algorithm) relies on cluster centroids to
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identify new and drifting clusters in a data stream. Initially,

k-means is used to generate a set of clusters. For each

cluster the distance from its centre to its furthest observa-

tion is considered a boundary. Points that do not fall into

the boundary of any cluster are considered as an unknown

concept and kept in a buffer. This buffer is regularly

scanned for emerging structures using k-means. If an

emerging cluster is of similar variance as the existing

cluster, it is considered valid. To distinguish a new cluster

from a drifting cluster, the algorithm assumes that drifts

occur close to the existing clusters whereas new clusters

form further away from the existing model.

4.6 Competitive Learning

More recently, algorithms also use competitive learning

strategies in order to adapt the centroids of clusters over

time. This is inspired by Self-Organizing Maps

(SOMs) (Kohonen 1982) where clusters compete to rep-

resent an observation, typically by moving cluster centers

towards new observations based on their proximity.

SOStream (Isaksson et al. 2012) (Self Organizing density

based clustering over data Stream) combines DBSCA-

N (Ester et al. 1996) with Self-Organizing Maps

(SOMs) (Kohonen 1982) for stream clustering. It stores a

time-faded weight, radius and centre for the cluster

directly. A new observation is merged into its closest

cluster if it lies within its radius. Following the idea of

competitive learning, the algorithm also moves the k-

nearest neighbors of the absorbing cluster in its direction. If

clusters move into close proximity during this step, they

are also merged.

DBSTREAM (Hahsler and Bolaños 2016) (Density-based

Stream Clustering) is based on SOStream (see Sect. 4.6)

but uses the shared density between two micro-clusters in

order to decide whether micro-clusters belong to the same

macro-cluster. A new observation x is merged into micro-

clusters if it falls within the radius from their centre.

Subsequently, the centers of all clusters that absorb the

observation are updated by moving the centre towards x. If

no cluster absorbs the point, it is used to initialize a new

micro-cluster. Additionally, the algorithm maintains the

shared density between two micro-clusters as the density of

points in the intersection of their radii, relative to the size

of the intersection area. In regular intervals it removes

micro-clusters and shared densities whose weight decayed

below a respective threshold. In the offline component,

micro-clusters with high shared density are merged into the

same cluster.

evoStream (Carnein and Trautmann 2018) (Evolu-

tionary Stream Clustering) makes use of an evolutionary

algorithm in order to bridge the gap between the online and

offline component. Evolutionary algorithms are inspired by

natural evolution where promising solutions are combined

and slightly modified to create offsprings which can yield

an improved solution. By iteratively selecting the best

solutions, an evolutionary pressure is created which

improves the result over time. evoStream uses this

concept in order to iteratively improve the macro-clusters

through recombinations and small variations. Since macro-

clusters are created incrementally, the evolutionary steps

can be performed while the online components waits for

new observations, i.e., when the algorithm would usually

idle. As a result, the computational overhead of the offline

component is removed and clusters are available at any

time. The online component is similar to DBSTREAM but

does not maintain a shared-density since it is not necessary

for reclustering.

G-Stream (Ghesmoune et al. 2014, 2015) (Growing

Neural Gas over Data Streams) utilizes the concept of

Neural Gas (Martinetz et al. 1991) for data streams. The

algorithm maintains a graph where each node represents a

cluster. Nodes that share similar data points are connected

by edges. Each edge has an associated age and nodes

maintain an error term denoting the cluster’s deviation. For

a new observation x the two nearest clusters C1 and C2 are

identified. If x does not fit into the radius of its closest

cluster C1, it is temporarily stored away and later re-in-

serted. Otherwise, it is inserted into C1. Additionally, the

centre of C1 and all its connected neighbors are moved in

the direction of x. Next, the age of all outgoing edges of C1

are incremented and an edge from C1 to C2 is either

inserted or its weight is reset to zero. The age of edges

serves a similar purpose as a fading function. Edges who

have grown too old, are removed as they contain outdated

information. In regular intervals, the algorithm inserts new

nodes between the node with the largest deviation and its

neighbor with the largest deviation.

4.7 Summary

Distance-based algorithms are by far the most common and

popular approaches in stream clustering. They allow to

create accurate summaries of the entire stream with rather

simple insertion rules. Since it is infeasible to store all

observations within the clusters, distance-based algorithms

usually summarize the observations associated with a

cluster. A popular example of this are Clustering Features

which only store the information required to calculate the

location and radius of a cluster. Alternatively, some algo-

rithms maintain medoids, i.e., representatives of clusters or

store the cluster centroids directly. In order to update

cluster centroids over time, some algorithms also make use

of competitive learning strategies, similar to Self-Orga-

nizing Maps (SOM) (Kohonen 1982). Generally, distance-

based algorithms are computationally inexpensive and will
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suit the majority of stream clustering scenarios well.

However, they often rely on many parameters such as

distance and weight thresholds, radii or cleanup intervals.

This makes it more difficult to apply them in practice and

requires either expert knowledge or extensive parameter

configuration. Another common issue is that distance-

based algorithms can often only find spherical clusters.

However, this is usually due to the choice of offline com-

ponent which can be easily replaced by other approaches

that can detect arbitrary clusters such as DBSCAN or hier-

archical clustering with single linkage. While the popular

algorithms BIRCH, CluStream and DenStream face

many problems, either due to lack of fading or complicated

maintenance steps, we find newer algorithms such as

DBSTREAM particularly interesting due to their simpler

design.

5 Grid-Based Approaches

An alternative to distance-based approaches is to capture

the density of observations in a grid. A grid separates the

data space along all dimensions into intervals to create a

number of grid-cells. By mapping data points to the cells, a

density estimate can be maintained. Macro-clusters are

typically found by grouping adjacent dense cells. The main

challenge for algorithms of this category is how to con-

struct the grid-cells, i.e., how often cells are partitioned and

how to choose the size of cells. Table 3 gives an overview

of the 13 approaches that are discussed in the following. In

addition, Fig. 8 shows how density-based algorithms

developed over time. By far the most popular and

influential algorithm of this category has been D-

Stream (Chen and Tu 2007).

5.1 One-Time Partitioning

DUCstream (Gao et al. 2005) (Dense Units Clustering for

data streams) is one of the earliest grid-based algorithms. It

partitions the data space once into grid-cells of fixed size.

To initialize the clustering, the algorithm processes a first

chunk of data and maintains all cells with sufficient den-

sity. The density of cells is calculated relative to the total

number of observations. All dense cells that are connected

by common faces are placed in the same macro-cluster.

This initial result is then updated incrementally as more

chunks are processed and new dense cells arise while

others fade. Each new dense cell is absorbed by a macro-

cluster if it shares a face with a cell in that cluster. Addi-

tionally, if it shares faces with cells in different clusters,

those clusters are merged. Finally, if it does not share any

faces, it is used to create a new cluster. Each removed

dense cell is also removed from its corresponding cluster. If

this leaves the cluster empty, the cluster is deleted. Alter-

natively, if this disconnects two cells in the same cluster,

the cluster is split.

D-Stream (Chen and Tu 2007) is among the most

popular stream clustering algorithms and uses a fixed grid

structure. The algorithm distinguishes between three types

of cells: dense cells, sparse cells and transitional cells

whose weight lies between the other two types. The algo-

rithm maps new data points to its respective cell and is

initialized by assigning all dense cells to individual clus-

ters. These clusters are extended with all neighboring

Table 3 Overview of density-based stream clustering algorithms. Macro-clusters are typically generated from neighboring dense cells

Algorithm Year Time window model Partitioning Grid size

Fractal Clustering (Barbará and Chen 2000) 2000 Landmark One-time Fixed

Stats-Grid (Park and Lee 2004) 2004 Landmark Recursive Dynamic

DUCstream (Gao et al. 2005) 2005 Damped One-time Fixed

D-Stream (Chen and Tu 2007) 2007 Damped One-time Fixed

Cell-Tree (Park and Lee 2007a) 2007 Damped Recursive Fixed

ExCC (Bhatnagar and Kaur 2007) 2007 Landmark One-time Fixed

DDStream (Jia et al. 2008) 2008 Damped One-time Fixed

MR-Stream (Wan et al. 2009) 2009 Damped Recursive Fixed

PKSStream (Ren et al. 2011) 2011 Damped Recursive Fixed

DCUStream (Yang et al. 2012) 2012 Damped One-time Fixed

DENGRIS-Stream (Amini et al. 2012) 2012 Sliding One-time Fixed

HDCStream (Amini et al. 2014a) 2014 Damped One-time Fixed

MuDi-Stream (Amini et al. 2016) 2016 Damped One-time Fixed
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transitional grids or are merged with the clusters of

neighboring dense cells. In regular intervals, the clustering

evaluates the weight of each cell and incorporates the

changes in cell types into the clustering.

In Tu and Chen (2009), the authors extended their

concept by a measure of attraction that incorporates posi-

tional information of data within a grid-cell. This variant

only merges neighboring cells if they share many points at

the cell border.

DD-Stream (Jia et al. 2008) is a small extension on

how to handle points that lie exactly on the grid bound-

aries. For such a point, the distance to adjacent cell centers

is computed and the point is assigned to its closest cell. If

the observation has the same distance to multiple cells, it is

assigned to the one with higher density. If this also does not

break the tie, it is inserted into cell that has been updated

more recently.

ExCC (Bhatnagar and Kaur 2007; Bhatnagar et al.

2014) (Exclusive and Complete Clustering) constructs a

grid where the number of cells and grid boundaries are

chosen by the user. This allows to handle categorical data,

where the number of cells is chosen to be equal to the

number of attribute levels. Clusters are identified as

neighboring dense cells. Cells of numeric variables are

considered neighbors if they share a common vertex. Cells

of categorical variables employ a threshold on a similarity

function between the attribute levels. To form macro-

clusters, the algorithm iteratively chooses an unvisited

dense cell and initializes a new cluster. Each neighboring

grid-cell is then placed in the same cluster. This is repeated

until all cells have been visited.

DCUStream (Yang et al. 2012) (Density-based Clus-

tering algorithm of Uncertain data Stream) aims to handle

uncertain data streams, similar to HUE-Stream (see

Sect. 4.3), where each observation is assumed to have an

existence probability. The algorithm is initialized by col-

lecting a batch of data and mapping it to a grid of fixed

size. The density of a cell is defined as the sum of all

existence probabilities faded over time. A grid is consid-

ered dense when its density is above a dynamic threshold.

To generate a clustering, the algorithm selects the dense-

cell with highest density and assigns all its neighboring

cells to the same cluster. neighboring sparse-cells are

considered the boundary of a cluster. This is repeated for

all dense cells.

DENGRIS-Stream (Amini et al. 2012) (Density Grid-

based algorithm for clustering data streams over Sliding

window) is a grid-based algorithm that uses a sliding

window model. New observations are mapped into a fixed

size grid and the cell’s densities are maintained. Densities

are implicitly decayed by considering them relative to the

total number of observations in the stream. In regular

intervals, cells whose density decayed below a threshold or

cells that are no longer inside the sliding window are

Fig. 8 Development of density-

based stream clustering

algorithms
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removed. Macro-clusters are formed by grouping neigh-

boring dense cells into the same cluster.

Fractal Clustering (Barbará and Chen

2000, 2003) follows an usual grid-based approach. It uses

the concept of fractal dimensions (Theiler 1990) as a

measure of size for a set of points. A common way to

calculate the fractal dimension is by dividing the space into

grid-cells of size � and counting the number of cells that are

occupied by points in the data N(r). Then, the fractal

dimension can be calculated as:

D ¼ lim
�!0

logNð�Þ
log 1

�

: ð1Þ

Fractal Clustering is first initialized with a sample

by recursively placing close points into the same cluster

(similar to DBSCAN). For a new observation, the algorithm

then evaluates which influence in fractal dimension the

addition of the point would have for each cluster. It then

inserts the point into the cluster whose fractal dimension

changes the least. However, if the change in fractal

dimension is too large, the observation is considered noise

instead.

5.2 Recursive Partitioning

Stats-Grid (Park and Lee 2004) is an early algorithm

which recursively partitions grid-cells. The algorithm

begins by splitting the data into grid-cells of fixed size.

Each cell maintains its density, mean and standard devia-

tion. The algorithm then recursively partitions grid-cells

until cells become sufficiently small unit cells. The aim is

to find adjacent unit cells with large density which can be

used to form macro-clusters. The algorithm splits a cell in

two subcells whenever it has reached sufficient density.

The size of the subcells is dynamically adapted based on

the distribution of data within the cell. The authors propose

three separate splitting strategies, for example choosing the

dimension where the cell’s standard deviation is the largest

and splitting at the mean. Since the weight of cells is cal-

culated relative to the total number of observations, out-

dated cells can be removed and their statistics returned to

the parent cell.

Cell-Tree (Park and Lee 2007a) is an extension of

Stats-Grid which also tries to find adjacent unit cells

of sufficient density. In contrast to Stats-Grid, subcells

are not dynamically sized based on the distribution of the

cell. Instead, they are split into a pre-defined number of

evenly sized subcells. The summary statistics of the sub-

cells are initialized by distributing the statistics of the

parent cell following the normal distribution. To efficiently

maintain the cells, the authors propose a siblings list. The

siblings list is a linear list where each node contains a

number of grid-cells along one dimension as well as a link

to the next node. Whenever a cell is split, the created

subcells replace their parent cell in its node. To maintain a

siblings list over multiple dimensions, a first-child/next-

sibling tree can be used where subsequent dimensions are

added as children of the list-nodes.

The splitting strategy of MR-Stream (Wan et al. 2009)

is similar but splits each dimension in half, effectively

creating a tree of cells as shown in Fig. 9. New observa-

tions start at the root cell and are recursively assigned to

the appropriate child-cell. If a child does not exist yet, it is

created until a maximum depth is reached. If the insertion

causes a parent to only contain children of high density, the

children are discarded since the parent node is able to

represent this information already. Additionally, the tree is

regularly pruned by removing leafs with insufficient weight

and removing children of nodes that only contain dense or

only sparse children. To generate the macro-clusters, the

user can choose a desired height of the tree. For every

unclustered cell, the algorithm initializes a new macro-

cluster and adds all neighboring dense cells. If the size and

weight of the cluster is too low, it is considered noise.

PKSStream (Ren et al. 2011) is similar to MR-

Stream but does not require a subcell on all heights of the

tree. It only maintains intermediate nodes when there are

more than K � 1 non-empty children. Each observation is

iteratively descended down the tree until either a leaf is

reached or the child does not exist. In the latter case a new

cell is initialized. In regular intervals, the algorithm eval-

uates all leaf nodes and removes those with insufficient

weight. The offline component is the same as in MR-

Stream for the leafs of the tree.

5.3 Hybrid Grid-Approaches

HDCStream (Amini et al. 2014a) (hybrid density-based

clustering for data stream) first combined grid-based

algorithms with the concept of distance-based algorithms.

In particular, it maintains a grid where dense cells can be

promoted to become micro-clusters as known from dis-

tanced-based algorithms (see Sect. 4). Each observation in

Fig. 9 Tree structure in MR-Stream
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the stream is assigned to its closest micro-cluster if it lies

within a radius threshold. Otherwise, it is inserted into the

grid instead. Once a grid-cell has accumulated sufficient

density, its points are used to initialize a new micro-cluster.

Finally, the cell is no longer maintained, as its information

has been transferred to the micro-cluster. In regular inter-

vals, all micro-clusters and cells are evaluated and removed

if their density decayed below a respective threshold.

Whenever a clustering request arrives, the micro-clusters

are considered virtual points in order to apply DBSCAN.

Mudi-Stream (Amini et al. 2016) (Multi Density

Data Stream) is an extension of HDCStream that can

handle varying degrees of density within the same data

stream. It uses the same insertion strategy as HDCStream

with both, grid-cells and micro-clusters. However, the

offline component applies a variant of DBSCAN (Ester

et al. 1996) called M-DBSCAN to all micro-clusters. M-

DBSCAN only requires a MinPts parameter and then esti-

mates the � parameter from the mean and standard devia-

tion around the centre.

5.4 Summary

Grid-based approaches are a popular alternative to density-

based algorithms due to their simple design and support for

arbitrarily shaped clusters. While many distance-based

algorithms are only able to detect spherical clusters, almost

all grid-based algorithms can identify cluster of arbitrary

shape. This is mostly because the grid-structure allows an

easy design of an offline-component where dense cells with

common faces form clusters. The majority of grid-based

algorithms partition the data space once into cells of fixed

size. However, some algorithms do this recursively to

create a more adaptive grid. Less common are algorithms

where the size of cells is determined dynamically, mostly

because of the increased computational costs. Lastly, some

algorithms employ a hybrid strategy where a grid is used to

establish distance-based approaches. Generally, the grid

structure is less efficient than distance-based approaches

due to its inflexible structure. For this reason, grid-based

approaches often have higher memory requirements and

need more micro-clusters to achieve the same quality as

distance-based approaches. Empirical evidence (Carnein

et al. 2017a) has also shown this to be true for the most

popular grid-based algorithm D-Stream.

6 Model-Based Approaches

A different approach to stream clustering is to summarize

the data stream as a statistical model. Common areas of

research are based on the Expectation Maximization (EM)

algorithm. Table 4 gives an overview of 6 model-based

algorithms. This class of algorithms is highly diverse and

few interdependencies exist between the presented

algorithms.

CluDistream (Zhou et al. 2007b) uses the EM

algorithm to process distributed data streams. At each

location, it maintains a number of Gaussian mixture dis-

tributions and a coordinator node is used to combine the

distributions. For each location, the stream is processed in

chunks and the first chunk is used to initialize a new

clustering using EM. For subsequent chunks, the algorithm

checks whether the current models can represent the chunk

sufficiently well. This is done by calculating the difference

between the average log-likelihood of the existing model

and the average log-likelihood of the chunk under the

existing model. If the difference is less than a threshold, the

weight of the model is incremented. Else, the current model

is stored and a new model is initialized by applying EM to

the current chunk. Whenever the weight of a model is

updated or a new model is initialized, the coordinator

receives the update and incorporates the new information

into a global model by merging or splitting the Gaussian

distributions.

SWEM (Dang et al. 2009a, b) (Sliding Window with

Expectation Maximization) applies the EM to chunks of

data. Starting with random initial parameters, a set of

m distributions is calculated for the first chunk and points

are assigned to their most likely cluster. Each cluster is

then summarized using a CF and k macro-cluster are

generated by applying EM again. For a new chunk, the

algorithm sets the initial values to the converged values of

the previous chunk and incrementally applies EM to gen-

erate m new distributions. If a cluster grows too large or too

small during this phase, the corresponding distributions can

be split or merged. Finally the m new clusters are sum-

marized in CFs and used with the existing k clusters to

apply EM again.

COBWEB (Fisher 1987) maintains a classification tree

where each node describes a cluster. The tree is built

incrementally by descending a new entry x from the root to

a leaf. On each level the algorithm makes one of four

clustering decisions that yields the highest clustering

Table 4 Overview of model-based stream clustering algorithms

Algorithm Year Time window model

COBWEB (Fisher 1987) 1987 Landmark

ICFR (Motoyoshi et al. 2004) 2004 Damped

WStream (Tasoulis et al. 2006) 2006 Damped

CluDistream (Zhou et al. 2007b) 2007 Landmark

SWEM (Dang et al. 2009a) 2009 Sliding

SVStream (Wang et al. 2013) 2013 Damped
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quality: (1) Insert x into most fitting child, (2) Create a new

cluster for x, (3) Combine the two nodes that can best

absorb x and add existing nodes as children of the new

node, (4) Split the two nodes that can best absorb x and

move its children up one level. The quality of each decision

is evaluated using a measure called Category Utility (CU)

which defines a trade-off between intra-class similarity and

inter-class distance.

ICFR (Motoyoshi et al. 2004) (Incremental Clustering

using F-value by Regression analysis) uses concepts from

linear regression in order to cluster data streams. The

algorithm assigns points to existing clusters based on their

cosine similarity. To merge clusters the algorithm finds the

two closest clusters based on the Mahalanobis distance. If

the merged clusters yield a greater F-value than the sum of

individual F-values, the clusters are merged. The F-value is

a measure of model validity in linear regressions. If the

clusters cannot be merged, the next closest two clusters are

evaluated until the closest pair exceeds a distance

threshold.

WStream (Tasoulis et al. 2006) uses multivariate ker-

nel density estimates to maintain a number of rectangular

windows in the data space. The idea is to use local maxima

of a density estimate as cluster centers and the local min-

ima as cluster boundaries. WStream transfers this

approach to data streams. New data points are either

assigned to an existing window and their centre is moved

towards the new point or it is used to initialize a new

window of default size. Windows can enlarge or contract

depending on the ratio of points close to their centre and

close to their border.

SVStream (Wang et al. 2013) (Support Vector based

Stream Clustering) is based on Support Vector Cluster-

ing(SVC) (Ben-Hur et al. 2001). SVC transforms the data

into a higher dimensional space and identifies the smallest

sphere that encloses most points. When mapping the sphere

back to the input space, the sphere forms a number of

contour lines that represent clusters. SVStream iteratively

maintains a number of spheres. The stream is processed in

chunks and the first chunk is used to run SVC. For each

subsequent chunk, the algorithm evaluates what portion of

the chunk does not fall into the radius of existing spheres.

If too many do not fit the current spheres, these values are

used to initialize a new sphere. The remaining values are

used to update the existing spheres.

6.1 Summary

Model-based stream clustering algorithms are far less

common than distance-based and grid-based approaches.

Typically strategies try to find a mixture of distributions

that fits the data stream, e.g. CluDiStream or SWEM.

Unfortunately, no implementation of model-based algo-

rithms is readily available which limits their usefulness in

practice. In addition, they are often more computationally

complex than comparable algorithms from the other

categories.

7 Projected Approaches

A special category of stream clustering algorithms deals

with high dimensional data streams. These types of algo-

rithms address the curse of dimensionality (Beyer et al.

1999), i.e., the problem that almost all points have an equal

distance in very high dimensional space. In such scenarios,

clusters are defined according to a subset of dimensions

where each cluster has an associated set of dimensions in

which it exists. Even though these algorithms often use

concepts from distance and grid-based algorithms their

application scenarios and strategies are unique and deserve

their own category. Table 5 summarizes 4 projected clus-

tering algorithms and Fig. 10 shows the relationship

between the algorithms. Despite their similarity,

HDDStream and PreDeConStream have been devel-

oped independently.

HPStream (Aggarwal et al. 2004) (High-dimensional

Projected Stream clustering) is an extension of Clu-

Stream (see Sect. 4.2) for high dimensional data. The

algorithm uses a time-faded CF with an additional bit

vector that denotes the associated dimensions of a cluster.

The algorithm normalizes each dimension by regularly

sampling the current standard deviation and adjusting the

existing clusters accordingly. The algorithm initializes with

k-means and associates each cluster with the l dimensions

in which it has the smallest radius. The cluster assignment

Table 5 Overview of projected stream clustering algorithms

Algorithm Year Time window model Offline clustering

HPStream (Aggarwal et al. 2004) 2004 Damped k-means

SiblingTree (Park and Lee 2007b) 2007 Damped –

HDDStream (Ntoutsi et al. 2012) 2012 Damped PreDeCon (Bohm et al. 2004)

PreDeConStream (Hassani et al. 2012) 2012 Damped PreDeCon (Bohm et al. 2004)
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is then updated by only considering the associated

dimensions for each cluster. Finally, the process is repeated

until the cluster and dimensions converge. A new data

point is tentatively added to each cluster to update the

dimension association and added to its closest cluster if it

does not increase the cluster radius above a threshold.

SiblingTree (Park and Lee 2007b) is an extension

of CellTree (Park and Lee 2007a) (see Sect. 5.2). It

uses the same tree-structure but allows for subspace clus-

ters. To do so, the algorithm creates a siblings list for each

dimension as children of the root. New data points are

recursively assigned to the grid-cells using a depth first

approach. If a cell’s density increases beyond a threshold, it

is split as in CellTree. If a unit cell’s density increases

beyond a threshold, new sibling lists for each remaining

dimension are created as children of the cell. Additionally,

if a cell’s density decays below a density threshold, its

children are removed and it is merged with consecutive

sparse cells. Clusters in the tree are defined as adjacent

unit-grid-cells with enough density.

HDDStream (Ntoutsi et al. 2012) (Density-based Pro-

jected Clustering over High Dimensional Data Streams) is

initialized by collecting a batch of observations and

applying PreDeCon (Bohm et al. 2004). PreDeCon can

be considered a subspace version of DBSCAN. The update

procedure is similar to DenStream (see Sect. 4.3): A new

observation is assigned to its closest potential core micro-

cluster if its projected radius does not increase beyond a

threshold. Else, the same attempt is made for the closest

outlier-cluster. If both cannot absorb the observation, a new

cluster is initialized. Periodically, the algorithm down-

grades potential core micro clusters if their weight is too

low or if the number of associated dimensions is too large.

Outlier-clusters are removed as in DenStream. To gen-

erate the macro-clusters a variant of PreDeCon (Bohm

et al. 2004) is used.

PreDeConStream (Hassani et al. 2012) (Subspace

Preference weighted Density Connected clustering of

Streaming data) was developed simultaneously to

HDDStream (see Sect. 7) and both share many concepts.

The algorithm is also initialized using the

PreDeCon (Bohm et al. 2004) algorithm and the insertion

strategy is the same as in DenStream (see Sect. 4.3).

Additionally, the algorithm adjusts the clustering in regular

intervals using a modified part of the PreDeCon algo-

rithm on the micro-clusters that were changed during the

online phase.

7.1 Summary

Projected stream clustering algorithms serve a niche for

high dimensional data streams where it is not possible to

perform prior feature selection in order to reduce the

dimensionality. In general, these algorithms have added

complexity associated with the selection of subspaces for

each cluster. In return, they can identify clusters in very

high dimensional space and can gracefully handle the curse

of dimensionality (Beyer et al. 1999). The most influential

and popular algorithm of this category has been

HPStream.

8 Application and Software

An increasing number of physical devices these days is

interconnected. This trend is generally described as the

Internet of Things (IoT) where every-day devices are col-

lecting and exchanging data. Popular examples of this are

Smart Refrigerators that remind you to restock or Smart

Home devices such as thermostats, locks or speakers which

can remote control your home. Due to this, many modern

applications produce large and fast amounts of data as a

continuous stream. Stream Clustering is a way to analyze

this data and extract relevant information from it. The

resulting clusters can help decision makers to understand

the different groups. For example, IoT enables Predictive

Maintenance where necessary maintenance tasks are pre-

dicted from the sensors of the devices. Clustering can help

to find a cluster of devices that are likely to fail next. This

can help to prevent machine failures but also reduce

unnecessary maintenance tasks. Additionally, stream clus-

tering could be applied for market or customer segmenta-

tion where customers that have similar preference or

behavior are identified from a stream of transactions. These

segments can be engaged differently using appropriate

marketing strategies. Stream clustering has also been suc-

cessfully applied to mine conversational topics from chat

data (Carnein et al. 2017b) or analyze user behavior based

on web click-streams (Wang et al. 2016). In addition, it

was used to analyze transactional data in order to detect

fraudulent plastic card transactions (Tasoulis et al. 2008)

and to detect malicious network connections from com-

puter network data (Hahsler and Bolaños 2016; Acker-

mann et al. 2012; Amini et al. 2016; Guha et al. 2003).

Fig. 10 Development of projected stream clustering algorithms
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Further, it was used to analyze sensor readings (Hahsler

and Bolaños 2016), social network data (Gao et al. 2015),

weather monitoring (Motoyoshi et al. 2004), telecommu-

nication data (Ali et al. 2011), stock prices (Kontaki et al.

2008) or the monitoring of automated grid computing, e.g.

for anomaly detection (Zhang et al. 2010; Zhang and

Wang 2010). Other application scenarios include social

media analysis or the analysis of eye tracking data as in our

initial example.

Unfortunately, there is not a single solutions that can fit

all application scenarios and problems. For this reason, the

choice of algorithm depends on the characteristics and

requirements of the stream. An important characteristic is

the speed of the stream. For very fast streams, more effi-

cient algorithms are required. In particular, anytime algo-

rithms such as ClusTree (Kranen et al. 2009) or

evoStream (Carnein and Trautmann 2018) are able to

output a clustering result at anytime during the stream and

handle faster streams better. On the other hand, some

algorithms store additional positional information along-

side micro-clusters. While this often helps to achieve better

clustering results, it makes algorithms such as LeaDen-

Stream (Amini and Wah 2013), D-Stream with

attraction (Tu and Chen 2009) and DBSTREAM less suit-

able for faster streams.

Another important characteristic is the desired or

expected shape of clusters. For example, many algorithms

can only recognize compact clusters, as shown in Fig. 11a.

This type of clusters often corresponds to our natural

understanding of a cluster and is usually well recognised by

distance-based approaches such as BICO (Fichtenberger

et al. 2013) or ClusTree (Kranen et al. 2009). Some

streams, however, consists of mostly long and straggly

clusters as shown in Fig. 11b. These clusters are generally

easier to detect for grid-based approaches where clusters of

arbitrary shape are formed by dense neighboring cells.

Nevertheless, distance-based approaches can also detect

these clusters when using a reclustering algorithm that can

identify arbitrary shapes, e.g., as used by

DBSTREAM (Hahsler and Bolaños 2016). In addition,

clusters may be of different density as as shown in

Fig. 11c. This is a niche problem and only MuDi-

Stream (Amini et al. 2016) currently addresses it.

Furthermore, the dimensionality of the problem plays an

important role. Generally, faster algorithms are desirable as

the dimensionality increases. However, for very high-di-

mensional data, projected approaches such as

HPStream (Aggarwal et al. 2004) are necessary in order

to find meaningful clusters.

Finally, the expected amount of concept-shift of the

stream is important. If the structure of clusters changes

regularly, an algorithm that applies a damped time-window

model should be used. This includes algorithms such as

DenStream (Cao et al. 2006), D-Stream (Chen and Tu

2007), ClusTree (Kranen et al. 2009) and many more.

For streams without concept-shift, most algorithms are

applicable. For example, algorithms using a damped time

window model can set the fading factor k ¼ 0. Note,

however, that algorithms such as DenStream rely on the

fading mechanism in order to remove noise (Bolaños et al.

2014).

8.1 Software

An important aspect to apply stream clustering in practice

is available software and tools. In general, availability of

stream clustering implementations is rather scarce and only

the most prominent algorithms are available. Only few

authors provide reference implementations for their algo-

rithms. As an example, C, C?? or R implementations are

available for BIRCH (Zhang et al. 1997), STREAM (Guha

et al. 2003; Ackermann et al. 2012),

streamKM?? (Ackermann et al. 2012), BICO (Fichten-

berger et al. 2013) and evoStream (Carnein and Traut-

mann 2018). Previously, also an implementation of

RepStream (Lühr and Lazarescu 2009) was available.

More recently, several projects aim to create unified

frameworks for stream data mining, including implemen-

tations for stream clustering. The most popular framework

for data stream mining is the Massive Online Analysis

(MOA) (Bifet et al. 2010) framework. It is implemented in

Java and provides the stream clustering algorithms Cob-

Web, D-Stream, DenStream, ClusTree, Clu-

Stream, streamKM?? and BICO.

For faster prototyping there also exists the stream

package (Hahsler et al. 2018) for the statistical program-

ming language R. It contains general methods for working

with data streams and also implements the D-Stream,

DBSTREAM, BICO, BIRCH and evoStream algorithm.

There is also an extension package streamMOA (Hahsler

et al. 2015) which interfaces the MOA implementations of

DenStream, ClusTree and CluStream.

For working with data in high-dimensional space, the

Subspace MOA framework (Hassani et al. 2013) provides

Java implementations for HDDStream and PreDeCon-

Stream. Again, the R-package subspaceMOA (Hassani

(a) (b) (c)

Fig. 11 Visualisation of different cluster types
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et al. 2016) interfaces both methods to make them acces-

sible with the stream package.

Alternatively, the streamDM (Huawei Noah’s Ark Lab

2015) project provides methods for data mining with Spark

Streaming which is an extension for the Spark engine.

Currently it implements the CluStream and

streamKM?? algorithms with plans to extend the project

with more stream clustering algorithms.

8.2 Algorithm Configuration

Streaming data in general (Bifet et al. 2018) pose consid-

erable challenges for respective algorithms, especially due

to the requirement of real-time capability, the high proba-

bility of non-stationary data and the lack of availability of

the original data over time. Moreover, many clustering

approaches in general require standardized data. In order to

standardize a data stream which evolves over time, one

could either estimate the values for centering and scaling

from an initial portion of the stream (Hahsler et al. 2018).

Alternatively, in a more sophisticated manner, CF based

approaches can also incrementally adapt the values for

scaling and update the existing micro-clusters accord-

ingly (Aggarwal et al. 2004).

Specifically, as we have seen throughout the discussion

of available stream clustering algorithms, most of them

require a multitude of parameters to be set by the user

a-priori. These settings control the behavior and perfor-

mance of the algorithm over time. Usually, density-based

algorithms require at least a distance or radius threshold

and grid-based algorithms need the grid’s size. The same

applies to their extensions for projected stream clustering

and model-based algorithms mostly make use of a simi-

larity-threshold. In practice, such parameters are often

unintuitive to choose appropriately even with expert

knowledge. As an example, it might be possible to find

appropriate distance thresholds for a given scenario but

choosing appropriate weight thresholds or cleanup intervals

tends to be very difficult for a users, especially considering

possible drift of the stream. A notable exception from this

problem is the ClusTree (see Sect. 4.3) algorithm which

at least makes an effort to be parameter-free.

Therefore, a systematic online approach for automated

parameter configuration is required. However, state-of-the

art automated parameter configuration approaches such as

irace (López-Ibáñez et al. 2016), ParamILS (Hutter

et al. 2007, 2009) or SMAC (Hutter et al. 2011) are not

perfectly suited for the streaming data scenario. First of all,

they are mostly set-based, thus not focussed on online

learning on single, specific data. Moreover, they require

static and stationary data so that they can only be applied in

a prequential manner, i.e. in regular intervals or on an

initial sample of the stream in order to determine and adjust

appropriate settings over time which does not really meet

the efficiency requirement of the real-time capability.

However, an initial approach on configuring and

benchmarking stream clustering approaches based on

irace (López-Ibáñez et al. 2016) has been presented

by Carnein et al. (2017a). Very promising are ensemble-

based approaches, both for algorithm selection and con-

figuration on data streams, which have successfully been

applied in the context of classification algorithms

already (van Rijn et al. 2014, 2018).

9 Conclusion

Analyzing data streams is becoming extremely important

as most applications today create a continuous flow of new

observations. An interesting aspect of analyzing streaming

data is clustering, where homogeneous groups are identi-

fied. It supports decision making in large and possibly

unstructured data by identifying manageable groups of

similar observations. Possible application scenarios include

the analysis of sensor data, click stream data, network data

or identifying market segments in customer relationship

management applications (Wedel and Kamakura 2000).

Stream clustering aims to find clusters within an evolving

data stream without the need to revisit or store all obser-

vations. It has been a very active research topic over the

past decades and has produced a multitude of algorithms

following different approaches. Most algorithms rely on a

two-phase approach where an online component extracts

relevant information from the stream. An offline compo-

nent then uses this information to derive a final set of

clusters. The underlying optimization task needs to build a

suitable summary of the stream. The interplay between the

online and offline component is then crucial for decision

making since it helps to reveal hidden structures and

dependencies within the data streams. In this paper we

summarized and reviewed a total of 51 available algo-

rithms. To the best of our knowledge our survey is the most

extensive and thorough study of its kind, discussing almost

every available stream clustering algorithm. This paper is

supported by our website2 which serves as a repository for

algorithms, literature and data sets in the field of data

stream clustering.

In addition, we identified categories of algorithms and

research threads. First, we identify algorithms that used

density-threshold and either assign new observations to the

closest cluster or use it to initialize a new cluster. A

milestone algorithm in this area is BIRCH which proposed

to store summary statistics of a cluster. These can be

incrementally updated and allow to calculate location and

2 http://www.matthias-carnein.de/streamClustering.
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deviation of a cluster. CluStream and DenStream have

refined this concept to account for concept drift of a data

stream. Next, density-based algorithms use grids to identify

dense regions. The grid-cells are typically of fixed size but

can also be dynamically calculated. The most important

algorithm employing this strategy is D-Stream. A third

category is based on statistical models. Many algorithms

utilize the Expectation Maximization (EM) algorithm to fit

a mixture of distributions to the data. Lastly, we identified

subspace clustering algorithms aimed at high dimensional

data streams.

A crucial challenge when applying stream clustering

algorithms is the appropriate choice of parameter settings.

Systematic automated algorithm configuration is required

but the streaming data scenario is very challenging, even

state-of-the art configuration approaches are not perfectly

suited as they require an appropriate learning phase and

would have to be able to deal with drifts or structural

changes of the stream.

Future work should systematically benchmark and

configure prominent stream clustering algorithms and

determine respective strengths and weaknesses, e.g.,

regarding cluster structure, computational complexity and

clustering quality. We have already published experimental

results for the most popular algorithms (Carnein et al.

2017a). In addition, real-life use cases and application

examples should be highlighted and compared to tradi-

tional approaches in the same scenario.
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