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Abstract With the rise of newbusiness processes that require

real-time decision making, anticipatory decision making

becomes necessary to use the available resources wisely.

Dynamic real-time problems occur in many business fields,

for example in vehicle routing applications with stochastic

customer service requests expecting a fast response. For

anticipatory decision making, offline simulation-based opti-

mization methods like value function approximation are

promising solution approaches. However, these methods

require a suitable approximation architecture to store the value

information for the problem states. In this paper, an approach

is proposed that finds and adapts this architecture iteratively

during the approximation process. A computational proof of

concept is presented for a dynamic vehicle routing problem. In

comparison to conventional architectures, the proposed

method is able to improve the solution quality and reduces the

required architecture size significantly.

Keywords Approximate dynamic programming �
Dynamic service routing � State space partitioning � Data-
driven modeling and simulation � Simulation-based

optimization

1 Introduction

Many modern service providers offer services at cus-

tomers’ homes that are requested through modern

communication technologies, often even for the same day.

Examples are courier, mobility, repair services, and trans-

portation services in general. A major part of the corre-

sponding business model is the definition of the business

process modeling the response to the customer request. In

many of these business processes, customers call while the

service vehicles are already on the road. Customers expect

a fast response to their service request and preferably a

service fulfillment on the same day. The number of busi-

ness models containing such business processes constantly

increases and thus, more providers are challenged by the

task of successful service fulfillment (Speranza 2018;

Savelsbergh and Van Woensel 2016).

In contrast to traditional planning problems with all

information available and sufficient time for computation,

service providers now face dynamic decision processes

with a sequence of decision states. In every state, they need

to make decisions about assignments of the new customer

requests and the corresponding dynamic routing of the

vehicles in real-time. On the operational level, the provider

has predefined and limited workforce resources to fulfill

the service requests. The resources are reflected in the time

available within the drivers’ shifts. Because providers

operate in highly competitive markets, decisions need to

utilize these time resources both effectively and efficiently.

Decisions are generally determined under incomplete

information because new information such as new cus-

tomer requests is likely to be available in later states.

Because current decisions impact the resources available

later in the day, an anticipation of potential future devel-

opments is necessary in current decision making to balance

immediate and possible future revenue. For anticipation,

providers often have access to large amounts of historical

transactional data. However, the pure availability of this

data is not sufficient for a decision support in a decision
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state. The combination of real-time responses, the pressure

to use resources effectively, and the need to anticipate

potential future developments challenges service providers

in their operational decision making. Service providers

have to apply methods of prescriptive analytics that belong

to the group of data-centric mechanisms (Kowalczyk and

Buxmann 2014) and enable ‘‘automated decision making

by offering advanced predictive capabilities’’ (Jarke 2014).

The necessary decision support tools have to derive deci-

sions nearly instantaneously in every state, incorporate the

information provided by predictive analytics, and allow for

a suitable use of the operational resources.

Because extensive calculations are inhibited by the real-

time decision making requirement during the execution of

the business process, calculations need to be shifted to a

‘‘learning’’ phase. The idea is to learn information offline

and use the information in the online decision state without

additional calculations necessary. The literature provides

several learning methods associated with keywords like

reinforcement learning (Sutton and Barto 1998), neuro-

dynamic programming (Bertsekas and Tsitsiklis 1996), or

approximate dynamic programming (Powell 2011). These

methods show similar structures: A large number of sim-

ulations is conducted mimicking the process of decision

making under exogenous information (for example, cus-

tomer requests over the day). Here, the historical data

provides possible exogenous information. The selected

decisions and their short- and long-term contribution to the

objective function are stored in an approximation archi-

tecture. To allow storage of the information, this archi-

tecture usually condenses the state information by means of

aggregation and state space partitioning. A partitioning

maps states to a set of representatives and evaluates these

representatives. The partitioning is used to guide the sim-

ulations. The information for the representatives is fre-

quently updated based on newly observed information. In

the end, the ‘‘trained’’ architecture can then be used to

select suitable decisions in the online execution.

One common offline learning approach in the literature

is value function approximation (VFA), a method of

approximate dynamic programming. VFA operates on the

idea of maximizing the immediate revenue plus the

expected future revenue in every state (Bellman’s Equa-

tion, Bellman 1957). The expected future revenue is also

called the value of the state immediately after choosing a

decision. The VFA approximates these values by means of

simulation. Applying VFA can be successful for small

problems, but a transfer to more complex problems, for

example from the field of dynamic vehicle routing, is

challenging. For these problems, the space of potential

states is vast and a partitioning of states is needed. Because

of the non-linear combinatorics in the decision process,

different areas of the state space are visited more often than

others and some are never visited at all. These non-linear

combinatorics occur, for example, due to the non-linear

behavior of the routing as well as the general dynamism in

the problem. Conventional state space partitionings as well

as VFA-approaches assuming a parametric dependency

between state and value therefore provide inferior

approximations (Ulmer et al. 2018).

The reliability of the values’ approximation decreases

when the number of representatives is large because states

are not observed frequently enough to obtain a good esti-

mate. If the number of representatives is small, heteroge-

neous states are evaluated similarly. In both cases, the

result is an impeded approximation and eventually inferior

decision making. Further, the level of detail required varies

over the state space. Some ‘‘important’’ areas in the state

space may require a closer look while other areas are

unimportant for the approximation process. The impor-

tance of areas may also shift because of changes in the

decision making due to the learned values. Furthermore,

some areas of the state space may be less represented or

observed. Thus, an iterative method is needed that (1)

focuses on the important areas in the state space, (2) sub-

sequently adapts these areas over the approximation pro-

cess, and (3) accounts for the accuracy of approximation of

different areas of the state space.

In this paper, we propose such a method, the adaptive

state space partitioning (ASSP). Our method iterates

between state space partitioning and VFA. In each itera-

tion, ASSP re-designs the state space partitioning based on

the states observed in the last iterations of the VFA. It

therefore focuses on the ‘‘important’’ areas. Because not all

areas of the state space are covered equally, a handling of

state outliers is required for decision making. Thus, we

integrate a term reflecting approximation accuracy in the

VFA to allow a reliable approximation. The overall result

is an adaptive state space partitioning tailored to the state

space required by the problem.

We provide a computational proof of concept for our

method. We therefore draw on a prominent dynamic

routing problem from the literature, the dynamic vehicle

routing problem with stochastic service requests

(VRPSSR) (Thomas 2007). We show how our method is

able to achieve anticipation and an increase in solution

quality while anticipation is not possible for a conventional

state space partitioning of the same size. In a comprehen-

sive analysis, we show how our method leads to adaptive

shifts in the partitioning and how the consideration of

approximation accuracy impacts both partitioning and

solution quality. We further show that our method is able to

reduce the architecture size compared to conventional

architectures to obtain the same solution quality.

This paper is structured as follows. We present the

general business process of service routing in Sect. 2. In
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Sect. 3, we present the framework of Markov decision

processes to model sequential decision making problems.

In these two sections, we further describe and model the

VRPSSR that we use for our proof of concept. The solution

method value function approximation is described in

Sect. 4. We motivate the need for a state space partitioning

and present related literature in Sect. 5. In Sect. 6, we

propose our approach ASSP. We then present our com-

putational proof of concept in a computational study based

on a problem from literature in Sect. 7. The paper ends

with a conclusion in Sect. 8.

2 Business Processes with Uncertain Customer

Requests

In this section, we discuss the general business process

with uncertain customer requests. To this end, we draw on

the generalized BPMN (business process model and nota-

tion) model in Sect. 2.1. In Sect. 2.2, we then provide the

problem description of the VRPSSR as a special case of the

general business process.

2.1 Business Process Model and Notation Model

Uncertain customer requests can be observed in a variety of

business processes. For example, technician service pro-

viders receive calls during the day requesting timely repair.

Other application areas are passenger transportation ser-

vices such as dial-a-ride or taxis. Uncertain customer

requests are further very common in the courier and parcel

business where customers request the pickup or delivery of

goods. All these business processes have in common that

not all customers are known in advance but subsequently

request over the course of day. Further, the customers

expect a fast response to their requests. Finally, in these

business processes, the services are conducted while new

requests come in.

In the following, we describe the general procedure the

providers conduct when a new customer requests service.

To this end, we draw on the BPMN-notation. The process

for a single customer is depicted in Fig. 1. The process

consists of two entities: the customer and the service pro-

vider. Each entity is represented by a pool. The pool for the

service provider contains two swim lanes: one for the

service administration and one for the drivers conducting

services. We view the process from a provider’s point of

view. Thus, we collapse the pool of the customer. The

process starts with the customer’s service request. This

request can be issued via phone or via internet devices. At

that point of time, the provider obtains the customer’s data,

for example the address and the requested service. This

request is processed by the service administration of the

service provider. Before the service administration can

make a decision, he or she checks the statuses of the dri-

vers. In some business processes, this status check is

already automatized. In other business processes, the status

has to be checked manually, for example by means of a

phone call. Once the service administration receives the

information about the drivers’ statuses, service plans can be

calculated. These plans determine whether the customer

can be served at all and, if yes, which driver should serve

the customer and how the drivers’ routes should be updated

to incorporate the service for the new customer. Once the

plans are determined, both drivers and customer are

informed. If the customer cannot be served, the customer is

informed about the rejection of the service request and the

process ends. If the customer can be served, service details

are provided to the customer and a driver is informed about

route updates. In an increasing number of modern business

processes, the customer expects that the time span between

the request for service and the reception of service details is

very small. Thus, the time for calculating the plans is very

limited. In the case of an acceptance of the service request,

the process terminates once the driver informs the service

administration about the conduction of service at the

customer.

Notably, the described process is started whenever a

customer requests service. Thus, it is repeated frequently

during the day. Furthermore, the individual processes for

the customers are interconnected because the services are

all carried out by the same driver workforce. The combi-

nation of several subsequently incoming, unknown cus-

tomer requests leads to a stochastic and dynamic problem.

2.2 The VRPSSR

In this section, we describe the dynamic vehicle routing

problem with stochastic service requests (VRPSSR) as a

special case of the described problem field. The VRPSSR

and its variances have been frequently studied in the lit-

erature (Thomas 2007).

In this problem, a vehicle serves subsequently request-

ing customers in a service area. Due to working hours of

the driver, the time horizon for serving customer requests is

limited. The vehicle starts and ends its tour at a depot.

Some customer requests are known in advance and have to

be served during the time horizon. Other customers request

service during the day. These requests are unknown for the

service provider until their time of request. However, the

(stochastic) distribution of requests over time and service

area is known. Serving a customer requires a service time.

While the vehicle is on the road serving customers, new

customers request service. Because of the limited time

horizon, usually not every customer can be served. Thus,

each dynamic request can be either accepted for same-day
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service or the customer is rejected. For this problem, it is

assumed due to safety reasons that communication is pro-

hibited while the driver is traveling between customers.

Thus, the provider and driver communicate only when the

driver finished service at a customer. Then, the service

provider determines which subset of the new requests to

accept for same-day service and how to include the

accepted customers in the tour. When making a decision,

the dispatcher has information about the current time in the

horizon, the vehicle location, and the tour still planned for

the vehicle. The dispatcher therefore knows how much of

the resource time is still available and how much can be

used for the future service of customers. The time between

the end of serving all accepted customers and the end of the

time horizon is also called ‘‘slack’’.1 For the VRPSSR, the

objective for the service provider is to maximize the

expected number of accepted (and served) dynamic cus-

tomer requests.

Notably, while we focus on the VRPSSR in this work,

our work could be applied to other dynamic problems with

stochasticity as well. Examples for other possible appli-

cation areas include, for example, financial decisions,

where prices or interest rates are subject to stochasticity

and decisions have to be made under uncertainty about the

future, or decisions about production of goods where

demand is highly volatile or production machines are rather

unreliable.

3 Markov Decision Process Models

The problem class described in Sect. 2 requires sequential

decision making by the service provider due to the updated

information about customer service requests. In this sec-

tion, we recall the concept of Markov decision processes

(MDPs, Puterman 2014) as a mathematical modeling

framework for these types of problems. We then model the

VRPSSR as an MDP.

3.1 Modeling Stochastic Dynamic Problems as Markov

Decision Processes

Stochastic and dynamic problems can be modeled as

Markov decision processes (Puterman 2014) as those pro-

vide the appropriate framework for subsequent decision

making. In an MDP, subsequent decision points occur. In a

decision point k ¼ 1; . . .;K, the situation can be described

by the according state Sk. The state encapsulates all the

information currently accessible for the decision maker.

This information is problem-specific. In dynamic vehicle

routing, this information usually comprises the point of

time, the set of customers still to serve, and new requests.

1 Because both point of time and slack are good indicators for the

number of additional customers the vehicle can serve in the future, we

will later use the combination of point of time and slack to aggregate

our state space.
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In every state, a decision x has to be chosen, for example

about the assignment of new customers or the update of the

current routes. Also, there is a reward RðSk; xÞ associated

with the combination of state Sk and decision x that rep-

resents the immediate contribution of the decision to the

objective function.

The combination of state Sk and decision x leads to a

deterministic post-decision state (PDS) Sxk. In the PDS Sxk,

the situation is changed due to the chosen decision, but

there is no influence of a stochastic transition yet. After the

PDS, stochastic information is revealed and the transition

x leads to the next decision state Skþ1. This sequence

continues until k ¼ K at the end of the decision horizon.

A solution to an MDP is a policy p from the set of

policies P. A policy p is a sequence of decision rules Xp
k

determining a decision Xp
k ðSkÞ in every state Sk. The opti-

mal policy p� 2 P maximizes the expected overall reward.

3.2 Markov Decision Process Model for the VRPSSR

For the VRPSSR, the vehicle has to start and end its tour at

the depot. The customers known in advance Cadv have to be

served, thus, an initial tour h0 including the locations of all

customers in Cadv is created. A decision point k occurs

when a customer was just served. The according decision

state Sk contains information about the time tk in the shift

T ¼ ½0; tmax�, the current location of the service vehicle lvk
in the service area, the set of customers Ck that still have to

be served, about the route currently planned for the vehicle

hk, and about the set of new requests C
rq
k that occurred

between decision point k � 1 and decision point k. A state

can therefore be described as Sk ¼ ðtk; lvk;Ck; hk;C
rq
k Þ.

Decisions xðSkÞ have to be made about the acceptance of

the customer requests and, due to the routing component,

about the update of the route. The customer requests that

are accepted for same-day service are denoted Ca
k � C

rq
k .

The route hk is then updated to hxk to include Ca
k . The

reward RkðSk; xÞ is the number of accepted dynamic

requests, that is RkðSk; xÞ ¼ jCa
k j. The post-decision state

(PDS) Sxk results from the combination of state Sk and

decision x. It therefore contains information about the time

(still tk), the location of the vehicle (still lvk), about the

updated set of accepted customer requests, that is

Cx
k ¼ Ck [ Ca

k , and about the updated routing hxk. A PDS

can therefore be described as Sxk ¼ ðtk; lvk;Cx
k; h

x
kÞ. Notably,

the slack in Sxk can be directly derived by tmax, tk, and the

duration of hxk. While the vehicle travels to the next cus-

tomer and the customer is being served, the stochastic

transition x takes place and reveals new customer requests

C
rq
kþ1.

Travel times between two locations l1 and l2 in the

service area are denoted by tðl1; l2Þ. Service time is denoted

by ts. When the vehicle reaches the next customer and the

service of this next customer is completed, the next deci-

sion point k þ 1 occurs at tkþ1 ¼ tk þ tðlvk; lvkþ1Þ þ ts and

the next decision state Skþ1 is provided. The MDP termi-

nates when the vehicle reaches the depot at the end of the

time horizon after serving all customers.

In an MDP, decisions are made in every decision point.

A solution to an MDP is a policy p that assigns a decision

to take xðSkÞ to every state Sk. For our problem, the

objective is to find a policy that maximizes the expected

number of dynamic requests that are accepted for same-day

service.

4 Value Function Approximation

For MDPs, the optimal policy p� maximizes the expected

sum of rewards over the decision horizon. Maximizing the

expected overall rewards also means that in every decision

point, the sum of immediate reward RkðSk; xkÞ and expec-

ted future rewards given the post-decision state is maxi-

mized as stated in Bellman’s Equation (Bellman 1957):

Xp�
k ðSkÞ ¼ arg max

x2XðSkÞ
RðSk; xÞ þ E

XK

j¼kþ1

R Sj;X
p�
j ðSjÞ

� �
jSk

" #( )
:

The expected future rewards are also called value of the

post-decision state (VðSxkÞ) as they describe the expected

contribution to the objective function after a post-decision

state Sxk and, therefore, what it is worth to be in this post-

decision state. For small MDPs, we could compute the

value for each PDS recursively by means of dynamic

programming. The value of a PDS then captures the

expectation of the decision tree following the PDS. When

the values of each PDS are available, the optimal policy

can then choose the decision maximizing the sum of

immediate reward and value of the resulting PDS. How-

ever, the space of possible PDSs is usually too large to

calculate each possible PDS’s value individually. Instead

of dynamic programming, we therefore apply value func-

tion approximation (VFA), a method of approximate

dynamic programming (ADP, Powell 2011). The func-

tionality is depicted in Fig. 2.

Here, the values of the PDSs are not calculated, but

approximated by means of simulation. This means that

many decision horizons are simulated offline to provide the

values for the online decision making. Since no further

approximation takes place during the online application of

the resulting policy, runtimes in the online decision

application are negligible.

A VFA starts with initial values for the PDSs. Then, a

set of sampled realizations of the MDP are simulated. The

observed sum of rewards at the end of each sample run is
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used to update the approximated values of the PDSs. The

updated values are then used for decision making via

Bellman’s Equation in the next iteration. Thus, the decision

making is based on a more reliable information basis in

each new iteration and the solution quality increases over

the number of simulations. In general, VFA could be

conducted assuming parametric dependencies between

PDS features and the value (parametric VFA) or without

assuming such dependencies (non-parametric VFA). For

parametric VFA, the problem structure has to be known in

advance to determine possible dependencies. In this article,

we focus on non-parametric VFA to maintain a high flex-

ibility regarding the application. Usually, values are

approximated not for individual PDSs but for groups of

PDSs depending on the chosen approximation architecture.

We discuss the choice of the approximation architecture in

the next section.

In the MDP, a PDS description contains all relevant

information to describe it unambiguously. For the problem

described above, the PDS space contains dimensions for

the time and for locations of the vehicle and the customers

that still have to be served. Because the dimensionality of

the PDS space is generally large, an aggregation of the PDS

space to a set of state features has to be performed to

reduce the size for the VFA. Possible ways to aggregate are

to ‘‘ignore a dimension, discretize it, or use any of a variety

of ways to reduce the number of possible values of a state

vector’’ (Powell 2011). This aggregation of MDP-states to

features has to be performed carefully with a certain

knowledge of the problem.

As mentioned earlier, for the VRPSSR, we aggregate the

PDS to the features time and slack (Ulmer et al. 2015).

These two features are relevant for the decision making as

they both refer to the resource time. The feature time

describes how much of the time horizon already passed

(and cannot be spent anymore) and how much is still left.

The feature slack describes how much of the remaining

time is still free to be used for new customer requests. This

leads to a two-dimensional vector space: one dimension for

the point of time, the other dimension for the remaining

slack.

5 State Space Partitioning

In this section, we first motivate in Sect. 5.1 why we need a

state space partitioning for the application of a value

function approximation. We then describe relevant

approaches from the literature in Sect. 5.2.

5.1 Motivation

When applying value function approximation, the value of

being in a PDS has to be approximated for each possible

PDS. Approximating each value individually usually

requires high memory and high computational efforts as a

sufficiently high number of observations is necessary to

adequately approximate a value. If the number of PDSs to

evaluate is too large and each one is evaluated individually,

then the number of observations per PDS is usually not

large enough, so no values are learned or the values are not

reliable. Furthermore, the number of value observations

impacts the decision making during the approximation

process. If values are observed sparsely, decision making

may be misguided leading to a vicious circle of poor

decision making and wrong approximations. Thus, the state

space is usually partitioned to a set of representatives.

Observed PDSs are then assigned to their closest repre-

sentative and the value of each representative is updated by

the observed assigned PDSs.

Not every possible PDS is actually relevant in practice

and some PDSs are similar enough that they could be

evaluated in the same way. Therefore, it is beneficial to find

partitionings of the state space that are focused on the

relevant areas of the state space, grouping similar states to

the same representative and different states to different

representatives. However, typical approaches are to parti-

tion the state space like a lookup table with equidistant

intervals such that the representatives are equally dis-

tributed in the state space. Furthermore, the importance of

areas in the state space may shift due to the approximation

process. Because static and equidistant partitionings are not

able to meet these requirements, several alternative

approaches were proposed in the literature. We will discuss

these approaches in the next section.

5.2 Related Literature

In this section, we present different state space partitioning

approaches from the literature.

Fig. 2 Functionality of value function approximation (Soeffker et al.

2016)
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The most typical approach to achieve a state space

partitioning is a static lookup table where intervals are

chosen for the domains of all features that describe a state.

Here, all states that are within the same intervals fall into

the same partition and are assumed to be similar. However,

larger intervals may lead to partitions that aggregate dis-

similar states while smaller intervals lead to many parti-

tions in which values have to be determined. Due to this

tradeoff and because details about the problem structure

may not be available in such detail, it is challenging to find

a suitable state space partitioning in advance. A possible

alternative are weighted lookup tables (see Powell 2011)

where several static lookup tables are created with different

interval lengths and the according values are combined in a

weighted manner. This approach may be inefficient if areas

of the state space are not visited, and it is still necessary to

have problem-specific knowledge in advance to determine

the interval sizes. Also, since multiple lookup tables have

to be stored, the memory requirements are high and this

approach is therefore not applicable to more complex

problems (Ulmer et al. 2018).

A recent approach for state space partitioning for

dynamic vehicle routing problems was proposed by Ulmer

et al. (2017) who suggest to start with a lookup table with

large interval sizes and successively split the entries of the

lookup table if there are a lot of states aggregated in the

entry and/or if the states aggregated in the entry turn out to

be rather dissimilar. Since changes to the lookup table are

made during the approximation of values, it is an adaptive

approach. A similar idea can be found in Whiteson et al.

(2007) who extend work of Sherstov and Stone (2005) and

propose an adaptive approach and split entries whenever a

learning plateau of the values is reached, that is, the values

do not change anymore. As we show in our computational

study, relevant areas may become irrelevant and vice versa

over the approximation process. Even though these meth-

ods adapt to the approximation process, they are not able to

revert partitioning decisions once made, even when the

focus of the partitioning should shift. This requires

unnecessary storage effort and may impede the

approximation.

Kishima and Kurashige (2013) propose to completely

ignore certain state features and Jin et al. (2009) and Sarkar

et al. (2000) build on the fact that for some problems, a

certain final state has to be reached and that the problem

can be either decomposed into smaller problems (Jin et al.

2009) or that some states are very likely to lead to the same

next state (Sarkar et al. 2000). These approaches, however,

are very specific and require specific prior problem

knowledge. Ikonen et al. (2016) reduce the state space for a

process control problem by an iterative clustering. While

the general idea of that work is very close to the one

proposed here, the authors assume that there is a limited

number of possible decisions and that the desired output is

a policy consisting of state-decision pairs. In the iterations,

they therefore use simulation to determine the transition

probability matrices between state-decision pairs and the

subsequent state. For many dynamic problems like the one

we will apply, this is not realistic. Because customers may

request at arbitrary times and arbitrary locations, transition

probabilities cannot be calculated. While there is a lot of

work on state space partitioning in the area of reinforce-

ment learning, many of these ideas are not applicable to the

problem we are approaching. In many problems tackled by

reinforcement learning, the objective is to reach a certain

state that is linked with high rewards (or the only positive

reward) and the approach has to determine how to reach

this state (Lee and Lau 2004). One example for this could

be a maze in which the decision maker has to start at some

location and has to find the exit. The state space consists of

all locations and the decisions could consist of four dif-

ferent directions. Here, the objective is to reach one certain

state which is assigned a high value. Furthermore, in many

applications, the combination of state and decision is

evaluated which is not applicable to typical problems in

dynamic vehicle routing as there are too many possible

states and decisions. In the case of our problem, the MDP is

substantially more complex, the uncertainty is high, and the

sizes of state and decision spaces are large.

The most recent approach for a problem-specific state

space partitioning for a dynamic vehicle routing problem

was suggested by Soeffker et al. (2016). Similar to the

work presented in this section, Soeffker et al. (2016) apply

the idea of using the observed PDSs of the simulation to

generate to state space partitioning from it. To this end,

observed states are clustered. The partitioning is defined in

one step and then fixed. Our proposed approach shows

similarities in the clustering approach although applying a

different distance measure. However, our approach draws

on iterative steps of clustering and considers the idea of

handling outliers that may not be approximated accurately.

The method of Soeffker et al. (2016) can therefore be seen

as a special and simplified case of the proposed ASSP.

6 Adaptive Problem-Specific State Space Partitioning

(ASSP)

In this section, we present our algorithm that iteratively

creates a new state space partitioning based on the out-

comes of the VFA. We first give a general overview over

our method and then define the individual components.
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6.1 Overview

The general idea of ASSP is to (1) focus on relevant areas

of the state space and (2) iteratively shift the partitioning

over the approximation process. ASSP therefore uses

observed states in the VFA to update the state space par-

titioning and to use the updated partitioning in the next

iteration of VFA. The procedure is visualized in Fig. 3.

ASSP starts with an initial partitioning and initial repre-

sentatives. These initial representatives are generated by

sampling states. ASSP then uses this partitioning in a VFA

where realizations of the MDP are sampled and the value

for the representatives are learned. During the VFA, ASSP

stores the observed states and then uses the states to gen-

erate a new partitioning and new representatives. This

partitioning is then again used for VFA, etc. This continues

until a termination criterion is met.

Over the iterations, the partitioning is subsequently

moved to important areas of the state space and because

these areas are represented in more detail, the VFA’s

quality increases leading in the best case to a ‘‘virtuous

circle’’ of better representation and better approximation.

That is, before the first iteration, the decision making is

based on the initial representatives. Since the initial rep-

resentatives are located without knowledge of the problem

structure, decision making is likely to be obstructed. The

observed states therefore do not provide a very high solu-

tion quality, but are the basis for choosing new represen-

tatives. In the next round of decision making and learning,

however, the observations collected are already based on

more suitable representatives and the then following iter-

ation of representatives will be located even better.

The heterogeneous partitioning in the state space and the

focus on important areas lead to the problem of handling

occasional outliers. We may observe PDSs far away from

the next representative. An evaluation of these PDSs with

the value of the representative may be misleading. Thus,

we introduce an approximation accuracy term (ACT)

incorporating the distance between observed PDS and

representative in the evaluation of the PDS.

In the next Sects. 6.2 and 6.3, we motivate and explain

the ideas of iterative clustering and ACT. In Sect. 6.4, we

provide the algorithmic details of ASSP.

6.2 Iterative Clustering

In the following, we describe how we generate the repre-

sentatives based on the observed PDSs. Before starting the

process, a number of representatives n is externally

defined. We further define a distance measure between two

PDSs ð�; �Þ ! Rþ. This distance measure is needed to map

PDSs to the closest representatives and to allow a clus-

tering of the PDSs to representatives.

For the initial clustering, we start with an empty parti-

tioning. We then run a number of m simulation runs.

Because of the empty partitioning, all PDSs values are

mapped to zero. Thus, for these first m runs, a myopic

policy is used for decision making. Over the simulations,

we collect all selected PDSs. At the end of the m simulation

runs, we apply a clustering algorithm on the observed PDSs

to determine the set of representatives R. The clustering

algorithm can be chosen arbitrarily. However, in our

computational study, we use n-medoid.2 This procedure

determines n PDSs as representatives in a way that the sum

of distances between PDSs and closest representatives is

minimal. We chose this clustering approach because it

allows us to choose an existing PDS as representative. In

contrast to clustering-methods operating on averages over

the PDSs, this procedure is also suited in case a PDS

contains non-numerical features.

Starting from the initial clustering and representatives

R, we then iteratively repeat the following VFA-proce-

dure: All representatives are assigned an initial value. In

our computational study, we initialize with a high value to

enforce exploration of unobserved representatives. Again,

m simulation runs are conducted. We use Bellman’s

Equation in each state. After each approximation run, the

representatives with observed associated PDSs are updated

with the corresponding values, for example, by means of a

running average. Again, all observed PDSs are stored.

Because of the different decision making, we observe

different states than in our previous iteration. After the m

simulation runs, the observed PDSs are again clustered

providing new representatives. This procedure continues

for I iterations. To obtain values for the final set of rep-

resentatives, we run a potentially more thorough approxi-

mation of M simulation runs. Eventually, we obtain the set

of representatives R and their values. We can then use this

set and the values for instant decisions in the online deci-

sion state.

Fig. 3 Functionality of ASSP

2 In the literature, the method is often referred to as k-medoid.

However, because in MDPs, decision points are denoted by variable

k, we chose n to avoid a duplicated use of variables.
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6.3 Approximation Accuracy

When methods of VFA have to be applied to problems with

larger state spaces, the number of representatives is crucial

for memory, computational efforts, and approximation

success. It therefore may be necessary to restrict the

number of representatives to a small number (compared to

the possible number of states). Our method suggests to

move these representatives to important areas of the state

space. However, if the representatives focus on these areas

of the state space, others may not be depicted sufficiently

anymore.

This leads to the challenge that the accuracy of

approximation may vary for different states. Observed

states are mapped to the closest representative. States close

to a representative may have a more accurate evaluation

compared to states further away. Using the same value of

the representative for these states may therefore impede the

decision making and the approximation process.

To consider this potential ‘‘inaccuracy’’ caused by the

distance between the PDS and its representative, we

introduce an approximation accuracy correction term

(ACT). The ACT is inspired by the idea of penalizing

‘‘choosing actions that deviate from the external domain

expert’’ (Powell 2011). In our case, the domain expert is

replaced by the automated state space partitioning. Fig-

ure 4 depicts how the estimation of the value of a PDS

changes when ACT is applied. In this example, the state

space contains two dimensions. It is therefore directly

connected to the proposed aggregation to time and slack for

the VRPSSR.

In Fig. 4, two representatives are shown in dark colors

as well as a newly observed PDS whose value has to be

estimated. The PDS is mapped to the closest representative.

Without ACT, the PDS is evaluated with the value of this

representative. To account for a potential inaccuracy, the

ACT is now subtracted from the value. The size of the

ACT is based on the distance between PDS and

representative.

The ACT can be chosen arbitrarily. In our computa-

tional study, we use a linear term over the distance. To tune

the magnitude of the ACT, we introduce a factor p. Given

an ACT-factor p, Bellman’s Equation is then described as

arg max
x2XðSkÞ

RðSk; xÞ þ V Rep Sxk;R
� �� �

� p � d Sxk;Rep Sxk;R
� �� �� �

with RepðSxk;RÞ being the representative in R that is

associated to PDS Sxk.

Notably, the magnitude of the ACT impacts the balance

between exploration and exploitation of the state space. A

small ACT leads to exploration because outliers are eval-

uated relatively high. A large ACT leads to exploitation

because outliers are penalized significantly. We will later

show this impact in our analysis.

6.4 Algorithm for ASSP

In this section, we present the algorithm for ASSP in

pseudocode. The procedure is shown in Algorithm 1.

Inputs are the number of representatives n, the number of

iterations I, the number of simulations per iteration m, the

number of simulations for the final iteration M, and the

ACT-parameter p. The algorithm then traverses the itera-

tions starting in the initial iteration i ¼ 1. In this iteration,

the set of representatives R is empty. For each iteration, a

set of observations O is collected.

At the beginning of each iteration, the values V are

initialized with function InitializeðÞ. Except for the final

iteration (i ¼ I þ 1), m simulations are conducted per

iteration. In each simulation run, the algorithm collects the

set of observed PDSs Sx and the set of obtained rewards

Rset. It then subsequently generates decision states by

sampling exogenous information in function

GenerateExogeneousðSk; xÞ. This function depends on the

previous state and the selected decision. To determine a

decision in a state, Bellman’s Equation is applied com-

bined with the ACT.

After each simulation run, the values are updated with

function UpdateðV;O;Sx;RsetÞ. The update depends on the

previous values and observations as well as the observed

PDSs and rewards. At the end of each iteration except for

the final one, a new set of representatives is generated

based on function ClusteringðO; nÞ. Input for this function
are the observed PDSs and the number of representatives n.

After the final iteration, the algorithm terminates and

returns the final set of representatives R and their values V.

Fig. 4 Impact of ACT on estimated value for potential PDS
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Algorithm 1: Adaptive State Space Partitioning
Input : Number of Representatives n, Number of Iterations I, Number of Simulations m, Number of Final

Approximation Runs M , ACT-Parameter p.
Output : Set of Representatives R, Value Function V

1 // Initialization
2 i ← 1
3 R ← ∅ // Initialization of the Representatives
4 while (i ≤ I + 1) // Run I Iterations (plus Initial and Final)
5 do
6 O ← ∅// Initialization of the Observations
7 V ← Initialize() // Initialization of the Values

(i == I + 1) then m ← M // M Runs In Final Iteration
(j ≤ m)// Run m MDP-Simulations

11 k ← 0 // Decision Points
12 Sx

0 ← ∅
13 Sx ← ∅ // Initialization Set of PDSs
14 Rset ← ∅ // Initialization Set of Rewards
15 R0 ← 0

(Sx
k �= SK) // Stop when Termination State SK is Reached

18 k ← k + 1
19 ωi

k ← GenerateExogenous(Sk, x) // Generate Exogenous Information
20 Sk ← (Sx

k−1, ωi
k) // Generate new Decision State

21 v ← 0 // Initialize Value
x ∈ X (Sk) // Bellman’s Equation plus ACT

24 Sx
k ← (Sk, x)
(i == 1) then vtemp ← R(Sk, x)

vtemp ← R(Sk, x) + V (Rep(Sx
k , R)) − p · (d(Sx

k ,Rep(Sx
k , R))

(vtemp > v) then
28 v ← vtemp
29 x∗ ← x

32 Sx
k ← (Sk, x∗) // Observed PDS

33 Rk ← Rk−1 + R(Sk, x)
34 Sx ← Sx ∪ {Sx

k}
35 Rset ← Rset ∪ {Rk}

37 // Update Observations and Values
38 O ← O ∪ Sx

i > 1 then V ← Update(V, O, Sx, Rset)
40 j ← j + 1

42 // Clustering

8 if
9 while

10 do

16 while
17 do

22 for all
23 do

25 if
26 else
27 if

30 end
31 end

36 end

39 if

41 end

43 if i < I + 1 then R ← Clustering(O, n)// Determining Representatives for Next Iteration
44 i ← i + 1
45 end
46 // Termination
47 return Final Representatives R, Final Value Function V

7 Computational Study

In this section, we present our proof of concept by means of

a computational study. We draw on a dynamic vehicle

routing problem with stochastic customer requests (Tho-

mas 2007) that was described and modeled earlier. In the

following, we first describe the design of experiments, that

is, instance details, the benchmark policies, and the tuning.

We then compare the solution quality to the benchmarks

and conduct an analysis of the functionality of our pro-

posed method.

7.1 Design of Experiments

In this section, we present the instances, the parameter

tuning, and the benchmarks.

7.1.1 Instances

We assume a service area of 20 km � 20 km with a depot

located in the center. The time horizon T available for

service is 480 min and the time required for the service at a

customer ts is 5 min. The distance between two customers
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in the service area is Euclidean and the vehicle drives at a

constant speed of 25 km/h. A total of 60 customer requests

is expected per day. We set the Degree of Dynamism

(Larsen et al. 2002) to 75%. That means that on average

25% (or 15 customers) of the customers are known in

advance and 75% (or 45 customers) request over the course

of the day. The temporal distribution of the dynamic

requests is uniform over the time horizon and the spatial

distribution of all customer requests is uniform over the

service area.

7.1.2 Parameter Tuning

We tune our method as follows. As pointed out earlier, an

aggregation of PDSs is necessary. As described, we

aggregate the features to the current point of time and the

slack, that is, the remaining time budget after the vehicle

returns to the depot after visiting all customers in the tour.

For the routing component, we apply a cheapest insertion

heuristic for both the initial tour as well as for future

customers that are inserted. This means that in a decision

point with r new customer requests, there are 2r possible

options to accept or reject customer requests. For each of

these options, a routing update is determined and the

decision is made based upon the immediate reward and the

expected future rewards of the PDS the decision would

lead to.

Based on preliminary tests, we set the number of rep-

resentatives to n ¼ 200 and the number of approximation

runs per iteration to m ¼ 300. In contrast to many adaptive

approaches from the literature, we fix this number of rep-

resentatives. In the computational study, however, we also

provide a small section about the impact of the number of

representatives. In every state, we apply pure exploitation,

that is, always follow Bellman’s Equation. We update

values of observed states with the running average over all

observed values associated with the representative.

For the approximation accuracy correction term, we

choose a term that is deducted from the sum of immediate

and expected future rewards. Here, this term consists of the

distance between the PDS to be evaluated and the corre-

sponding representative that is multiplied with a constant

factor p between 0 and 0.4 in steps of 0.05.

We set the number of iterations to I ¼ 10. After these

iterations, we use the final clustering for a longer approx-

imation phase of M ¼ 97;000 runs resulting in a total of

100,000 simulation runs. Because the approximation pro-

cess depends on the sampled realizations, we conduct each

test five times and use averages over the solution quality.

We select the tuning leading to the highest average solution

quality, a factor of p ¼ 0:05. For evaluation, we run 10,000

additional evaluation runs without updating the

representatives.

7.1.3 Benchmarks

In this section, we describe the two benchmark policies we

use. One policy provides an estimate of our obtained

solution quality for the problem at hand. The other policy is

chosen to analyze the value of our ASSP-procedure.

For the problem, we test a myopic policy that does not

anticipate future events, but only maximizes the immediate

rewards available through customer acceptances. This

benchmark is applied to set our results in context and to

highlight the advantage of anticipation as well as the use of

value function approximation. In addition to the myopic

benchmark, we also apply test settings with value function

approximation to analyze the influence of the iterative

clustering combined with the ACT. Therefore, we apply a

VFA using equidistant representatives that are not moved

during the approximation phase. These representatives are

equally distributed in the feasible time-slack-space. The

approximation phase also consists of 100,000 simulation

runs and the evaluation phase also consists of 10,000

simulation runs. The number of representatives is also 200

representatives. We test this VFA with and without an

ACT. The best factor p for the equidistant representatives

is 0.1.

7.2 Comparison with the Benchmarks

In this section, we first provide the results in terms of the

solution quality for our benchmarks and the best parameter

setting for our approach. We then demonstrate the effi-

ciency of the ASSP compared to equidistant

representatives.

7.2.1 Solution Quality

In the following, we analyze the objective value of the

MDP, the average number of accepted customers per day

for the 10,000 evaluation runs. The results are shown in

Fig. 5 for the myopic acceptance policy, for the equidistant

representatives without an ACT (0.0 p) and with the best

Fig. 5 Acceptance rates for the myopic policy, for equidistant

representatives with an ACT of 0.0 and 0.1, and for the ASSP
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ACT (0.10 p) as well as for the ASSP. We further calculate

the average improvement of the ASSP over the policies in

percent. We calculate the improvement as:

ASSP � Benchmark Policy

Benchmark Policy
: ð1Þ

The non-anticipatory myopic approach achieves an

average acceptance rate of 40:3%. The ASSP significantly

outperforms the myopic policy and achieves about 44:0%
on average. This is an improvement of 9:15%. We observe

that the VFA with equidistant representatives and without

an ACT is not able to achieve anticipation and only reaches

39:1%. The ASSP achieves an improvement of 12:59%

compared to this policy. Thus, the number of representa-

tives is not sufficient for anticipation if they are equally

distributed in the service area. If an ACT is applied in

combination with the equidistant representatives, the

solution quality increases to 41:8% showing the merits of

the ACT. However, ASSP still achieves an improvement of

5:31% over this approach.

7.2.2 State Space Efficiency

In order to demonstrate the efficiency of the ASSP, we now

analyze how many equidistant representatives are needed

to reach the solution quality reached by ASSP. To this end,

we subsequently increase the number of representatives of

the equidistant approach in steps of 25. We compare the

achieved solution quality with the value for ASSP with 200

representatives. We show the development in Fig. 6. On

the x-axis, the number of equidistant representatives are

shown. On the y-axis, the percentage of the ASSP-value is

shown. A percentage of 100% indicates the same value as

ASSP.

We observe a general increase in solution quality with

respect to the number of representatives. This can be

expected because with an increasing number, we obtain a

better coverage of the state space. Because the approxi-

mation process is impacted by the stochastic realizations,

we occasionally observe small decreases, for example for

275 representatives.

However, even with twice the number of representatives

than ASSP, the solution quality is still worse. The same

solution quality is only achieved with 575 representatives.

Thus, the ASSP is more efficient in the requirement of

representatives and stored values. For the same solution

quality, the ASSP reduces the required number of repre-

sentatives by about 65%. This is an important observation

because an equidistant representation may run into memory

issues for larger and more complex state spaces. If ASSP

requires fewer representatives, it may alleviate some of

these issues.

7.3 Analysis

We now analyze the functionality of the ASSP in detail.

We first provide insight into the structure of the resulting

state space partitioning. We then depict the impact of the

ACT-factor p on the solution quality and show when ASSP

is especially beneficial.

7.3.1 Structure of State Space Partitioning

In this section, we provide insights into the resulting state

space partitioning. Because we run each setting five times,

we focus on the instance where the objective value is

closest to the mean over the five instances. First, we

demonstrate how the state space partitioning changes with

respect to the iterations. To this end, we compare the set of

representatives of the first and last iteration. Figure 7

shows both sets in the time-slack space for the ASSP with

an ACT-factor of p ¼ 0:05. The x-axis depicts the time.

The y-axis depicts the slack. The grey dots represent the

first set of representatives. The black dots represent the

tenth set.

First of all, we observe that regardless the iteration, the

representatives show a general tendency. With increasing

time, the slack decreases. This can be expected since more

Fig. 6 Comparison of solution quality of ASSP (200 representatives)

with solution qualities of equidistant representative sets

Fig. 7 First and last set of ASSP-representatives, p ¼ 0:05
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customers are accepted over the day and the slack

decreases. Our method is able to discover this phenomenon

and adapts its representation to it. If we compare the sets of

representatives for the first and tenth iteration, different

parts of the state space are covered. We observe an upward

shift. The tenth set of representatives covers areas where at

the same time more slack is available compared to the first

set. This indicates a change in the policy. The first policy

leads to more consumption of the slack in the beginning

while the tenth policy saves slack to accept customers later

in the day. Thus, different areas of the state space are

observed in these two cases.

7.3.2 Impact of ACT-Factor

In order to show the impact of the ACT on the resulting

solution quality, we vary the factor p from 0.0 to 0.4 in

steps of 0.05. We benchmark the results with ASSP without

an ACT. We show the results in Fig. 8. The x-axis depicts

the ACT-factor p. The y-axis depicts the solution quality

compared to ASSP without an ACT. We observe an

increase and then a constant decrease. This indicates the

tradeoff between exploration and exploitation. Without an

ACT, outliers are evaluated the same as the closest ‘‘reg-

ular’’ state. They may be selected frequently leading to a

poor solution quality. With a larger ACT, outliers are less

frequently observed even if they are promising. This

impedes the exploration of the state space as we will

highlight later in this section. We see that for our instance

setting, a moderate ACT balances this tradeoff and leads to

the highest solution quality.

We now analyze how the ACT impacts the exploration

of the state space. To this end, we compare the represen-

tatives using an ACT-factor of p ¼ 0:05 as depicted in

Fig. 7 with the set of representatives using a factor of p ¼
0:40 which is depicted in Fig. 9. We recall that a factor of

0.40 resulted in a poorer solution quality.

As for ASSP with p ¼ 0:05, we observe a shift in the

representatives between the first and tenth set. However,

the shift is less distinct. Furthermore, the ‘‘cloud of

representatives’’ is more narrow if a factor p ¼ 0:40 is

applied. For a factor of p ¼ 0:05, we have representatives

with slack of more than 300 min. Also, parts of the state

space with slack of about 0 min are already covered at a

time of 200 min. For p ¼ 0:4, we observe that the repre-

sentative with the highest slack has a slack less than

300 min and that the first representatives with a slack of

about 0 min occur only around a time of 360. This result

indicates that a too high ACT impedes exploration of the

state space and therefore the discovery of more valuable

states and policies.

7.3.3 Impact of Number of Representatives

In our main study, we set the number of representatives to

200 based on preliminary tests. In the following, we ana-

lyze how the number of representatives impacts the per-

formance of our method as well as the benchmarks. In

Fig. 10, we depict the solution quality for 100, 200, and

500 representatives for equidistant representatives without

ACT and for ASSP representatives.

It can be seen that both approaches provide increasing

solution qualities with an increasing number of represen-

tatives. ASSP outperforms equidistant representatives

regardless the number of representatives. We further

observe that even ASSP with only 100 representatives is

Fig. 9 First and last set of ASSP representatives, factor p ¼ 0:40

Fig. 8 Solution quality for a varying ACT-factor compared to ASSP

without ACT

Fig. 10 Acceptance rates for different numbers of representatives
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able to outperform the results of 500 equidistant repre-

sentatives. Thus, ASSP enables a better solution quality

with substantially fewer representatives. Another observa-

tion is that the differences decrease with increasing number

of representatives. The more representatives are given, the

better is the coverage of the relevant state space areas even

for the equidistant representatives.

8 Conclusion

With an increasing need to tackle dynamic problems,

solution methods for these have to be able to cope with

their specific characteristics. To apply value function

approximation (VFA), a suitable state space partitioning is

needed. Because the suitability of a partitioning is highly

problem-specific, we have proposed an adaptive state space

partitioning (ASSP). This procedure adaptively generates a

state space partitioning by iterating between the VFA and

the state space partitioning. In the VFA, the current parti-

tioning is used to store the values and guide the opti-

mization. In this context, potential state outliers are

penalized due to the possible approximation inaccuracy.

We have shown the advantages and analyzed the func-

tionality of ASSP for a dynamic vehicle routing problem

from the literature. In a computational study, we have

shown that ASSP outperforms benchmark policies and is

able to iteratively adapt to the problem specifics. Further-

more, ASSP is able to reduce the required size of the state

space representation substantially. In a detailed analysis,

we depicted the development of the state space partitioning

and highlighted the impact of the ACT.

Future research may tackle both method and problem

complexity. As our analysis indicates, the ACT has a sig-

nificant impact on the solution quality and the state space

representation structure over the iterations of the ASSP.

Future research may aim on automatically altering the

ACT-factor with respect to the approximation process to

shift from exploration to exploitation over the iterations. If

non-numerical state features are used, our approach can

still be applied if a suitable distance measure for the

clustering can be found. Also, ASSP may be analyzed for

different clustering methods and different distance mea-

sures should be tested in future work for their suitability for

both problem and approach as other approaches may pro-

vide different solution structures and solution qualities.

Furthermore, as our proof of concept indicates, ASSP is

able to obtain anticipatory solutions with a very efficient

state space representation compared to conventional rep-

resentations. In general, many complex decision-making

problems that require fast decision-making could benefit

from approaches applying offline simulation to conduct the

learning of values. The proposed approach may therefore

suitable to be transferred to problems of higher state space

complexity, for example with fleets of vehicles or customer

time-windows. In that case, a set of routes has to be con-

sidered when making a decision and each customer could

be served by different drivers or rejected. Also, it can be

assumed that many more customers will request service

resulting in a higher number of decision points during the

decision horizon. The number of decision points is not

relevant for the success of the approach which makes it

very flexible to apply. Another problem extension in the

direction of more realistic assumptions would be to con-

sider additional sources of stochasticity, for example in the

form of stochastic travel times. Then, current routing plans

can violate the time limit and the solution approach would

have to learn how to maintain a certain time buffer in order

to arrive in time. Also, different customers may provide a

different revenue to the service provider which would

change the objective function. While most of the men-

tioned problem extensions affect the MDP, it could also be

expected that, with the rise of modern technologies, the

driver statuses can be checked automatically which would

relax the assumption of decisions only being made upon

the completion of service at a customer location.
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