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ABSTRACT  

The information derived from social media analytic studies provides valuable sources of information for healthcare 

stakeholders.  However, there is still a lack of research with using social media to identify the lifestyle choices of those dealing 

with diabetes in order to better understand and design impactful health interventions. This exploratory study aims to 

demonstrate how social media can be leveraged as a data source to help us understand the lifestyle choices of those dealing 

with diabetes. Using two text mining approaches - sentiment analysis and unsupervised topic modeling – food and physiology 

were topics expressed in both sentiments. Overall, lifestyle related topics accounted for nearly 25% of the topics identified in 

the corpus of data.  There is a pressing need for incorporating predictive modelling approaches to this study in order to quantify 

our findings and how this knowledge can improve health outcomes from a population perspective. 
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INTRODUCTION 

The Centers for Disease Control and Prevention (CDC) defines diabetes as a chronic disease in which the body does not 

properly process food for use as energy; diabetes affected 9.4% of the US population and was the seventh leading cause of 

death in the United States as of 2015 (CDC, 2018). With increased inflation rates and people opting for unhealthy food, the 

risk of diabetes is at a constant high.  Diabetes affecting the vast number of the US population also induces a major healthcare 

cost. The total estimated cost of diagnosed diabetes - as of 2017 - was $327 billion (American Diabetes Association, 2018). 

This represents 9.3% of the total healthcare spending from 2017. Improperly managed diabetes can lead to the onset of other 

chronic conditions like heart disease, stroke, hypertension and skin complications that have a combined estimated cost of $283 

billion (CDC, 2018). This makes the research into diabetes crucial from a public health and healthcare system viewpoint.  

With the ever-increasing use of social media, the amount of data continues to grow exponentially. Researchers have made use 

of this unstructured data to analyze the impact of diabetes on people's lives. Researchers have studied the impact of social 

media on diabetes using various techniques like exploratory analysis (Liu, Mei, Hanauer, Zheng and Lee, 2016; Sinnenberg et 

al., 2018), retrospective analysis (Tufts, Polsky, Volpp, Groeneveld, Ungar, Merchant and Pelullo 2018), sentiment analysis 

(Gabarron, Dorronzoro, Rivera-Romero and Wynn, 2018), and machine learning approaches to make predictions on prediabetic 

patients (Xu, Litchman, Gee, Whatcott, Chacon, Holmes and Srinivasan, 2018). Facebook and Twitter are amongst the major 

social media platforms used. 

Information derived from social media data analytics’ studies proves to be extremely valuable. Harris, Mueller, Snider, and 

Haire-Joshu (2013) examined the use of Twitter to disseminate diabetes information by local health departments. This would 

lead to a major reduction in the economic impact of diabetes by saving healthcare cost spent on educating and informing 

individuals. However, there is still a lack of research in identifying the lifestyle patterns of those dealing with diabetes in order 

to better understand and improve interventions before an extremity like death occurs due to diabetes. This preliminary study 

aims to demonstrate how social media can be leveraged as a data source to help us understand the lifestyle choices of those 

mailto:gshaw11@uncc.edu
mailto:tsharma4@uncc.edu
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dealing with diabetes, which can help with an intervention design aimed at improving diabetic patients’ outcomes and additional 

chronic conditions experienced by these patients.  

 

BACKGROUND 

Probabilistic models are important when wrangling a large corpus of data. This approach is appropriate when there is no 

preconceived understanding of the information that may exist within that data corpora.  In probabilistic modeling – also known 

as generative probabilistic modeling - data is treated as derived from a generative process that also includes hidden variables 

(Blei, 2012). Topic modeling is a subdomain of the larger probabilistic modeling field. Topic models are algorithms used to 

discover central themes from an unstructured collection of documents (Sivic, Russell, Zisserman, Freeman and Efros, 2008). 

Topic models can be applied to multiple types of data, this includes genetic, medical images, and social media data sources 

(Blei, 2012).   

Within the context of social media, Twitter is a common social media platform that has been used by researchers to conduct 

computational content analysis research. For communicable related diseases, Twitter has been used to collect people’s 

sentiments regarding the H1N1 outbreak (Chew and Eysenbach, 2010). From a non-communicable disease perspective, 

multiple chronic health issues have been detected based on users’ Tweets (Yin, Fabbri, Rosenbloom and Malin, 2015). There 

are several probabilistic topic models that exist, but the well-known and studied Latent Dirichlet Allocation (LDA) topic model 

approach was used in this study. LDA has proven to be a successful model for disclosing hidden topics in a Twitter data corpus 

(Guo, Vargo, Pan, Ding and Ishwar, P, 2016; Webb, Karami and Kitzie, 2018).  

Food behavior and lack of physical activity are common lifestyle behaviors discussed in Twitter that are attributed to diabetes 

and childhood obesity (Harris et al., 2014).  Improper dietary habits that include food with added caloric sweeteners and a 

decline in physical activity are linked to diabetes (Popkin, 2015). Twitter allows individuals representing the diabetes 

community to express their sentiments but also provide nurses, dietitians, and public health community educators with an 

opportunity to understand people’s lifestyle choices (Liu, Mei, Hanauer, Zheng and Lee, 2016). As health facilities begin to 

shift their focus to population health analytics, local public health departments also use Twitter to disseminate diabetes 

information regarding lifestyle behaviors (Harris et al., 2013). The inclusion of two text mining methods - topic modeling and 

sentiment analysis - allows us to explore the lifestyle behaviors of diabetes in a unique way. More importantly, this 

computational approach lends itself to the discovery of latent topics. 

 

METHODOLOGY 

Data Collection and Cleaning 

The Twitter data used for this study was collected using the Application Program Interface for Twitter. The twitteR package 

within the R program software suite was used to collect the data.  This Twitter streaming approach has been used in other 

studies (Collins and Karami, 2018; Paul and Dredze, 2014).  The data were collected from December 2016 to February 2017. 

These months were chosen as they reflect people’s behavior change with the connotation involving a “new year” to incorporate 

healthy eating and increase physical activity (Turner-McGrievy and Beets, 2015). Diabetes - the traditional and hashtag spelling 

- was the query term used for data collection. Cleaning the data is an essential and often overlooked aspect of computational 

content analysis. Properly prepared data impacts the knowledge derived from the analytical process.  It also reduces the level 

of noise and text that has no meaning (Leetaru, 2012). Stop words (of, the, &, and in), retweets, and tweets with an URL were 

removed during the data cleaning process.    

Sentiment Analysis   

To determine if the tweets were positive or negative, we used the sentiment analysis text mining method. As noted in the 

previous section, sentiment analysis is crucial with identifying positive and negative sentiments concerning entities (Salas-

Zárate et al., 2017). A learning-based and lexicon-based approach is commonly used to conduct sentiment analysis.  The 

lexicon-based method uses a pre-established dictionary of positive and negative words to find the positive and negative 

frequency of words within a corpus of data (Medhat, Hassan and Korashy, 2014). This study used the Linguistic Inquiry and 

Word Count (LIWC) software to perform the sentiment analysis (see example tweets in Figure 1).  The lexicon-based approach 

used within LIWC has effectively identified the positive and negative sentiments in similar studies (Webb et al., 2018; 

Tumasjan, Sprenger, Sandner and Welpe, 2010). This portion of the methodology allows us to identify the positive and negative 

concerns regarding diabetes and lifestyle choices. 
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Clustering Topics and Characterizing the Data 

This research study uses an unsupervised machine learning approach to characterize the topics (perform topic modeling). There 

are other unsupervised machine learning models used on similar unstructured health data (Paul and Dredze, 2012); however, 

LDA is a well-known and a proven topic model approach to characterize topics (Blei et al., 2003, Comito, Pizzuti and Procopio, 

2018). LDA makes the probabilistic assumption that a corpus of data reflects latent topics. As a result, these unknown categories 

- or messages - are grouped together based on their probabilistic similarity. Characterization (labeling) of the topics was 

conducted by analyzing the overall topic results as being related or unrelated to diabetes. Once those topics were removed, two 

researchers characterize each topic as being related or unrelated to diabetes. Lastly, the specific characterization was provided 

for the tweets that were agreed upon in the previous step. 

 

 

Figure 1: A Sample of Diabetes-Related Tweets for each Sentiment 

 

RESULTS & DISCUSSION 

While previous studies have incorporated prior knowledge in the development of various topic models, we chose to derive 

topics without prior knowledge using the default settings within Mallet1. This provides a more inductive approach for topic 

discovery and allows an exploratory analysis of the identified topics for insightful patterns (Chang, Boyd-Graber, Gerrish, 

Wang & Blei, 2009). A total of 121, 827 diabetes-related tweets were collected during the three-month period. The number of 

topics was set at 50, 75, and 100 to examine the topic composition. Ultimately, we decided that 100 topics provided an adequate 

representation of the topics. After the removal of topics deemed incomprehensive, 89 negative topics and 81 positive topics 

were used for binary classification of being related or unrelated to diabetes.  If researchers agreed on a topic, it was designated 

with one; topics were denoted with a zero if there was disagreement.  Results show that 58.4% of the positive topics were 

agreed upon as being related to diabetes – 55.6% of the negative topics were agreed upon as being related to diabetes.  When 

we factor in chance agreement, our Cohen’s kappa show there was not much agreement; the positive topic is k = .09 and k =.19 

among the negative topics.  

Before we explain the overall results and lifestyle behavior related results, it is imperative that we provide our definition of 

lifestyle. We define lifestyle behaviors as those behaviors associated with dieting (Diet) and exercising (Exercise) that can be 

attributed to diabetes but are modifiable to reduce peoples’ risk of being diagnosed with type II diabetes (Flegal, Carroll, Kit, 

and Ogden 2012; Wing, Goldstein, Acton, Birch, Jakicic, Sallis, Smith-West, Jeffery and Surwit, 2001). Therefore, they can 

be categorized as: 

• Diet = Topics were considered part of this category that pertains to food, beverages, or eating.  For example, T1 (Topic 

number one) in Table 1 - diabetes, syrup, corn, fructose, artificial – words represent food items and ingredients that 

can be found in food items with high sugar calorie consumption.  T16 in Table 2 references a type of diet or low carb 

diet based on the words of low, carb, fat, intake, calories.     

                                                           

1 http://mallet.cs.umass.edu/  

Postive Tweets

•i love mcdonalds sweet tea. it's that diabetes in a cup, that good good

•yeah yeah i get it, i can get "diabetes" from almost everything i eat. just leave me alone and let me 
eat what i want

•it can be hard. i like to cook and now that i have diabetes i try to eat better. i am thankful for internet 
recipes

•type 2 diabetes can definitely be prevented by exercise and diet

Negative Tweets

•diabetes is annoying

•my brother constantly tells me i'm going to get diabetes if i  don' quit drinking sweet tea

•your kid in the hospital for diabetes but let's bring him mcdonald's and a milkshake. idiots

•ive been very thirsty lately and my mom said thats a symptom of diabetes and it runs in my family so 
im very scared

http://mallet.cs.umass.edu/
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• Exercise = This category describes the lifestyle within the context of exercising that includes temporal dynamics and 

active behavior such as an active lunch break.   

When examining the five most frequent positive topics, Food, Diabetes Care, Chronic Conditions, Diabetes Outcome, and 

Physiology were the most frequent characterized positive topics. As seen in Table 1, many of the foods and drinks representing 

the food topic lack nutritional value. It is important to maintain proper cardiovascular health; however, the American Heart 

Association has discussed the association between sugar-sweetened beverages and obesity (Lloyd-Jones et al., 2010). Diabetes 

care appears to be positively related with user feelings toward managing chronic conditions and improving quality.                  

 

Positive Topic Labels Topic Words (characterizing words) 

Food (17.5%) T1   Surprised, sweets, sugar, good, cake 

 T2  Diabetes, syrup, corn, fructose, artificial 

T3  Sugar, drink, water, rice, egg 

Diabetes Care (12.5%) T8  Care, supplies, diabetes, insulin, health 

T9  Insulin, meetings, care, talking, stigma 

T10  Pump, insulin, treatment, medicine, dexcom 

Chronic Condition (10%) T13  Disease, cancer, health, obesity, kidney 

T14  Free, high, blood, pressure, cholesterol 

T15   Cancer, aids, cure, treatment, lupus 

Diabetes Outcome (7.5%) T17  Time, amputated, foot, legs, fatter 

T18  Care, health, patients, outcomes, obesity 

T19  People, healthcare, quality, system, management 

Physiology (7.5%) T20  Hope, family, good, feel, happy 

T21 Type, years, diagnosed, today, happy 

T22  Eat, sugar, sweet, blood, anemic 

Table 1: Sample of Positive Diabetes Topics 

The five most frequent negatives topics discovered includes Physiology, Diabetes Outcome, Chronic Condition, Food, and Diet 

(see Table 2 below). Physiology for this research incorporates metabolism, emotions, mental health, endorphins, and the general 

wellness of an individual. The high frequency of the chronic condition label with the negative sentiments regarding diabetes 

also supports prior researcher and the health consequences attributed with diabetes, arthritis, and increase in high cholesterol 

(Kim and Basu, 2016, p. 603). Dalen et al. (2010) work examined the impact of negative emotions (physiology) experienced 

by people. Negative emotions are used as an impulsive style of coping that can lead to an unintended lifestyle choice of 

consuming excess calories in an automatic and dissociative fashion.    

We also examined the distribution of characterizations that were identified for understanding lifestyle behaviors and its 

contribution to diabetes. Overall, lifestyle related topics accounted for roughly 25% of the topics identified in the corpus of 

data. While the lifestyle topics were not a significant percentage of the topics, the results show that information is being shared 

within Twitter that provides insightful information to peoples’ lifestyle choices. More importantly, this allows an alternative 

approach to understanding lifestyle choices that enable or prohibit people’s ability to engage in proper dieting or exercising. 

Categorizing the topics based on diet and exercise, lifestyle choices for diet represented 75% of the topics. These findings are 

consistent with a similar study that identified diet having the highest number of topics (Karami, Dahl, Turner-McGrievy, 

Kharrazi, and Shaw, 2018).  

People did not share as much information about their exercise lifestyle. However, despite this low number, Twitter health 

conversations and the CDC statistics have been documented with a strong correlation between the two data sources (Prier, 

Smith, Giraud-Carrier and Hanson, 2011).  Health economics was a negative latent topic identified.  Characterizing words such 

as insulin, price, cost, metformin, cuts, prices may speak to the concern users have with medical cost and managing their 
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diabetes. Self-monitoring was identified as a positive latent topic. Glucose monitoring systems that communicate with other 

wireless diabetes management devices are technological advances that people feel positive about.    

 

 

Negative Topic Labels Topic Words 

Physiology (18.8%) T1 Bad, day, feel, insulin, hate 

T2 Insulin, resistance, beta, pancreas, mellitus 

T3 Blood, pressure, depression, diseases, family 

Diabetes Outcome 

(12.5%) 

T7 Weight, lost, foot leg, pounds 

T8 Long, term, complications, fatal, memory 

T9 Failure, kidney, damage, liver, blindness 

Chronic Condition (9.4) T11 Insipidus, trauma, urine, nervous, infection 

T12 Risk, type, obesity, cancer, hypertension 

T13 Cancer, sugar, sickle, arthritis, inflammation 

Food (6.3%) T14 Sweet, rice, drinks, candy, sugary 

T15 Eating, lifestyle, habits, choices, unhealthy 

 

Diet (6.3%) T16 Low, carb, fat, intake, calories 

T17 Type, diet, horrible, fat, obesity 

 

Table 1: Sample of Negative Diabetes Topics 

          

 

 

Lifestyle Issue Distribution Among 

Lifestyle Topics (%) 

Distribution Among 

All Topics (%) 

Food 56.25% 12.5% 

Diet 18.75% 4.2% 

Physical Activity 12.5% 2.8% 

Weight Management 12.5% 2.8% 

Table 2: Collective Distribution of Lifestyle Topics 

 

CONCLUSION 

This research has limitations.  First, it does account for geographic locations with respect to tweet volume and geographical 

differences.  The analysis is based on tweets from one seasonal period and does not fully capture the sentiments over an 

extended period.  Twitter data is noisy – we did not account for health care organizations and bots that may be represented in 

the dataset. Lastly, the identification of topics was conducted by non-clinical and allied health professionals.  Future research 

will incorporate experts from the medical domain to classify the tweets.  
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This exploratory study demonstrates that Twitter can be used as a complementary data source to study diabetes and lifestyle 

behaviors.  Unstructured social media analysis in identifying lifestyle behaviors of diabetic patients using topic modelling is 

helpful; however, further research is required to increase the effectiveness of the existing knowledge. Due to the 

‘unquantifiable’ limitation, there is a pressing need for incorporating predictive modelling approaches to this study in order to 

quantify our findings and make informed decisions to help reduce the impact of diabetes on the population. This would involve 

combining unstructured data with structured data about diabetic patients and using a discriminative classification technique 

such as Support Vector Machine (SVM). 
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