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ABSTRACT 

There is increasing demand for computing professionals in the United States and too few college graduates to fill the projected 

need. While extant research has explored a wide variety of student and course attributes to predict student success in 

introductory programming courses, similar studies focused on intermediate and advanced courses is lacking. Our study aims 

to explore and identify student and course attributes impacting student performance in intermediate programming courses. 

Using mixed methods, we provide insights for instructors and instructional designers in developing courses to facilitate the 

successful completion of course learning objectives for more students, leading to more students who graduate and are able to 

fill IT-related roles in the future. 
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INTRODUCTION 

There is a growing need for talented computing professionals in the United States. It is estimated there are between 43,000 and 

60,000 computer science graduates annually (Sattar, 2018; Software Guild, 2017). Projections indicate there will be one million 

more computing jobs than graduates to fill them by 2020 (Software Guild, 2017); this gap is set to widen as there are expected 

to be 1.3 million openings for IT professionals by 2026 (Sattar, 2018). Of the six industries expected to grow the most through 

2020, the technology industry pays the highest and all salaries are expected to increase by 15% or more through 2022 (Computer 

Science Zone, n.d.). So why are there not more graduates? 

One reason is students aren’t finishing degree programs in computing related fields. More than 50% of all students who start 

in a science, technology, engineering, or math (STEM) degree program change majors (Software Guild, 2017). Between 2003 

and 2009, 59% of STEM students changing majors had been enrolled in computer science programs (Computer Science Zone, 

n.d.). This suggests there is potentially a problem with the design of computer science courses, the ability of some students to

perform well enough to feel motivated to continue in the degree program, or some combination of the two.

The literature is rich in research on student and course attributes contributing to successful completion in introductory 

programming courses (Bergin and Reilly, 2005; Byrne and Lyons, 2001; Lopez et al., 2008; Simon et al., 2006; Wiedenbeck 

et al., 2004; Wilson and Shrock 2001). However, we have struggled to find research examining attributes leading to successfully 

completing intermediate or advanced coursework. Although it can be argued the first course presents the greatest hurdle for 

students, it can also be argued that success in intermediate programming courses is equally important as the skills developed 

therein provide the foundation for more complex software development. Given the general objective of degree programs is to 

train students for entry level positions, we believe there is value in understanding the factors contributing to student success in 

intermediate programming courses. Our research questions are thus: 

1. Which student behaviors and attributes predict their success or failure in intermediate programming courses?

2. Which instructional decisions impact the success or failure of students in intermediate programming courses?

We study these questions using a mixed methods design, combining survey and interviews, with undergraduate information 

systems (IS) students enrolled in the second programming course at a university in the southeastern United States. Our aim is 

to identify student and course attributes impacting student performance in the intermediate course. Instructors will benefit from 

better understanding how to design and implement courses that facilitate successful completion of learning outcomes for more 

students. This may also benefit employers seeking to identify employees to train in software development. Additionally, we 

provide a foundation for further research on continued success in programming education. 
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The remainder of this paper is structured as follows: first, we review the literature on key student and course success factors 

for introductory programming courses. Then we present our conceptual framework, followed by a discussion of our 

methodology. Finally, we discuss our anticipated implications and limitations. 

LITERATURE REVIEW 

In designing an introductory programming course, the research is highly supportive of using a completion strategy, which 

emphasizes hand-tracing and understanding completed code early in the course, and provides code that is progressively more 

incomplete for students to generate the missing portions as the semester progresses (Carbone et al., 2000; Lopez et al., 2008; 

Van Merrienboer, 1990; Van Merrienboer et al., 1992; Van Merrienboer and Krammer, 1987). The alternative, generation 

strategy—which requires students to generate and begin understanding code simultaneously—often led to more women 

dropping the course and students to rate subsequent assignments as more difficult when compared to the completion strategy 

(Van Merrienboer, 1990). The completion strategy offers a range of benefits—including promoting metacognitive skills 

(Carbone et al., 2002), developing program-design and problem-solving skills (Carbone et al., 2000, 2002; Caspersen and 

Bennedsen, 2007; Van Merrienboer and Krammer, 1987), and encouraging bootstrapping approaches (Carbone et al., 2000; 

Van Merrienboer et al., 1992); however, it is unclear if these benefits apply to more advanced courses. As such, we will detail 

the structure of the course and its assignments in terms of the completion and generation strategies; we use the qualitative 

analysis to determine if these factors were perceived to affect the students’ ability to succeed. 

The extant literature predominantly focuses on a wide range of student-based factors to predict and explain why some students 

succeed in introductory programming courses and others do not. Some of these factors are characteristics based on the student’s 

disposition and background while others are behaviors exhibited by the student. The majority of the previous studies commonly 

use the student’s score for a specific task or their final grade for the course as the outcome of interest. One study includes 

instructor interviews to help identify reasons for poor performance (Carbone et al., 2009). The remainder of this section 

identifies some important and frequently examined factors related to student success from previous studies that are worth 

exploring in the intermediate programming course setting. 

Prior Programming Experience 

The first and most important predictor is one’s prior programming or computer experience. Prior computer experience, 

especially prior programming experience, has been used to predict programming success in many studies (Bergin and Reilly, 

2005; Byrne and Lyons, 2001; Evans and Simkin, 1989; Hagan and Markham, 2000; Holden and Weeden, 2003; Wiedenbeck 

et al., 2004; Wilson and Shrock, 2001). However, prior computer experience is a broad term and includes experiences of 

computer applications, emailing, game playing, and surfing on the web (Bergin and Reilly, 2005). Not all previous computer 

experience is equally influential. Wilson and Shrock (2001) found that previous programming experience in a formal class had 

a significant, positive impact on students’ programming performances, but experience in playing computer games negatively 

impacted student performance. We focus specifically on past programming experience—including and beyond the introductory 

course—as a predictor of performance. 

Problem-Solving Ability 

Another predictor of success in programming courses is problem-solving ability. Problem solving involves two constituent 

processes: (1) identifying problems and (2) formulating systematic strategies for attempting a solution (Carbone et al., 2009; 

de Raadt et al., 2006; Shute, 1991; Sweedyk et al., 2005). Programming requires developers to represent and interpret abstract 

problems. The result of these cognitive activities is expressed in the form of logic structures and translated in a standardized 

formal language. Collectively, these activities are the foundation for programming. High-quality and successful code requires 

careful planning and logic (Wiedenbeck et al., 2004). As courses become more advanced, this skill is increasingly important. 

Thus, we include problem-solving ability as a second predictor of performance. 

Programming Self-Efficacy 

Self-Efficacy Theory suggests an individual’s performance influences their self-efficacy and, therefore, can affect their future 

performance (Askar & Davenport, 2009). To this point, Ramalingam et al. (2004) found a significant relationship between 

programming self-efficacy and previous programming experience. Hence, a student's previous programming experience 

impacts his or her programming self-efficacy, which affects his or her future performance (Wiedenbeck et al., 2004). We 

believe this will hold true for additional programming courses, so programming self-efficacy is our third predictor of 

performance. 

Attributing Success to Luck and Response toward Programming Errors and Failures 

According to Attribution Theory, individuals attribute success or failure to internal of external causes. Reactions to success or 

failure vary depending on the attribution (Kelley, 1967). If someone attributes their failures to lack of effort (internal), they are 
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likely to put forth more effort to obtain their goals in the future. If someone attributes their failures to bad luck (external), they 

are more likely to blame others for failures in the future. In addition to attribution, the response to failure or errors is also a key 

predictor of performance (Carbone et al., 2009; Perkins et al., 1986; Wilson and Shrock, 2001). Carbone et al. (2009) found 

some students, when faced with programming errors, either stopped and moved onto the next problem or constantly tried new 

solutions without thinking or reflecting on the cause of the error. These two responses were indicative of students who were 

less likely to be successful in programming (Carbone et al. 2009). Failure and errors are part of learning programming, so 

student attributions to luck and responses toward programming failures are likely to be predictive of performance, especially 

in advanced coursework. 

Math (and Science) Scores 

Considering the analytic and algorithmic requirements of programming, math and science ability are significant predictors of 

a student’s success in the introductory programming courses (Askar and Davenport, 2009; Bergin and Reilly, 2005; Byrne and 

Lyons, 2001; Wilson and Shrock, 2001). Mathematical ability and aptitude in science are strongly correlated with programming 

ability and affect the initial perception of programming self-efficacy (Askar and Davenport, 2009). Unlike other factors, math 

and science ability are at the presage stage of learning and are not easily altered (de Raadt et al., 2005). Thus, we include math 

and science scores as predictors of performance. 

CONCEPTUAL FRAMEWORK 

The goal of our study is to identify factors affecting student performance in intermediate programming courses. In the extant 

research, student performance in introductory programming courses was captured by either a grade on a specific programming 

task or a final course grade. We use the final course grade, represented as a percentage, as the measure of student performance. 

There are a variety of predictors arising from the research on introductory programming courses, a handful of which we have 

previously discussed. Following Social Cognitive Theory, we group our predictors into three categories: environmental, 

personal, and behavioral (Bandura, 2012; Keith et al., 2015). We classify the predictors affecting student performance based 

on prior research. 

Factors classified as environmental include comfort level, assignment type (individual or group work), and family’s computer 

experience. Comfort level measures student perceptions of the difficulty of the course, module, and assignments, as well as 

their anxiety level while working on the assignments (Bergin and Reilly, 2005; Wilson and Shrock, 2001). There are mixed 

findings for the effects of assignment type. Bennedsen and Caspersen (2005) found that teamwork is not a significant predictor 

of student success. Conversely, McDowell et al. (2003) found that paired work enhances the quality of students’ individual 

programming skill. Students achieve good results even when working on their own after completing a paired assignment. 

Additionally, having a mother or siblings with prior computing experience was found to significantly impact students’ 

programming self-efficacy, leading to better programming performance (Askar and Davenport, 2009).  

Predictors classified as personal factors include prior programming experience, problem-solving ability, programming self-

efficacy, and math and science scores. This group of factors are associated with student dispositions and characteristics that are 

stable or slow to change. As discussed in the previous section, these factors are well researched as relating to performance in 

introductory courses and we believe they are still relevant predictors of performance in intermediate programming courses.  

Behavioral factors include attribution to luck, response towards programming errors and failures, time management, and 

motivation. This group of factors, relating to student behaviors, can be affected by teacher interventions and instructional 

design. Attribution to luck and response towards programming errors and failures were discussed in the previous section. In 

addition to these predictors, research has also found that time management is an important skill for student success. This skill 

was found to directly impact motivation in that a lack of time management skills reduced motivation to achieve (Carbone et 

al., 2009). Motivation is unstable as it is dependent on other factors, which is why we classify it as behavioral instead of 

personal. Prior studies indicate students with intrinsic motivation are more likely to achieve success in introductory 

programming courses, but a lack of programming skill negatively impacts motivation (Carbone et al., 2009). Carbone et al. 

(2009) found instructors can promote intrinsic motivation by helping students experience successes and reducing the focus on 

grades—an extrinsic motivator.  

Because most of the existing literature focuses on student performance in introductory programming courses, we know very 

little about predictors of student success in intermediate programming courses and how students in these courses are different. 

With little information available in the literature, we adopt the mixed method design in this study. We concurrently collect data 

via survey and student interviews in an intermediate programming course. Our design is discussed in more detail next. 
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METHOD 

We apply a concurrent mixed method design for our study. Mixed method designs combine the advantages of both qualitative 

and quantitative research (Creswell and Plano Clark, 2017). Our study strives to determine which factors—grouped into three 

categories adopted from Social Cognitive Theory (environmental, personal, and behavioral)—impact student performance in 

intermediate programming courses. 

We collect survey data at three intervals from students enrolled in the second programming course of an undergraduate IS 

program at a southeastern university in the United States. Throughout the semester, we periodically interview select students 

about their experiences in, perceptions of, and attitudes toward the course, its structure, and assignments. This data collection 

is complementary in that we receive a holistic view of the predictors on performance from the surveys, and the interviews 

provide rich detail and insight into the student experience. Additionally, while the survey is largely based on prior research 

focused on success factors in introductory programming courses, the interviews may illuminate other factors unique to 

performance in an intermediate course. Each of these phases of data collection is discussed in turn. 

The IS program at our focal institution is known for graduating students who go into a wide range of IT professions—including 

software development. It also boasts a project-oriented Capstone sequence with internal and external clients that often requires 

strong programming skills; as such, it is important students perform well in the second programming course to ensure success 

later in the program. Each semester, this course has more than 80 enrolled students. Although the university is in the southeast, 

it has a large out-of-state student population that is reflected within the IS program, providing some diversity in geography and 

past experiences among the students. 

Quantitative Study: Survey 

Survey data is collected in three waves: at the start, middle, and near the end of the semester. Table 1 lists the source for each 

measure. The survey at the start of the term measures students’ programming self-efficacy, comfort level, problem-solving 

ability, demographic information, past programming experience, family’s computing experience, motivation, and math and 

science scores in previous classes and on standardized tests. Programming self-efficacy, comfort level, problem-solving ability, 

and motivation are also measured at midterm and near the end of the semester; only these are measured repeatedly because 

they are expected to change for most students over the duration of the course. Our dependent variable (final grade) is collected 

from the professor with the permission of the students. 

Measure Source 

Programming-Self-Efficacy Ramalingam and Wiedenbeck, 1998; Wiedenbeck et al., 2004 

Comfort Level Wilson and Shrock, 2001 

Problem-Solving Ability Heppner and Petersen, 1982 

Past Programming Experience Bergin and Reilly, 2005 

Motivation Carbone et al., 2009 

Table 1. Sources for Survey Instruments 

Qualitative Study: Interviews 

Of the approximately 80 students enrolled in the intermediate course, we interview between 9 and 12 students at least three 

times throughout the semester to capture more details about their experience. We use stratified sampling based on self-reported 

final grades in the introductory programming course gathered from the first round of survey collection. Three to four students 

are selected from those who earned As, Bs, and Cs; this guarantees variance in their performance baseline which we predict 

also indicates variance in their initial levels of programming self-efficacy. 

Interviews are semi-structured and focus on perceptions of difficulty, structure of the course, assistance sought from others (i.e. 

classmates, teaching assistants), attributions for successes or failures, response towards programming errors, and perceptions 

of time management skill. Interviewees are also asked to list and rank factors they believe are important to their success in the 

course. After developing our interview protocol and question list, we request feedback from IS experts and instructors to 

improve the probability the interviews result in valuable insights. 

ANTICIPATED IMPLICATIONS AND LIMITATIONS 

This is, to our knowledge, the first paper using a mixed method design to study student performance in intermediate 

programming courses. It will help IS researchers and educators understand which factors influence student performance in 
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intermediate programming courses and identify possible instructional design elements that facilitate improved student learning. 

Researchers have studied students in introductory programming courses for more than three decades. However, few studies are 

devoted to investigating students in advanced programming courses. If we are to encourage students to stay in computer 

science-related degree programs, we need to give attention to student success in later courses as well as in introductory courses. 

Our study starts to bridge this gap by considering students in an intermediate programming course. 

We foresee two practical implications our of research. First, instructors and instructional designers will better understand the 

factors leading to continued student success in learning programming. Course design has the most influence on environmental 

predictors, though instructors can also influence behavioral predictors—such as motivation. This should result in improved 

course design and more students achieving learning outcomes. Second, we facilitate future research on student success in post-

introductory programming courses by identifying some of the factors impacting student performance and thereby identifying 

where these students may differ from those in introductory courses. 

The primary limitation to our study is the collection of data from a single university. Although the university—and its 

information systems major—includes students from across the United States, it is limited in generalizability to other universities 

and computing degree programs. However, our goal with this study is to explore possible student success factors in a new 

context; future research will be conducted with the aim of improving generalizability. Secondly, we have limited the number 

of predictors we are considering at this stage, so it is possible that other predictors identified in the introductory programming 

course literature may be (more) relevant at the intermediate level. Although the qualitative results may capture some factors 

not included on the survey, future research can explore additional factors. Lastly, we rely on qualitative data to identify course 

attributes impacting student performance rather than collecting data from a course designed using the completion strategy and 

one designed using the generation strategy; future research will correct this limitation to determine if the course structure truly 

affects performance at the intermediate level. 
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