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Abstract  
Keywords: Care, Augmented Reality, Head Mounted Devices, Head Gestures  
In this paper, we describe a study investigating augmented reality (AR) to support caregivers. We im-
plemented a system called Care Lenses that supports various care tasks on AR head-mounted devices. 
For its application, one question was how caregivers could interact with the system while providing 
care, that is, while using one or both hands for care tasks. Therefore, we compared two mechanisms to 
interact with the CareLenses (handheld touch similar to touchpads and touchscreens and head ges-
tures). We found that certain head gestures were difficult to apply in practice, but that except from this 
head gesture support was as usable and useful as handheld touch interaction, although the study par-
ticipants were much more familiar with the handheld touch control. We conclude that head gestures can 
be a good means to enable AR support in care, and we provide design considerations to make them 
more applicable in practice. 
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1 Introduction: AR in (Home) Care  
Care work is both important and a challenge in western societies, in which the population grows older. 
This results in a situation in which the number of people to receive care grows (Schorch, Wan, Randall 
and Wulf, 2016) and in which there is a shortage of care workers (Bratteteig and Wagner, 2013). As a 
result, caregivers need to provide care in less and less time. Using IT in care to disburden and support 
care workers has therefore been discussed widely. In this paper we describe a system called “Care 
Lenses”, which aims to support caregivers using augmented reality. This work is part of a larger research 
project that investigates the feasibility and potential benefits of using augmented reality support for care 
workers. The resulting system Care Lenses, a head mounted device (HMD) for AR support of care 
workers, is supposed to ease care work and enhance care quality. The project is based on an ethnographic 
study of care practices, from which we identified fields of support and matched them with the specific 
affordances of augmented reality (specifically HMDs), resulting in a set of features. Together with care 
workers we built working prototypes of these features and studied them in practice. In many care situa-
tions, care givers need one or both hands to interact with the patient or use assistive equipment. There-
fore, we developed a mechanism that allows caregivers to control Care Lenses with head movements 
(“head gestures”), that is, without the need to use their hands for gestures or controls. This paper reports 
on a study in which we compared this mechanism with a built-in, touch-based controls of an HMD. 
The main contribution of this paper is the presentation and evaluation of the head gesture interaction 
mechanism for HMDs in care practice. This is a novel concept that makes HMDs applicable in 
healthcare when both hands are needed for treatment, and our work shows that it works well in practice. 
In addition, the paper introduces Care Lenses and shows the potential benefit of the concept for the 
provision of care. To the knowledge of the authors, Care Lenses is unique among concepts applying 
HMDs in healthcare, as it supports a multitude of care tasks in practical care.  

2 Related Work 

2.1 Augmented Reality to Support Work 

Using the words of Azuma (1997), in Augmented Reality (AR) “virtual objects superimpose[d] upon or 
composite[d] with the real world. Therefore, AR supplements reality, rather than completely replacing 
it.” By using AR devices, users enter what Milgram and Kishino (1994) have called “Mixed Reality” 
(MR), which merges digital and real worlds. AR has been found useful for the support of work in various 
domains and for various purposes, including remote (expert) support (Johnson, Gibson and Mutlu, 2015; 
Fakourfar et al., 2016), guidance (Büttner et al., 2017), remote cooperation (Datcu, Lukosch and 
Lukosch, 2016) and (remote) instruction or learning (Garrett, Jackson and Wilson, 2015; Preuveneers, 
2015). The advantage of AR put forward in most of these examples is that it enables interaction with 
digital information and objects supporting work tasks while looking at the work scenery. AR can show 
information for tasks or annotations attached to items worked with (Fakourfar et al., 2016) as well as 
hints from a remote expert (Datcu et al., 2016). With AR, IT support therefore becomes an integral part 
of the work task and can be used easy and without frictions during work. 
Augmented Reality can be implemented on different types of devices such as mobile phones, tablets or 
HMDs (often called “glasses” or “lenses”). While handhelds are commonly used and therefore offer 
better possibilities to access and use augmented reality, users need to use at least one hand (if not both 
hands) to hold and operate them. This makes it difficult to use AR in some of work areas, especially 
when tasks need both hands of a user (Johnson et al., 2015). An issue arising from HMDs, however, is 
how to interact with HMDs to tap from the potential of hands-free mixed reality. Features offered for 
this interaction often depend on the hardware available (cf. Schmalstieg and Hollerer, 2016). Common 
means of interaction available on current HMDs include swiping the frame of the HMD (e.g., Vuzix 
glasses), voice control, gestures and gaze (e.g., Microsoft HoloLens, Google Glass) or additional 
handheld devices like touchpads or clickers (e.g., Epson Moverio glasses and Microsoft HoloLens). 
With the exception of voice interaction, all of these mechanisms need at least one hand of the HMD user 
to be active in the interaction with the device. Recently, third party solutions for the usage of eye-
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tracking in AR have been developed and used for interaction with HMDs (e.g., Ku, Wu and Chen, 2017; 
Kytö et al., 2018), but there is no off-the-shelf solution for this modality except for single-gesture solu-
tions such as blinking the eye on the Google Glass. 

2.2 Head Gestures for Augmented Reality  

A promising way of providing hands-free interaction is the usage of head movements as gestures to 
control AR and VR HMDs. By using built-in sensors of HMDs such as accelerometers and gyroscopes, 
distinct head movements can be interpreted and used as input commands. Head movements have been 
investigated as a mechanism to help people with disabilities control assistive technology (Jia, Hu, Lu 
and Yuan, 2007; Rudigkeit, Gebhard and Gräser, 2014). Besides this, research looks at head movements 
as an easy to use and precise way of pointing towards objects in mixed reality (Kytö et al., 2018), for 
authentication on HMDs (Yi et al., 2016), for the tracking of moving objects (Esteves et al., 2017), for 
mirroring and explicating emotions (Terven, Raducanu, Meza-de-Luna and Salas, 2016) and for inter-
acting with AR HMDs (Starner, 2013; Yi et al., 2016).  
Examples for gestures investigated for the interaction with virtual and augmented reality devices include 
nodding and shaking the head, turning it to the sides, looking up and down (and holding the head for a 
while after moving), tilting the head to the side, leaning forward or backward (including the upper part 
of the body), lines and geometric shapes (Ruban and Wood, 2016; Terven et al., 2016; Yi et al., 2016; 
Sharma, Ahmetovic, Jeni and Kitani, 2018). For the detection of head gestures, either motion sensors 
such as accelerometers and gyroscopes (Starner, 2013) or video analysis (e.g., Sharma et al., 2018) can 
be used. Using motion sensors has been shown to provide a low-cost but feasible method of detecting 
and discriminating gestures (Yi et al., 2016). Advantages of head gesture are that they are well known 
by many potential users of a system (thus easy to learn and use): they are used in everyday communica-
tion to convey meaning and can therefore be used intuitively by humans (Yi et al., 2016; Sharma et al., 
2018). In addition, head gestures can be used easily and with good precision (Plaumann et al., 2015), 
and they provide a subtle means of interacting with a system (rather than e.g. voice control). Most im-
portant, head gestures can implement real “hands free” interaction with AR. 

2.3 AR support for Care 

Augmented Reality is becoming more and more interesting for research and development of support for 
work in healthcare. This, using the words of Siebert et al. (2017), is mainly because the potential of 
“freeing users’ hands and allowing them to ‘see the scene through the screen’” (see also Kobayashi et 
al., 2018). This shows the two main benefits for AR HMDs in care: First, they provide information 
during the care process rather than looking information up in the documentation and interrupting the 
care process for this, and (second) they leave the hands of caregivers available for the provision of care.  
The majority of head-mounted AR (and VR) applications in care contexts deal with education (Garrett 
et al., 2015; e.g., Azimi et al., 2018; Kobayashi et al., 2018). Zhu et al. (2014) provide an overview of 
how AR and VR can support healthcare education, and Kobayashi et al. (2018) show that the areas of 
AR training are growing. For the usage of AR in medical training, Azimi and colleagues [2] show how 
AR based training enabled medical professionals to increase their “time-on-task” as well as their confi-
dence in what they did. AR can also be used to provide remote (expert) guidance in care. Besides others, 
Mather et al. (2017) shows how their Helping Hands system can support caregivers in practice.  
For the support of care tasks by AR there is only little work available. Among the applications of AR 
supporting care directly, Aldaz et al. (2015) present the SnapCat system, which uses Google Glass de-
vices to make pictures of patients’ wounds to support the documentation part of wound management in 
care. They argue that without their system, photo documentation of wounds needs at least two people, 
who position the patient to make the wound visible, hold a ruler to document the size of the wound, and 
take a picture. They find a preference of nurses for using their system over traditional means of wound 
management, and they attribute this mainly to hands-free documentation. Siebert et al. (2017) found that 
physicians using HMDs to guide defibrillation and other tasks in resuscitation simulations are as fast as 
colleagues using normal support but adhere much better to standard procedures and make less errors.  
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2.4 Open Issues and Research Question 

The state of the art presented shows the potential of AR HMDs in care as well as the need for this 
support. However, there are only a few studies available for this support, and these are about specific 
features as shown above. In addition, little is known from these studies how caregivers are supposed to 
work with AR support while physically (with their hands, moving the body) interacting with patients. 
Therefore, questions remain such as how to provide caregivers with interactive support while providing 
care and how they can interact with HMDs while providing care to patients.  
Our study was run to answer these questions. In particular, our work was directed by the following 
research question: How can head gestures facilitate the use of AR HMD support for care? To answer 
this question, we compared head gestures to the well-known interaction with the touch pad attached to 
the Epson glasses. In what follows, we describe the methodology of the study. 

3 The CareLenses 

3.1 The Concept of CareLenses 

The CareLenses support care processes and enhance care quality. AR was used to overcome the obstacle 
that caregivers cannot use mobile devices or other material while they provide care as they need their 
hands for the provision of care and for hygiene reasons. The support provided is based on field work 
and co-design with caregivers. During the field work, different researchers conducted an ethnographic 
study with a total of ten patients, for whom we observed days or full shifts of care provided. In addition, 
we conducted 24 interviews with caregivers, care managers and relatives of patients. This informed the 
design of the CareLenses. First, we found that care workers’ practices differ individually as well as from 
one organization or department to the other. We also found that care needs to follow guidelines to guar-
antee quality of care and well-being of the patient. In pain management, for example, patients are asked 
to provide an estimate of their pain level, and caregivers need to make sure the patient is conscious 
enough to provide this estimation. Therefore, support for care tasks cannot be provided in a strict step-
by-step way but needs to allow caregivers to navigate flexibly through steps of their tasks while adhering 
to guidelines. Second, we saw that care is very personal and needs physical interaction with patients. 
These tasks need one or both hands of the caregiver to provide care, position the patient or use auxiliaries 
needed for the specific care task (see also Aldaz et al., 2015). This is a crucial constraint for the Care-
Lenses, as support needs to be provided while care is provided, which means while the caregiver uses 
both hands. As an alternative, another caregiver could provide the support (from expertise or by reading 
from guidelines), but given shortage of personnel in care, such a helper is rarely available. From this, 
together with caregivers and experts, we derived a large set of support options to be provided by Care-
Lenses, which includes care workflows (e.g., pain and wound management), documentation, ordering 
of assistive equipment and many others.  

Figure 1.  The Epson Moverio BT-300 HMD used for the Care Lenses (right: the handheld touch 
controller). Own image. 
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The CareLenses prototypes are implemented on an Epson Moverio BT-300 device (see Figure 1). This 
choice was made for multiple reasons. First, we wanted to use a binocular HMD, as monocular HMDs 
may lead to additional cognitive and physical demands (e.g., Matthies, Haescher, Alm and Urban, 2015). 
Second, many advanced HMDs like the Microsoft HoloLens or the Meta 2 glasses are large and look 
like helmets rather than supportive glasses. Caregivers told us this might interfere personal relations 
with their often vulnerable patients. Third, the Epson glasses use a handheld touch device attached to 
the glasses. As this interaction is known to users from their laptops and mobile phones, we expected the 
device to provide less of a burden in our initial design cycles than devices that would work with other 
controls for AR. In focus groups, however, the latter was also found to be problematic in cases in which 
caregivers needed both hands for care, which was the trigger for the work described here.  
The CareLenses work in three phases: initiation, provision of support and documentation. Initiation is 
performed by either selecting a support feature from a menu or by context recognition. For the latter, 
the CareLenses recognize markers placed in the patient room or objects such as assistive equipment. 
From this, they deduct usage contexts. For example, if a pain scale is recognized, the lenses offer support 
for pain management or ordering pain scales (see Figure 2 below). For the provision of support, the 
CareLenses provide information for a task, step-by-step instructions for care tasks or access to organi-
zational features. This support can be accessed and controlled by the caregiver during care. The docu-
mentation of tasks includes their completion and entering values (recognized by the CareLenses). 

3.2 Sample Workflow used in the Study: Pain Management  

The study described here used pain management workflow support as an example from the set of support 
available in CareLenses. We chose a medium complexity workflow as we did not want to create a burden 
by providing care givers with new technology and a workflow of high complexity. Pain management is 
an important task that we found to be error-prone (pain management) in practice. 

 

 

The pain management workflow includes seven steps (see Table 1). It starts as shown in Figure 2 with 
the pain management context detected by the e.g. the recognition of a pain scale. It then guides the 
caregiver through a process of asking patients whether they are in pain to having them assess their pain 
level (Figure 3 left) and documenting this level (Figure 3 right). As shown in Figure 3, pre-selected 
buttons allow caregivers to approve the conduction of steps and to proceed. After the assessment of 
patients’ pain level, the caregiver enters it into the CareLenses by tilting her head left or right to set the 
respective value (Figure 3 right). To make the interaction more demanding and to simulate a mistake 

Figure 3.  Left: Guidance for questions to use in pain management. Caregivers can approve or 
cancel the workflow. Right: Entering the pain level by tilting the head (icons right/left). 

 

Figure 2.  Starting the workflow by switching to the right button and selecting it (the black 
background of the screenshot is transparent when used on the CareLenses). 
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that happens in practice, we included a loop into this workflow. After entering the value for the pain 
selected by the patient into the dialogue at step 5 and reaching step 6, the patient told the caregiver he 
wanted to make a correction to the pain level. After that correction the caregiver had to go back to step 
5 (called step 5_2 in Table 1), change the value and got to step 6 again (“End” in Table 1).  
Table 1: Steps of the workflow. Steps marked * include the tilt gesture shown in Table 2. 

Step Description 
Start Starting the workflow (button pre-selected) 
1 Approving that the patient can act for herself 
2 Suggestion of questions for approaching patients 
3 Handing out the pain scale 
4 Receiving the pain scale 
5/5_2* Entering the pain level selected by the patient 
6/End Results of the pain management process  

3.3 Two Interaction Concepts to support Care Work with the Care Lenses 

Our first interaction mechanism used the handheld touch device that comes with the Epson Moverio 
device. The familiarity with this type of interaction provides a good baseline for other mechanisms to 
be tested with CareLenses. Despite this advantage, we assumed that the handheld was likely to create 
problems in practice, in which both hands are needed for the care task.  
Being aware of the support needs and constraints in care, we wanted to provide a real hands-free inter-
action mechanism that allowed caregivers to use their hands permanently for care tasks. Modalities 
considered for this included eye tracking, head gestures and voice control. Among these, we discarded 
eye tracking, as at the time of our study there were only initial third party (add-on) devices for the control 
of AR HMDs with little research insights available. We then decided for head gestures (and thus against 
voice control) in order not to disturb the relationship between the caregiver and the (often-vulnerable) 
patient by having the caregiver speak commands into the HMD, which was also mentioned as a concern 
by caregivers in initial workshops. In contrast to voice commands, we considered gestures to be subtler 
with regard to disturbing interaction. In addition, we wanted to avoid accidental activation of commands 
during communication with the patient (cf. Yi et al., 2016). It should be noted that this was a decision 
for our study rather than a general assessment of the applicability of these mechanisms in care.  
Gestures were detected by using the inertial sensors (accelerometer and gyroscope) of the glasses (see 
Yi et al., 2016 for a similar approach) to detect the movement direction and speed along the coordinate 
axes using the corresponding rotation rates. To avoid false detection by simply moving the head, we 
used pre-set thresholds for head rotation and changes of directions to detect gestures. These were set 
after a pre-test, in which users tried different movement speeds to find the most appealing configuration 
as in Yi et al. (2016). For example, we recognized nodding by detecting quick up and down movements 
of the head with at least two changes of directions (up, down, up or down, up, down). 
For the set of gestures to be used, we wanted our gestures to be recognizable for the HMDs we used, 
and we wanted them to be as unobtrusive and natural (as they would be used in front of patients) and as 
intuitive as possible to lower the burden of using them (see Aldaz et al., 2015; Terven et al., 2016; Yi et 
al., 2016 for these requirements). Gesture candidates were taken from related work, considering results 
on recognizing, discriminating and using such gestures.  

Table 2.  Gesture set for the head gestures of CareLenses. Icons taken from CareLenses UI. 

Gesture 

     
Description Nodding Tilting to the side Shaking head Turning to the side 
Usage Selecting, pushing 

button (approving) 
Switching buttons / controls, 
setting values / scales 

Cancelling, 
back to main 

Back / forward in a workflow 
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From the workflow support to be used on CareLenses, we derived the commands to be covered by head 
gestures. These include starting a workflow and continuing to the next step (approving), going back and 
forth between steps, switching between buttons (for choices), setting values and cancelling a workflow. 
As the two most natural, distinct and easy to detect (Ruban and Wood, 2016) head gestures we selected 
nodding and shaking the head, which are intuitively associated with approval and disapproval or can-
celling (Yi et al., 2016). We kept this association by using nodding for selecting and pushing buttons 
(e.g., acknowledging a step as in Figure 3) and head shaking for cancelling actions and returning to the 
home screen (see also Morency, Sidner, Lee and Darrell, 2007). For the remaining features such as going 
forward and backward between the steps in the workflows (depicted by the arrows in Figure 3) as well 
as selecting buttons or setting values (switching buttons in Figure 2, setting values in Figure 3), we 
selected turning to the side and tilting (see section 2.2), as they matched best to going back and forth in 
a workflow (turning the head, see also Jia et al. (2007)) and switching values (tilting the head, see also 
Crossan et al. (2009)). We noted that tilting and turning the head takes more time than nodding and 
shaking the head. We then adapted the temporal scale and thresholds for detection (Sharma et al., 2018). 
We pre-tested the resulting gesture set (see Table 2) and found that the gestures could be executed and 
distinguished well by all participants of the pre-test. This also eliminated other gestures: for scrolling 
pages or moving up and down, we initially used ‘head up’ and ‘head down’ movements. In the pre-tests 
users had a hard time to differentiate these movements from nodding, and so we dismissed this gesture 
(see Sharma et al., 2018 for a similar observation). Rather than that, we avoided vertical menu structures.  

4 The Study 

4.1 Measurements Applied 

To make sure we could compare the two mechanisms, we counted user and mechanism-based errors. 
We did this by looking at a combined video stream of the participant interacting with the patient and the 
corresponding screen shown by the CareLenses (Figure 4). Regarding user errors, we counted the num-
ber of times participants did not know how to proceed (e.g., when they did not know which gesture to 
apply in a specific situation) and their duration. For mechanism-based errors, we counted the times a 
participant acted correctly but the lenses did not react correctly (e.g., nodding without the mechanism 
recognizing it), asking the researchers what to do (e.g., how to proceed). 
To shed light on the effort to be taken in order to operate the CareLenses, we applied the well-known 
(raw) TLX questionnaire (Hart and Staveland, 1988) and asked people to fill it in after each of the four 
tasks of the study. The TLX uses a scale from 0 to 20 to investigate work load dimensions of a task such 
as mental, physical and temporal demands as well as perceptions of performance, effort and frustration. 
It has been found to provide a good and valid means to access and compare task load induced by tool 
support for human work in healthcare and many other domains (Hart and Staveland, 1988; Hart, 2006). 
As usual in many studies, we used the raw TLX questionnaire without individually weights.  
Besides errors and task load, answering our research question needs insights on the task performance 
resulting from the two mechanisms. We therefore took the times of task completion from the beginning 
(that is, when users started the task manually) to end of each task (that is, when they entered the final 
screen named “End” in Table 1). We also took the times spent by the participants on each step of the 
tasks, represented by the time each of the dialogues was visible to them. This way, we wanted to find 
out how well each of the mechanism supported specific steps.  
As described above, personal contact and empathy are important aspects of providing care. Therefore, 
we analysed the videos taken during the studies and coded them with different categories to capture 
these dimensions. We applied continuous codes (during the task there was always one code active while 
the others were not selected) to depict whether the participants were directed towards the patient. We 
coded whether the body of the participant was turned towards the patient or not, and whether the partic-
ipant was looking into the direction of the patient or not. We used this as an approximation of whether 
the participant paid attention to the patient or not (cf. Mehrabian, 2017). As codes were provided con-
tinuously, we counted the duration of each code. As a more direct measurement of personal contact, we 
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coded whether the participant talked (or did not talk) to the patient. It should be noted, however, that in 
contrast to turning to patients the amount of time spent to talk to patients is highly individual, as some 
caregivers may use more words than others.  

4.2 Course of the Study 

The study was run with care providers from intensive care, home and elderly care. According to all 
participants, pain management is a relevant task for them. Table 3 shows the participants per provider.  
Table 3.  Care providers and participants in the study.  

Provider Participants 
Elderly care ward 6 
Intensive care shared apartments 6 
Care laboratory, participants from different care providers 4 
Intensive care stationary unit, participants from different providers 8 

The age participants of the participants varied from younger than 25 to older than 50. 18 of them were 
female and six were male. The participants had on average 11.7 years of experience in care (StDev = 
7.8). 15 of them dealt with pain management regularly, the other nine were familiar with it from nursing 
school. We looked for correlations between demographics of participants, but we did not find any me-
dium or strong correlations. Thus, we assume that this did not have an influence on the results. 

To provide external validity, the study was done in empty patient rooms. Participants were care workers 
on duty during the time of the study. They were allowed to take a break from regular work and participate 
in the study. They were in their care uniform and carried around items they use in daily work (see Figure 
4). The main difference to real care tasks was that we did not work with real patients. One of the re-
searchers took the role of the patient because the ethical approval we received from a national review 
board did not allow to test prototypes with real patients. While testing with real patients is preferable 
(and planned for later studies), this setting helped us to keep the behaviour of the patient constant (e.g., 
same answers to all participants when asked for pain levels etc.). For all tasks, we asked the caregivers 
to follow guidelines they received on the Care Lenses, even if they were used to a different procedure.  

4.3 Study Design and Participants 

We chose a counterbalanced within-subjects design to detect carry-over effects caused by using either 
a mechanism first, and to examine effects caused by familiarity with a task (that is, whether it was done 
the first or second time). Half of the participants started by using the handheld device followed by using 
gestures, and the other half started with gestures. The participants started with a brief tutorial for the 
respective interaction mechanism. Besides the tutorial and a brief explanation of tasks, the only instruc-
tion participants received was to complete tasks according to the guidance of Care Lenses. After each 
task was completed, the participants were provided with a TLX questionnaire.  

Figure 4.  A participant in the study handing over the pain scale to the patient. The correspond-
ing screen on the CareLenses is shown in the top left corner. 
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It should be noticed that the comparison in this paper is clearly biased towards the usage of the handheld 
device. Interaction with handheld touch devices is well known and therefore this mechanism was likely 
to be more familiar to the participants. The head gestures, in contrast, were new to the participants and 
were therefore likely to be more difficult to use initially (cf. Plaumann et al., 2015). An extended training 
session for the gestures was not possible due to time restrictions in care organizations and may not have 
diminished this gap fully anyway. As a consequence, we did not expect the head gestures to outperform 
the handheld device but aimed for at least comparable performance.  

5 Results 

5.1 Data Analysis 

For the analysis of the TLX questionnaire we used t-tests for paired samples, as data was normally 
distributed (Shapiro-Wilk test). For the usage and performance measurements, data was not normally 
distributed, and we used the Wilcoxon signed rank test for it. We checked the interrater reliability of our 
codes for performance and interaction by calculating interclass correlation coefficients (<.8 for all 
codes). We had to exclude some measurements on usage and performance for both conditions. This was 
done when participants did not follow the guidance on the screen due to misunderstandings (this hap-
pened especially for the first time they conducted the task) or when a mechanism error occurred that 
caused them to re-start the task when they had already completed it halfway or more (to ensure validity 
of comparisons). This way, the sample size went to 15 participants for these measures. However, the 
Wilcoxon signed rank test is robust against small sample sizes and our comparisons meet all require-
ments for alpha-values of 0.05 and 0.01 (see values reported below). 

5.2 Usability  

The data for the usability of the mechanisms shows that compared to the handheld condition, there were 
more user errors for the gesture condition (z=-2.634, p<.001, T=8.0, n=15). We also found more mech-
anism-based problems for gestures (z=-3.313, p<.001, T=0, n=15), longer times participants asked for 
help (z=-2.04, p<.05, T=13.0, n=15) and received help (z=-2.09, p<.05, T=7.0, n=15). Table 4 provides 
an overview of the corresponding values. There was only a significant difference in mechanism-based 
problems if gestures were used before handheld touch. This suggests that there were more difficulties 
with the gestures if the task was unknown. 
Table 4.  Results for error measures with significant differences (Wilcoxon signed rank test).  

Category Handheld Gestures  
Average number of user errors 1.87 4.6 
Average number of mechanism problems .07 6.4 
t (user asking) in sec 1.8 7.8 
t (help provided) in sec 2.0 15.5 

The fact that the gesture mechanism was much more error prone than the handheld mechanism can be 
attributed to the novelty of the mechanism for the participants, which may have caused errors such as 
forgetting the correct gesture to process. In addition, we used a prototype which sometimes did not 
recognize gestures correctly. As Table 4 shows, this resulted in more time people spent with asking for 
help or receiving support (3.8 seconds on average for handheld, 23.3 seconds for gestures). 

5.3 Task load  

Regarding task load, we found significant differences in physical demand (t(24)=-2.594, p<.05), effort 
(t(24)=-2.179, p<.05) and frustration (t(24)= -2.905, p<.05). As Table 5 shows, all values reside in the 
lower levels of demand in the TLX scale (3 to 7). Looking deeper into these figures, we found that if 
handheld touch was used before gestures, there are no significant differences for any of the items. This 
means that if the task was known in advance, gesture interaction did not provide significant extra load. 
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The results for task load fit the results for usability in section 5.2. The higher load for gesture interaction 
may have been caused by more user and mechanism-based errors. Regarding the bias we assumed for 
the study (see 4.3) this was expected.  
Table 5.  TLX scores. Results marked * differ significantly with a paired t-test (p<.05). 

5.4 Performance during Tasks (original data) 

All tasks were conducted correctly and finished successfully by the participants. However, we found 
significant differences in average overall and many times for steps. For the whole task, the participants 
needed on average 141.3 seconds with the handheld device and 183.3 seconds using gestures.  
Table 6.  Average times for tasks. All values differ significantly in a Wilcoxon signed rank test. 

Step t(handheld) in sec t(gestures) in sec 
5 17.3 38.6 
Overall 141.3 183.3 

As can be seen from Table 6, there is a significant difference in the time spent on step 5 of the task (z=-
2.442, p<.05, T=17, n=15). Analysing the differences in task execution times, we found two important 
aspects. First, significant time differences appeared when participants had to use the tilting gesture (see 
Table 2) to set a value on the pain scale (step 5). When this gesture was not used, no significant differ-
ences were found in performance. In addition, when the tilting gesture was repeatedly used for the same 
task as in the loop between steps 5 and 6 (from step 5 to 6 to 5_2 as described in section 3.2), the 
difference in performance became much smaller, suggesting a learning effect for the gesture. 
Second, the additional times spent for tasks in the gesture condition included the times for user and 
mechanism-based errors as well as for users asking and receiving help as shown in Table 4. Knowing 
these times is important to know that issues with using the mechanism and its proper functioning had an 
influence on task execution performance. However, these times also add on the overall times we com-
pare and may therefore supersede other effects. In fact, we found that the majority of additional times 
spent were due to participants’ brief exposure to the gesture mechanism (e.g., when they forgot one of 
the gestures) or to technical issues (e.g., when gestures were not recognized).  

5.5 Performance after data cleaning  

As we were interested in the performance apart from the issues with the tilting gesture, we cleaned the 
data by removing time needed to resolve unwanted (technical) issues. We re-coded the data, adding a 
code indicating that people spent time with usage issues rather than the task they were supposed to do. 
It was applied when participants started to focus on difficulties with the operation of the lenses and until 
the issues were resolved and participants re-entered task execution. We then re-calculated the times 
spent on the different tasks and steps in them and compared them again.  
Selected performance data after data cleaning is shown in Table 7. Interestingly, we did not find any 
other significant differences in task performance pain after cleaning. For sequences in which the 
handheld condition was done before gestures, we found that the workflow was executed faster with 
gestures (handheld average 152.6 seconds, gestures average 127.2 seconds, z=-2.032, p<.05, T=2.0, 
n=7). Underpinning this, in linear regression analysis, we found significant effects of the sequence of 
conditions for total times spent on handheld and gesture conditions (handheld: R2=.297, F=9.864, b=-

TLX item Handheld  Gestures   

Mental demand* 1.56 3.44  

Physical demand* 1.64 4.16  

Temporal demand* 1.12 3.32  

Effort * .80 3.32  

Overall performance* 1.64 3.6  

Frustration 1.76 3.32  
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.575, p<.01; gestures: R2=.458, F=13.686, b=.703, p<.01; residuals normally distributed in a Kolmogo-
rov-Smirnov test). This suggests that for the cleaned data the differences in performance were mainly 
caused by learning effects when the task is performed twice rather than the mechanism used.  
 Table 7.  Left: Overall and step performances. Right: Personal interaction for different se-

quences of handheld and gesture. Values marked * differ significantly in a Wilcoxon 
signed rank test (p<.05). 

 

5.6 Patient Interaction  

For all participants and tasks, we did not find any significant differences in the interaction with patients. 
Looking at the different sequences of conditions provides better insights: If handheld was used before 
gestures, we found that for handheld the participants turned body and head much longer to patients 
(handheld average 67.2 seconds, gestures average 21.3, z=-2.197, p<.05, T=1.0, n=7) but spent longer 
times of not talking to patients (handheld average 108.2 seconds, gestures average 71 seconds, z=.2.201, 
p<.05, T=1.0, n=7). Table 7 shows this. The findings were reverse if the sequence was the other way 
round: Here, we found that participants using gestures looked longer at patients (handheld average 18.5 
seconds, gestures average 31.3, z=-2.1, p<.05, T=3.0, n=8) but also spent longer times of not talking to 
patients (handheld average 76.1 seconds, gestures average 123.4 seconds, z=-2.521, p<.05, T=0, n=8). 
Looking at this data it seems that if one mechanism was used first in the study, this resulted in more 
attention on the patient (head and body towards the patient) but less verbal interaction (longer times not 
talking to the patient). This could be an effect created by the sequence rather than by the mechanisms: 
once participants were more familiar with the task and its support on the CareLenses, they may have felt 
more comfortable when they used the CareLenses for the second time for this workflow and therefore 
they spent more attention to the patient. In the same way, the second time of task conduction may have 
resulted in a more routine and less explicit way to do the task, causing people to talk less. This is backed 
by regression analysis, in which we found a considerable effect on the attention to the patient for the 
handheld condition (R2=.231, F=7.325, b=-.518, p<.05) and on not talking to the patient for both con-
ditions (handheld: R2=.312, F=10.52, b=-.587, p<.01; gestures: R2=.329, F=8.369, b=.612, p<.05). All 
residuals were equally distributed in a Kolmogorov-Smirnov test. This suggests that the familiarity with 
the task was decisive for differences in the interaction with the patient rather than the mechanism.  

5.7 Summary of the Results 

Our results show that the gesture mechanism was much more error-prone than the handheld mechanism, 
which also resulted better TLX scores for the handheld mechanism. However, this was likely due to the 
prototype status of the mechanism, the tilting gesture that caused problems for some participants and 
the difference in familiarity between the two mechanisms. This interpretation is backed up by the fact  

6 Discussion 

6.1 Hands-free support by Head Gestures: Does it work? 

In our research question (see 2.5), we asked to what extent head gestures could make hands-free AR 
support applicable in care practice. As an answer to this question, we can state that despite the bias for 
the more familiar touchpad interaction our head gestures often worked equally well. Gestures could be 

Interaction  t(handheld) in sec t(gestures) in sec 
Handheld before gestures 
Head/body tow. Patient* 67.2  21.3 
Not talking to patient* 108.2  71 
Gestures before handheld 
Head/body tow. Patient* 18.5 31.3 
Not talking to patient* 76.1 123.4 

Step t(handheld)  t(gestures)  
All tasks 
Overall 135.9 147.6 

Handheld before gestures 
Overall* 152.6 127.2 
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used intuitively and recognized reliably, which is in line with related work from other domains (Garrett 
et al., 2015; Yi et al., 2016; Azimi et al., 2018; Sharma et al., 2018). In other words, we compared a 
familiar and a novel interaction mechanism, and we found that the novel mechanism was not much 
worse in the worst case and better in the best case. We therefore conclude that head gestures are a 
promising way to provide such hands-free AR support in care. However, our findings also show that 
there are still issues to be dealt with. Among these, we found that some head gestures create difficulties 
for users, and that the gesture mechanism created more task load than the handheld. Therefore, there is 
still work to be done to use this interaction mechanism to provide hands-free AR interaction in care. In 
what follows, we will discuss our results. 

6.2 The impact of familiarity with procedures and interaction mechanisms  

In the analysis we often found that seeming advantages of the handheld mechanism observed such as 
faster execution for certain steps or TLX values handheld touch was used before gestures. In this con-
dition, the task was already known to the participants from the handheld condition, and it seems that this 
made using the gestures easier for them. On the other hand, if both the workflow and the (gesture) 
interaction was unknown to participants, performance goes down. We conclude from this that with more 
familiarity of the workflow assistance in the CareLenses, gesture interaction can provide equal (or even 
better means) of interacting with AR assistance in care. The other way around, if participants knew 
neither the exact procedure they were to perform nor the modality of interaction, this was likely to 
amplify perceived and measurable difficulties with the interaction mechanism. In practice, this effect 
will most certainly diminish over time, as our findings on performance and other factors (cases in which 
gestures were used after the handheld) show. We therefore conclude that the head gestures can be a good 
means to control AR support for care tasks after a short period of getting familiar with it (as it is the case 
for most interaction mechanisms). However, some challenges remain and will be discussed below.  

6.3 Gesture support is only as good as its worst gesture: Tilting Gesture 

The number of errors and the differences in TLX scores (though residing on good to acceptable levels) 
show that the gesture mechanism was more difficult to use than the handheld mechanism. One big chal-
lenge our participants were faced with was the tilting gestures to switch buttons or set values. Whenever 
it was used (and only in these cases), the performance of the respective step was significantly worse. 
After data cleaning, which removed sequences in which the participants spend time with asking for and 
receiving help by the researchers, this difference was no more present to this extent. This suggests that 
tilting the head is a gesture that is less intuitive or much more difficult to perform correctly, thus lower-
ing the usability of the mechanism and likely increasing task load. We conclude from this finding that 
gestures can be a proper mechanism for hands-free interaction with AR in care as long as we provide 
users with an easy to operate and semantically intuitive gesture set. While we will spend further work 
on making the tilting gesture easier for users, it seems likely that replacing is the better way to proceed. 
However, there is no semantically fitting head gesture left in the body of head gestures commonly used: 
Moving the head up and down was found to be too close to nodding, and head movements to draw 
gestures were found to be too difficult in practice (Yi et al., 2016). Solutions may therefore be found in 
mixed modalities or designing interfaces specifically for hands-free interaction.  

6.4 Mixed modalities and designing for hands-free interaction  

Our study suggests that simple head gestures such as nodding and turning the head to the side have the 
potential to provide good support for the support of care tasks. They worked smoothly in our study and 
(after we eliminated delays caused by user and mechanism errors) even outperformed handheld touch 
interaction in certain situations. As mentioned above, we also found limits to this support when it comes 
to more complex gestures like the tilting gesture we used for switching between options and values. As 
a solution for this, a mixed modalities approach that combines head gestures and speech input may be a 
good strategy. Such an approach could use the best of both mechanisms: It keeps subtle and easy-to-
perform head gestures as the main control mechanism (e.g., choosing buttons) and adds speech input for 
speech commands such as entering numbers (e.g., the pain level selected by a patient as seen in Figure 
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3 right). In contrast to control commands, patients may understand why the caregiver says a certain 
number into a device if it matches the number they provided on the scale.  
Using a mixed modalities approach, however, is not a complete solution for the issues we found. It does 
not solve selection problems such as switching to another branch of a workflow (e.g., stating the patient 
it not in pain as shown in Figure 3), and voice input may become clumsy when complex values need to 
be entered (including complex numbers and units). Besides mixed modalities, we may therefore strive 
to design specifically for hands-free interaction and control by head gestures. First, we could design the 
user interface for hands-free interaction, which is not the case if there are multiple buttons to choose 
from. Rather than this, head gesture control can work much better if there is only one choice to approve 
or to dismiss. For our case this would mean that the choice of the pain management workflow after 
context detection (Figure 2) may change: There would be only one button that offers to start the pain 
management workflow. Switching to the ordering workflow would then mean to dismiss this option by 
shaking the head, which would bring up a button to start the ordering process as a second option. This 
could be approved by nodding. This procedure would work for all steps discussed in this paper. To 
implement it, better context recognition to narrow down choices to a manageable number and a system 
of prioritizing options would be needed. For the latter, options with patient interactions could be pre-
ferred to make them accessible first. In tasks without this interaction, shaking the head once or twice 
may not be a huge problem and still lead to good task support quickly. Second, image and object recog-
nition may enable the CareLenses to semi-automatically enter numbers displayed on devices or on the 
pain scale manipulated by the patient. This would only afford users to approve or dismiss the value read 
in automatically. Early work we are doing on the CareLenses shows that this is a promising approach.  

6.5 Limitations 

Our study was run in close-to realistic setting, but without real patients. As explained above, this was 
due to the ethical approval we received and the study setting, as we wanted the patient to behave in a 
certain way to control the study. This leaves out the patient’s perspective on and perception of AR 
devices in care. As mentioned above, we deliberately chose a medium-class HMD for the CareLenses, 
as it looks more natural than many high-class HMDs. However, how patients react to the CareLenses 
and how the react to our gesture mechanism remain questions to be answered. As mentioned in this 
paper, the work presented here is part of a larger stream of work, and evaluations with real patients are 
currently being planned (as planned by the ethical approval we received). 
Besides this, the study was done with a sample of caregivers that – despite being representative for the 
care sector – is small could be extended to add to the generalizability of the results presented here. In 
addition, the task used did not go beyond medium complexity. This was a deliberate choice to not in-
clude too much complexity and burden on the participants (a very complex process and a new mecha-
nism), and by the time of writing this paper, studies with complex tasks are being prepared.  

7 Conclusion 
In this paper, we have presented and explored head gestures as a means for hands-free interaction with 
AR support for care tasks. The need for such support arises from the complexity and quality affordances 
in care work, and by the need to use one or both hands for the conduction of care tasks. Our study with 
two typical care tasks shows that our head gestures performed equally well in many situations when 
compared to handheld touch controls, which we used as a baseline. From this we conclude that head 
gestures can be a means for hands-free AR control in care work. We also showed and discussed short-
comings of our mechanisms and open issues for the usage of head gestures in care work. We then pre-
sented potential ways to deal with these issues while keeping head gestures as the main interaction 
mechanism of the CareLenses. Our further work is set to implement and evaluate these improvements. 
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