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Abstract 

LED-based technology is transforming public lighting networks, favouring smart city 

innovations. Beyond energy efficiency benefits, LED-based luminaries provide real time 

stateful data. However, most of the municipalities manage all their luminaries equally, 

independently of its state or the environmental conditions. Some existing approaches to street 

lighting management are already considering elementary features such as on-off control and 

individual dimming based on movement or ambient light. Nevertheless, our vision on public 

(street) lighting management, goes beyond basic consumption monitoring and dimming control, 

encompassing: a) adaptive lighting, by considering other potential influence factors such as 

work temperature of the luminaries or the arrangement of the luminaries on the street; b) Colour 

tuning, for public safety purposes and; c) emergency behaviour control. This paper addresses 

the first component (adaptive lighting) influence factors, in the scope of a real scenario in a 

Portuguese municipality.  

Keywords: public street lighting; random decision forests; energy efficiency 

 

 

1. INTRODUCTION 

In the last years, the concept of Smart City has gained increasing popularity and interest among both 

research community and society as a whole (Albino et al., 2015). This widespread interest is partly 

explained by the current worldwide population growth and the general moving of people from the 

countryside to cities. According to the 2014 revision of the World Urbanization Prospects, compiled 

by the United Nations, more than half the population (around 4 billion by 2014) currently lives in 

urban areas, with a tendency to increase: the number is expected to reach 6 billion by 2050 (UN, 

2015). This results in increasingly larger cities, with some housing more than 20 million people, 

namely in Asia, Latin America and Africa (Zhao et al., 2017).  

These new demographics raise significant challenges in city management, challenges that can hardly 

be tackled by human experts alone, given their complexity and scale. It is in this context that the 

concept of Smart Cities gains relevance. Several definitions for Smart Cities have been put forward 

by authors from different fields of expertise (Albino et al., 2015). Generally, a Smart City implies 

the use of Information and Communication Technologies (ICT) to connect its different services 

and/or resources, allowing data to be collected, analyzed and acted upon in real time (Bakıcı, 
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Almirall, and Wareham, 2013). Evidently, the mere interconnection of these elements is not enough 

to make a city “Smart”. Thus, a Smart City also implies the use of the collected information for the 

purposes of improving quality of life (Barrionuevo, Berrone and Ricart, 2012), the efficiency of the 

city management (Chen, 2010), the management of resources and the sustainability of the city and 

its growth (Caragliu, Del Bo, and Nijkamp, 2011). Hence, the challenges posed by smart city projects 

are, typically, socio-technical in nature (Mumford, 2000). Considering that one of the most 

demanding issues in a Smart City is that of efficient energy management, having into account the 

consumption issues, neglecting people basic needs related to health and safety, is a thigh solution. 

Typically, energy management can be addressed at different levels, namely energy generation, 

energy storage, infrastructure, facilities and transport (Calvillo et al., 2016). More complex 

approaches may encompass more than one of these levels and, ultimately, research aims at 

developing a unified model that is able to take into account all these levels and their relationships to 

provide an accurate and full model of energy management in the city. However, the task is 

undoubtedly complex, and most research efforts focus on a specific issue (Foley et al., 2010). 

In this paper we discuss a specific topic of efficient energy management within cities, that of public 

lighting management, which might be one of those with the greatest impact on the sense of safety 

among citizens, as well as the one of the greatest consumption.   

Currently the subject of energy efficiency has been focused on all sectors with high energy 

consumption: industry, housing and public services. Public lighting, in particular, represents a 

significant percentage of the municipalities’ expenditure with energy. There is nowadays a 

widespread tendency to replace the conventional High-Pressure Sodium (HPS) lamp-based 

luminaires by solid state lighting (LED luminaires) with electronic drivers. This, by itself, leads to 

significant savings. As an example, in Lousada (a municipality in Northern Portugal) 12.500 HPS 

luminaires were replaced by LED ones, resulting in a decrease of 65% with public lighting costs, 

equivalent to €500.000/year.  

This paper is structured as follows: Section 2 provides an overview of street lighting management 

and the different approaches that may be followed. Section 3 details the dataset used in this work. 

This dataset is explored in Section 4, in which a preliminary analysis of its data is put forward. 

Section 5 details the methodology followed and the results achieved and Section 6 concludes the 

paper, also stating some limitations of the current work and future lines of research.  

2. OVERVIEW ON SMART STREET LIGHTING MANAGEMENT APPROACH 

With the advent of the Internet of Things (IoT), we believe that energy savings can be furthered, 

namely by an individual management of each specific luminary (Gubbi et al., 2013). Indeed, most 

of the existing approaches look at the public/street lighting system as a whole and treat all luminaries 
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equally. However, lighting could and should be adjusted individually, according to each area’s 

requirements (e.g. people flows) and conditions (e.g. ambient lighting). For instance, luminaries that 

are in areas with higher luminance (e.g. due to a full moon or to electronic advertisement billboards) 

could be dimmed in order to save energy while maintaining luminance conditions.  

Our perspective on street lightning management follows a human-centered design approach based 

on IoT and leveraged by machine learning and knowledge representation techniques.  This holistic 

view encloses both social and economic aspects. On one hand, we aim at reducing energy 

consumption and, on the other hand, we follow an adaptive management approach, having into 

account people’s health and safety, as well as environmental issues. Accordingly, a Smart System 

for Street Lighting management, fully committed to this approach should address: 

• Consumption monitoring and dimming control including switch on/off features based on 

luminaries’ internal data; 

• Adaptive monitoring, based on external factors such as: work temperature of the LED 

luminaries, the location of the network, the arrangement of the luminaries on the street, the 

surrounding lightness, the twilight threshold, the daytime and real-time meteorological data; 

• Health and Safety constraints. This might include color tuning by adjusting the color 

temperature of the LED for safety and health purposes.  Color temperature influences, for 

instance, the perception of security (Amorim et al., 2016) and the biological clock - known 

as Circadian rhythm (Revell et al., 2006; Bonmati-Carrion et al., 2014). Indeed, USAI 

Lighting (a leader in lighting industry in USA) has defined the USAI Lighting Circadian 

Clock (USAI Lighting, LLC, 2015) with the ideal color led temperature intervals for 

different periods of the day. Still on the field of safety, it is important to consider, for 

instance, that the abrupt change between an illuminated place and a place without any 

illumination, might cause momentary eye disturbances, which could result in a road 

accident. Typically, luminaries near a dark should have more light intensity, but in the case 

of a car driver moving from a brighter area to a darker one, probably it would be better to 

smooth the transition progressively by decreasing the light intensity. 

Above we stated the macro requirements or main concerns for an efficient smart system for street 

lighting management (3SLM), additionally, in what regards to the conceptual architecture, the 

challenge is not less ambitious. Thus, 3SLM, in the context of environmental monitoring and 

awareness, needs:  i) real-time data collection based on IoT technology and driven by well-defined 

schemas, shaping the current state of the environment; ii) dynamic and reusable meaning-making 

models representing the domain knowledge in an inferred and easily retrieve format; iii) learning 

mechanisms to monitor and dynamically reshape the environment providing, together with i) and 

ii), a context-dependent decision model to support proactive and more suitable action plans. This 
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conceptual proposal on the problem is, in our opinion, essential to appropriately capture the 

specificities of such a complex problem and to, therefore, develop a suitable solution. 

Understood the overall approach to 3SLM, this paper discusses the meaning of the data provided by 

the luminaries and explores the different patterns of energy consumption of each luminary, despite 

the existence of only one strategy for all. We explore this to train a model to predict energy 

consumption at a luminary level, that will allow an optimized and automatic management of the 

public network that takes into account the characteristics or environment of each luminary. This will 

allow to identify those luminaires that have increased costs, allowing city managers to define more 

efficient lighting strategies, reducing costs and CO2 emissions associated to public lighting. 

3. DATASET CHARACTERIZATION 

The data described in this paper was collected from two different public lighting settings. The first 

is the production setting, which includes 305 luminaries in a public lighting network located in a 

Portuguese municipality. This network is managed by the municipality. The second is the 

development and test setting and includes two luminaries located in our institution. These luminaries 

can be controlled by the research team, namely to collect data from different scenarios and test 

different management models.  

In both settings the AQRUILED’s ARQUICITY R1 luminary is used. This luminary allows for 

different data to be collected from its functioning in real time. The dataset collected from the 

production setting and studied in detail in this paper contains 3.963.730 instances of data. Each 

instance describes 5 minutes of operation of a specific luminary and includes, among others, data 

about instant voltage, luminary temperature, instant power, accumulated energy (Wh), uptime or 

dimming. These data were collected over a period of four months, between the September 5th 2017 

and January 3rd 2018.  

Before the data analysis carried out and described in the following section, the dataset was cleaned. 

This was necessary since the luminaries used have a warm up time of 1 to 4 minutes, a period in 

which the values read do not correspond to the regular functioning of the luminary. There are also 

cases in which data was collected from luminaries that had already been turned off (i.e. dimming = 

0%), which have also been removed as in these cases the luminary was shutting down and the values 

also do not reflect their normal operation. During the cleaning operation, 107.912 instances were 

removed. The resulting dataset thus contains 3.855.818 instances.  

Finally, the data from the luminaries was merged with environmental data, also collected at 5-minute 

intervals from a local weather station. These data include air temperature (ºC), dew temperature (ºC), 

humidity (%), wind speed (m/s), wind direction (degrees), wind gust (m/s), pressure (mbar), solar 

irradiance (W/m2) and rain (mm/h). Thus, for each instance of data collected from each luminary, 
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we also know the environmental conditions at the time. This will allow to study the influence of 

external factors, such as temperature, on energy efficiency. 

4. PRELIMINARY DATA ANALYSIS 

As stated in the introductory section, one of the main goal of this work is to determine if there are 

advantages in managing luminaries individually, namely in terms of energy efficiency, as opposed 

to what is generally done. In that sense, work started by analysing the power consumption patterns 

of different luminaires.  

We started by analysing energy consumption over several days, for the two luminaries in the test 

setting. Figure 1 shows the evolution of energy consumption in each of the luminaries in the 10 

hours they were on, in three consecutive days, between May 3rd 2018 and May 6th 2018. One first 

conclusion is evident from the figure: energy consumption in each cycle is not constant for each 

luminary (although the dimming is kept constant) nor is it necessarily similar between different 

luminaries (although their dimming is the same). 

 

Figure 1 – Energy consumption of the two luminaires in the test setting, in the three nights between May 3rd 

and 6th 2018, respectively from left to right.  

Figure 2 shows the distribution of the data for the same luminaries over the period of one week, 

between May 1st 2018 and May 8th 2018. It shows that the energy consumption for luminary 8383 

is consistently higher than that of the other over this period. Table 1 shows that the values of the 

mean, median and standard deviation are higher for this luminary. Moreover, the differences 

observed are statistically significant (𝜌-value = 0.000143). 
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Figure 2 – Distribution of energy consumption over a week, between May 1st 2018 and May 8th 2018, for the 

two luminaries in the test setting. The differences in the distributions of the data are statistically significant 

(𝜌-value = 0.000143) 

LUMINARY 𝒙 𝒙 𝝈𝒙 

8380 6.30 6 1.03 

8383 6.42 6.6 1.38 

Table 1 – Differences between the consumption of the two luminaries in the test setting. 

A similar approach, when applied to the data collected from the production setting, holds similar 

results. Figure 3 shows the distribution of power consumption for 47 of the 305 luminaries, during 

the 4 months in which data were collected. We show data concerning only 15% of the luminaries, 

as doing otherwise would render the visualization useless. However, a similar pattern is observed 

for the rest of the data. Also, for the sake of readability and usefulness, we also do not provide the 

statistical measures (i.e. mean, median and standard deviation) for each luminary. However, the 

differences in the distribution of the data are evident from Figure 3.  

 

 

Figure 3 – Distribution of power consumption for 47 of the luminaries (15%, selected randomly) over the 4 

months of data collection in the production setting.  
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Figure 4 shows a different visualization of the data, combining dimming, luminary temperature, and 

energy consumption (color-coded). This Figure was generated from the data collected from the 305 

luminaries in the production setting during the four months of the study.  

The first evident conclusion is that energy consumption increases with dimming (i.e. from bottom 

to top in the Figure). However, it is interesting to note that energy consumption does not depend on 

dimming alone. That is, for the same value of dimming there are sometimes variations of power 

consumption. This happens in several ranges but, more markedly, between 80% and 90% of 

dimming. In this range, it appears that higher values of temperature are associated to lower energy 

consumptions. This may be relevant for the optimization of energy consumption since 90.31% of 

the data (3.482.310 instances) were collected from luminaries set to a dimming in this range, that is, 

this is the most frequent setting for these luminaries.  

 

Figure 4 – Heatmap showing the relationship between dimming, working temperature and power 

consumption. 

If this relationship between the luminary temperature and energy consumption is verified, it can be 

explored to decrease energy consumption. Namely, information about air temperature could be used 

to determine the best dimming at any given time (e.g. decreasing it when temperatures are lower and 

energy consumption higher). This goal is realistic since air temperature is one of the factors that 

most significantly influences the luminaries’ running temperature. Specifically, according to our 

data, the correlation between the air temperature and the luminaries’ working temperature is of 0.72. 

The same correlation is visible in Figure 5, which plots the working temperature of the luminaries 

in the production setting against the air temperature at the time of the collection of each instance. 

The vertical gap visible between the 35º and 45º degrees can be explained by the effect of air 

temperature in moments in which the luminaires were working during the day: as the air temperature 

rises during the day, the working temperature of the luminaries rises quickly.  
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Figure 5 – Scatter plot of air temperature (ºC) versus luminary temperature (ºC) (𝜌 = 0.72). 

5. METHODOLOGY AND RESULTS 

In the section 4, and after the preliminary analysis of the data, we put forward two hypothesis: 1) the 

energy efficiency of a public lighting network may depend significantly on the characteristics of 

each individual luminary; and 2) there may be external factors influencing the energy efficiency of 

each luminary. In this section we try to determine the validity of these hypotheses. As pointed out 

by Calvillo et al. (2016), energy management/consumption can generally be studied through two 

main approaches: modelling and simulation. In this work we follow the first. Thus, to assess the 

hypotheses put forward before, we train 2 different regression models in order to understand the 

behavior of the public lighting network in terms of energy efficiency. 

Specifically, we use the Distributed Random Forest algorithm to model the different aspects of the 

network. A Random Forest predictor can be used for both regression and classification problems. It 

uses an ensemble of decision trees to predict the intended value. Generally, the variance tends to 

decrease as the number of trees increases. Each decision tree is looked as a weak learner, is trained 

on a random subset of the training set and only uses a random subset of the features. When predicting 

numeric variables, as is the case, the output is given by the average value predicted by each of the 

trees.  

The following methodology was followed to train each model. Different forests, with different 

number of trees were trained and evaluated. Each tree is built with 60% of the features of the dataset, 

selected randomly. For each different number of trees, the deviance and RMSE (Root-Mean-Square 

Error) were calculated as measures of the quality of the model.  

To estimate model performance 5-fold cross validation was used. In each training process six models 

were built: 1 model on 100% of the training data and 5 cross-validation models that use disjoint 

holdout validation sets (obtained from the training data) to estimate the generalization of the first 

model. 
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At the end, the importance of each variable was also calculated. Variable importance is determined 

by calculating the relative influence of each variable: whether that variable was selected during 

splitting in the tree building process and how much the squared error (over all trees) improved as a 

result. 

In order to assess the hypothesis that power consumption varies significantly between luminaries, a 

first model was trained, with power consumption as the response variable. The goal of this model is 

to predict power consumption for a given luminary, under given circumstances (e.g. meteorological 

conditions, uptime, dimming). It is composed of 50 trees with a depth of 20 and an average number 

of leaves of 56452.86. 

Figure 6 (left) shows the evolution of deviance and RMSE with different number of trees. The final 

value of RMSE is satisfactory considering the distribution of the response variable. Figure 6 (right) 

shows the relative importance of each variable to predict power consumption, scaled to the interval 

[0..1]. According to the results, the variable with the highest importance when predicting power 

consumption is the identifier of the luminary, followed by its dimming, the uptime, the date and the 

temperature (both working temperature and air temperature). First, it is important to note that the 

importance of the date is most likely due to its relationship to temperature, which is higher during 

the day and lower at night. Second, these results show indeed that energy consumption varies from 

luminary to luminary. However, as addressed in Section 5, these results must be interpreted with 

care. Indeed, we did not expect such a high relevance of the device_id variable, especially when 

compared to dimming. This may be explained by the low variability of the dimming variable: 90% 

of the data was collected with luminaries working with a dimming between 80% and 90%. This is a 

limitation of this work, and is further explored in Section 6. 

 

Figure 6 – Evolution of RMSE with increasing number of trees (left); Relative importance of each variable 

in the prediction of power consumption (right). 

A similar approach was followed for modelling the working temperature of the luminary. The 

resulting model is composed of 50 trees with a depth of 20 and an average number of leaves of 

112988.92. Figure 7 (left) shows the evolution of the RMSE during the training of the 50 trees that 

compose the model. The final RMSE of 1.0348 ºC achieved with 50 trees shows that the model is 
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well adjusted. Figure 7 (right) shows the most important variables for determining the luminaries’ 

working temperature. The image shows that the most important variables are the date and the air 

temperature. As previously stated, this similar importance is expected since these two variables are 

strongly related. Results also point out that other ambient variables have some significant 

importance, such as dew temperature, uptime, device identifier and humidity. It is interesting to note 

that the device identifier is one of the relevant variables to determine the luminaries’ temperature. 

Once again, we believe that this is due to factors such as the placement of each luminary (e.g. 

location on the street, orientation towards the sun. 

If the working temperature truly influences the luminaries’ energy efficiency as our data suggests, 

then knowledge about the factors that influence this temperature (such as the ambient variables used 

in this paper) may prove relevant for improving energy consumption in public lighting networks.  

 

Figure 7 – Evolution of RMSE with increasing number of trees (left); Relative importance of each variable 

in the prediction of working temperature (right). 

6. LIMITATIONS AND FUTURE WORK 

It is accepted that the setting of a smaller dimming in public street lighting will result in several 

advantages that contribute to the sustainability of the city, namely in terms of smaller emissions of 

carbon dioxide (Radulovic, Skok, Sand Kirincic, 2011) as well as on decreasing costs related to 

power consumption. However, the problem is not so simple and there are also disadvantages 

associated to such a practice.   

On the one hand, there is the subjective perception of pedestrians of safety and well-being. Indeed, 

Peña Garcia, Hurtado and Aguilar-Luzón (2015) conducted a survey of 275 pedestrians in the city 

of Granada (Spain), concluding that the perception of security and well-being is influenced by 

factors such as the color of the lighting (e.g. white, yellow-sodium) or the average illuminance on 

the street. Moreover, the authors also conclude that white light (with a high content of blue) is 

associated to a higher melatonin inhibition and cortisol release, both indoors as outdoors.  

On the other hand, there are also objective measures associated to different intensities and forms of 

lighting. Painter (1996) conducted a study in which the street lighting was upgraded in three urban 

streets and a pedestrian footpath considered to be crime and fear prone. The impact of the street 
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lighting programme was assessed using attitudinal and behavioural measures, through ‘before’ and 

‘after’ surveys of pedestrians. The results provide convincing evidence that sensitively deployed 

street lighting can lead to reductions in crime and fear of crime and increase pedestrian street use 

after dark. 

These issues show, as addressed in the introductory section, that energy efficiency in public lighting 

is a complex phenomenon as it affects many relevant spheres of the society including safety 

(subjective and objective), well-being, the cities’ budgets. These different strands often have 

conflicting objectives, making it difficult to achieve a consensus that can satisfy all constraints.  

In this paper we do not mean to solve this complex problem. Our goal was, rather, to contribute with 

additional paths for potentially improving the energy efficiency of public street lighting systems and, 

in doing so, facilitating the satisfaction of its constraints. Specifically, we show that energy 

consumption varies from luminary to luminary, and also that it may be influenced by measurable 

and predictable external factors such as air temperature. Machine Learning techniques, together with 

knowledge about these factors, may support the development of more fine-grained management 

strategies, that autonomously manage each individual luminary to optimize energy consumption.  

However, there are also limitations in this work that must be pointed out. Namely, we used a single 

solid state luminary model. Other models could behave differently and other types of luminary (e.g. 

High-Pressure Sodium) would definitely behave differently. We thus need to repeat this study with 

other models to determine if these conclusions can be generalized, at least, to other LED luminaries.  

Another limitation of this work results from the collection of data from a production environment: 

as detailed in Section 3, 90% of the data was collected from luminaries set at a dimming between 

80% and 90%. This makes the representativity of the remaining ranges of dimming very low. 

However, given the already addressed effect of luminance on crime, safety perception or well-being, 

we could not change the settings of the network for the purpose of this research. In the future we 

will address this issue by acquiring more luminaries for the test setting, an environment in which we 

can freely adjust their settings without risking anything.   

Finally, in future work we will also try to isolate the factors that influence energy consumption in 

each luminary. While the intrinsic characteristics (namely hardware) of each luminary may explain, 

to some extent, the observed differences, we believe that other external factors must play a more 

important role. Specifically, we will determine the orientation of each luminary as it affects the 

surface of the luminary that is hit by the sun and may, therefore, influence its temperature throughout 

the day. We will also estimate, for each luminary, the amount of sunlight received during the day as 

this may be influenced by obstacles such as high trees or buildings. Finally, we are also modeling 

the relationship between ambient luminance and the luminance under the luminary, to determine the 

influence of each level of dimming for specific degrees of ambient luminance. With all these efforts 
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combined we are confident that we will be able to significantly improve the energy efficiency of 

public lighting without compromising safety and well-being.  
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