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Abstract Automated checkout systems promise greater

sales due to an improved customer experience and cost

savings because less store personnel is needed. The present

design-oriented IS research study is concerned with an

automated checkout solution in fashion retail stores. The

implementation of such a cyberphysical system in estab-

lished retail environments is challenging as architectural

constraints, well-established customer processes, and cus-

tomer expectations regarding privacy and convenience

impose limits on system design. To overcome these chal-

lenges, the authors design an IT artifact that leverages an

RFID sensor infrastructure and software components (data

processing and prediction routines) to jointly address the

central problems of detecting purchases in a reliable and

timely fashion and assigning these purchases to individual

shopping baskets. The system is implemented and evalu-

ated in a research laboratory under real-world conditions.

The evaluation indicates that shopping baskets can indeed

be detected reliably (precision and recall rates greater than

99%) and in an expeditious manner (median detection time

of 1.03 s). Moreover, purchase assignment reliability is

100% for most standard scenarios but falls to 42% in the

most challenging scenario.

Keywords Design-oriented IS research � Digital
innovation � Internet of things � Cyberphysical systems �
Retail industry � Radio frequency identification � Machine

learning � Automated checkout systems

1 Introduction

Digital innovations manifest themselves in the transfor-

mation of processes, content or objects from the physical

realm to the digital sphere (Fichman et al. 2014; Yoo et al.

2010). A particularly interesting form of digital innovation

is the emerging class of cyberphysical systems, which are

expected to greatly enhance the efficiency, functionality,

and reliability of previously non-digitized systems (Na-

tional Science Foundation 2010). Such systems, having

progressed beyond speculative visions and early pilot

implementations, create previously infeasible processes

and establish new business models across various eco-

nomic sectors (Borgia 2014; Stankovic 2014). In manu-

facturing, industrial internet applications are increasingly

turning shopfloors into smart factories (Lasi et al. 2014;

Lee et al. 2015). In the automotive sector, ride-hailing

platforms (e.g., Uber, Lyft) and recently founded car

makers (e.g., Tesla, Waymo) are giving established OEMs

a run for their money by replacing individually owned

conventional cars with fleets of shared, autonomous vehi-

cles (The Economist 2016). Smart grids are reversing the

accustomed supply-follows-demand paradigm of power

Accepted after two revisions by the editors of the special issue.

M. Hauser (&) � Prof. Dr. F. Thiesse
University of Würzburg, Josef-Stangl-Platz 2, 97070 Würzburg,

Germany

e-mail: matthias.hauser@uni-wuerzburg.de

Prof. Dr. F. Thiesse

e-mail: frederic.thiesse@uni-wuerzburg.de

S. A. Günther

University of Bamberg, Kapuzinerstraße 16, 96047 Bamberg,

Germany

e-mail: sebastian.guenther@uni-bamberg.de

Prof. Dr. C. M. Flath

University of Würzburg, Sanderring 2, 97070 Würzburg,

Germany

e-mail: christoph.flath@uni-wuerzburg.de

123

Bus Inf Syst Eng 61(1):51–66 (2019)

https://doi.org/10.1007/s12599-018-0566-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301379146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-018-0566-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-018-0566-9&amp;domain=pdf
https://doi.org/10.1007/s12599-018-0566-9


systems to enable a greener and more reliable electricity

supply (Amin and Wollenberg 2005; Blumsack and Fer-

nandez 2012; Farhangi 2010). Healthcare innovations

(e.g., wearables, augmented surgical tools) promise to

improve the well-being and health outcomes of future

generations (Lee and Sokolsky 2010). New retail solutions

(e.g., automated checkout systems, personal shopping

assistants, omnichannel services) are engendering a fun-

damental transformation of traditional retail stores into

smart stores ‘‘that are able to accommodate [customer]

needs and wants when desired’’ (Kourouthanassis and

Roussos 2003).

A recent survey showed that 92% of retail businesses

consider digital innovation as vital or very important with

participants referring to it as ‘‘something retailers can’t

afford not to do’’ and ‘‘one of the most powerful tools

[they] have in being able to learn about what [their] cus-

tomers need’’ (Morrell 2015). The importance of digital

innovation in retail is often attributed to the strong com-

petition between traditional brick and mortar stores and

online players (Brynjolfsson et al. 2013; Herhausen et al.

2015; Rigby 2011). In this context, competitive pressure on

traditional retailers is not only exerted by price, but also by

new digital service offerings that have altered customer

relationships, customer behavior, and their expectations

regarding retail service quality (Grewal et al. 2017; PwC

2015). Cyberphysical systems can help traditional retailers

to meet these challenges by providing them with the means

to simultaneously increase cost-efficiency and the attrac-

tiveness of physical stores (Gregory 2015; Inman and

Nikolova 2017; Kourouthanassis and Roussos 2003;

Piotrowicz and Cuthbertson 2014). McKinsey projects the

economic potential of cyberphysical systems in stationary

retail environments to exceed $410 billion per year in 2025

(Manyika et al. 2015).

Recently, various cyberphysical systems in retail stores

have been conceptualized. Smart kiosks, for example,

allow customers to browse product offerings or order

products that are currently unavailable in the store (Her-

hausen et al. 2015; Shankar et al. 2011). Smart fitting

rooms offer additional services (e.g., product recommen-

dations or omnichannel services) based on a customer’s

garment selection displaying information on a screen

within the cabins (Parada et al. 2015; Senecal and Nantel

2004; Wong et al. 2012). With an economic potential of

more than $150 billion per year in 2025 (Manyika et al.

2015), automated checkout systems have emerged as the

most significant opportunity among cyberphysical retail

systems. Against this backdrop, the present study describes

a design-oriented IS research project concerned with the

implementation and evaluation of an automated checkout

system. Thereby, we seek to expand the existing knowl-

edge base concerning the creation of smart retail

environments, which are an ideal use case for the imple-

mentation of cyberphysical systems. Within the retail

sector, we focus on fashion retailing, which is a sizable

sub-segment characterized by high margins and a recent,

drastic shift towards innovative, adaptable players (Amed

et al. 2018).

Our research seeks to address the two main tasks of

reliably and instantaneously detecting products (i.e., gar-

ments) and correctly assigning them to individual shopping

baskets. Reliable detection is decisive for automated

checkout systems because undetected products cause rev-

enue losses for the retailer (Kang and Gershwin 2005).

Incorrectly assigning particular items to shopping baskets,

on the other hand, results in customer dissatisfaction and

interruptions of in-store operations (Hayes and Blackwood

2006). The design of cyberphysical systems is generally

considered challenging because their components have to

be seamlessly integrated into existing real-world environ-

ments (Baheti and Gill 2011; Böhmann et al. 2014; Brandt

et al. 2017; Khaitan and McCalley 2015; Kourouthanassis

and Roussos 2003). This is particularly problematic in

fashion retail environments, which are characterized by a

prevalence of immutable physical system components

(e.g., architectural constraints, lack of space) and

immutable non-physical system components (e.g., estab-

lished customer behavior patterns, unpredictable customer

behavior).

Design-oriented IS research seeks to develop innovative

artifacts with a strong focus on utility in practice (Peffers

et al. 2018). In keeping with this research practice, our

study makes a twofold contribution. First, we introduce an

innovative IT artifact that offers clear benefits for retail

companies (i.e, a reduction in cashier staff requirements)

and their customers (i.e., the elimination of checkout queue

times) in an increasingly relevant and widespread field of

application (Amed et al. 2018; Manyika et al. 2015).

Second, beyond the specific use case, our research

demonstrates how machine learning approaches can help

mitigate the problem of immutability of the environment.

The latter findings, in particular, may be generalized and

applied to the design of other cyberphysical systems.

2 Practical Background

Traditional clerk-based checkout systems are labor-inten-

sive and can be a great source of frustration for customers

having to wait in line (Manyika et al. 2015). To reduce

costs, retailers have started adopting self-service tech-

nologies that enable shoppers to detect, bag, and pay for

their purchases with little or no help from store personnel

(Litfin and Wolfram 2006; Orel and Kara 2014). These

systems, however, offer hardly any improvements over the
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traditional checkout process with respect to the customer

experience, potentially creating new challenges as many

customers consider the service frustrating, irritating, and

alienating (Meuter et al. 2000).1

Self-service checkout systems can be roughly catego-

rized into (1) centralized systems at store exits and

(2) decentralized systems (e.g., handhelds, mobile phones)

that customers carry with them while moving through the

store. Both types of system usually rely on linear or matrix

barcodes (e.g., QR codes). The first group comprises self-

checkout terminals (e.g., NCR self-checkout systems) and

tunnel scanners (e.g., Wincor Nixdorf 360� scanners). In

the former case, customers themselves must scan the items

they want to purchase one at a time. Tunnel systems, on the

other hand, rely on cameras that scan the barcodes of items

on a conveyer belt, thus requiring customers to simply put

their items on the belt. In contrast to centralized systems,

decentralized systems allow for the continuous scanning of

items while customers are walking through the store. Such

portable systems can be handhelds that retailers provide to

their customers or even customers’ own mobile phones (the

latter case requiring that customers install an app that

provides self-checkout functionality).

Automated checkout systems scan, total, and charge a

customer’s purchases to a registered payment account as

the customer is leaving the store (Manyika et al. 2015).

These systems promise greater sales due to an improved

customer experience and cost savings because less store

personnel is needed. Automated checkout systems have to

detect customers’ shopping baskets and initiate payment

processes. To solve the detection task, these systems must

tackle two subtasks: They have to reliably detect purchased

products and assign these to individual shoppers.

Figure 1 presents an overview of the different checkout

systems we identified: we first differentiate between clerk-

based and unmanned systems (criterion ‘staffing’).

Unmanned systems can be further broken down into self-

service and automated checkout systems (criterion ‘pro-

cess’). Third, we differentiate between systems with a

central point of scanning (e.g., at the store exit) and sys-

tems with decentralized points of scanning, that is systems

that require scanning at the very moment customers select

items from shelves or put them into shopping carts (crite-

rion ‘infrastructure’).

The literature on automated checkout systems is sparse.

To the best of our knowledge, only two systems from the

literature address the aforementioned challenges. The first

system (MyGrocer) relies on shopping carts equipped with

RFID readers that detect objects placed in the carts

(Kourouthanassis and Roussos 2003; Roussos et al. 2003).

As customers have their own RFID-equipped shopping

carts during a shopping trip, the assignment of products to

customers is a somewhat trivial task; customers are

charged for the products that the RFID reader of their

shopping cart has detected. The second system is Amazon

Go, which recently received enormous attention in the

media. The system promises to automatically detect prod-

ucts taken from or returned to shelves, keep track of the

products chosen by customers in virtual shopping carts, and

Self-service

Automated

Process

Unmanned

Staffing

Clerk-based

Checkout
Decentralized

Centralized

Decentralized

Centralized

Self-scanning with 
handhelds or mobile 
phones

Self-checkout terminals 
or tunnel scanners

Smart shopping carts 
(Roussos et al., 2003) 
or smart shelves 
(Amazon, 2018)

-

ExamplesInfrastructure

Fig. 1 Differentiation of

checkout systems

1 Meuter et al. (2000) found that causes of dissatisfaction with self-

service technologies were failure of the technology, design problems

in regard to both the technological interface and the service that it

offered, and customer-based failures (e.g., forgetting one’s personal

identification number).
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charge the customers’ Amazon accounts after they leave

the store. In addition, Amazon promises that all customers

need to use their system is an Amazon account, a supported

smartphone, and the Amazon Go app to register their

entrance into the store (Amazon 2018). Available infor-

mation regarding the Amazon Go system suggests that it

stores the inventory locations of all products within stores

and mainly relies on cameras to detect products that cus-

tomers take from or return to particular inventory loca-

tions.2 In addition to the cameras, additional sensors

(e.g., pressure sensors, infrared sensors, light curtains, and

RFID readers) and customer information (e.g., purchase

history) can be utilized to identify and assign purchases.

3 System Design

Automated checkout systems must identify customers’

shopping baskets and initiate payment processes. We focus

on the first task, which entails reliably and instantaneously

detecting products and correctly assigning them to shop-

ping baskets. We do not aim at assigning these shopping

baskets to individual customers because we consider cus-

tomer identification as part of the payment initialization

process. The main reason for focusing on the identification

of shopping baskets is that this task cannot be adequately

solved by the automated checkout systems described in the

literature. This is because these solutions were developed

for supermarket settings which differ significantly from

fashion retail environments with respect to in-store pro-

cesses and the suitability of specific technologies.

3.1 Requirements Analysis

The present study was conducted in the course of a

research project undertaken by multiple research institu-

tions and two leading European fashion retailers. Together

with the industry partners within the project, we put for-

ward the following observations and explain how they

affected various design decisions:

1. There are no shopping carts or baskets in fashion

retail storesWe consider this an immutable property of

fashion retailing, as customers will likely be alienated

by fashion stores requiring them to use shopping carts

to track their purchases (Litfin and Wolfram 2006).

Furthermore, store layouts may not permit carts to

navigate the shopping area (i.e., an immutable physical

component of fashion store environments). Lastly, the

mental association of bulk shopping with the use of

carts and baskets may be detrimental to brand image

(i.e., an immutable non-physical component of fashion

store environments).

2. Customers in fashion retail stores usually leave

unwanted garments in the changing room We consider

this to be another immutable business process as some

customers might not accept the necessity of going back

to search for the shelf from which they picked up a

garment.

3. Usage of cameras is problematic in key areas of

fashion stores (i.e., changing rooms) Several scholars

have highlighted the importance of considering the

potential intrusiveness of technological innovations in

retail stores with regard to customer privacy (e.g.,

Grewal et al. 2017; Litfin and Wolfram 2006).

4. Major fashion retailers have implemented item-level

RFID tagging of products3 Fashion retailers and

suppliers first adopted RFID at case-level mainly for

inventory management purposes (Hardgrave et al.

2013). Item-level tagging has, however, moved out

of the research environment and into mainstream

commerce (Barthel et al. 2014). Today, major fashion

retailers such as Walmart, J. C. Penney, and Zara have

already implemented item-level RFID tagging of

products. Leveraging the available sensor infrastruc-

ture facilitates a cost-effective and less intrusive

integration of checkout systems into existing store

environments.

These requirements are violated by the decentralized

automated checkout solutions presented in Sect. 2. The

first observation rules out automated checkout systems

based on smart shopping carts (i.e., systems such as

MyGrocer). The second observation rules out automated

checkout systems that rely on shelf activity to track pur-

chases (i.e., systems such as Amazon Go).

We therefore decided to design an automated system

with a central point of detection (i.e., items are detected

when customers leave the store). With respect to technol-

ogy selection, observations 3 and 4 make a very strong case

for RFID-based item detection. However, the use of RFID

is more challenging than in the MyGrocer project, where

carts only need to detect items within them. In our case, the

system needs to detect items that leave the store through an

exit gate. This requires antennas with a large read range

and high power. Unfortunately, this leads to the detection

of RFID tags carried near the gate instead of through the

gate. Furthermore, assigning items to individual customers

is very challenging unless customers wait in line and pass

2 Although Amazon has not published any technical details about

their system, information on the company’s website and two patents

filed by the company (Kumar et al. 2015; Puerini et al. 2015) provide

insights into the implementation of this cyberphysical retail system.

3 RFID identifies products at the item level without a direct line of

sight. Furthermore, it facilitates the simultaneous bulk detection of

multiple objects.
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through the gate one at a time. However, prior work has

demonstrated that RFID-based solutions can successfully

execute diverse and complex processes in retail environ-

ments: For example, Chaves et al. (2010) present a model

for the automatic detection of misplaced garments in retail

stores. Parada et al. (2015) present a system that detects

products taken from smart shelves based on the analysis of

low-level RFID data. Similarly, Li et al. (2015) introduce a

system able to distinguish between different touch events

(e.g., browsing through RFID-tagged garments, selection

of garment of interest).

3.2 Research Methodology

We aim at creating an artifact that reliably and instanta-

neously detects items that are leaving the store and cor-

rectly assigns them to individual shopping baskets. Our

design process follows the guidelines put forward by

Hevner et al. (2004):

• Problem Relevance There are many possible applica-

tions for automatic detection systems. The gross

economic potential of automated checkout systems is

projected to exceed $150 billion per year in 2025

(Manyika et al. 2015). Adoption reduces waiting times

and thus increases customer shopping satisfaction, as

well as cutting costs. Systems described in the literature

can not be applied in fashion retail environments

because they were developed for supermarket settings

which differ significantly from fashion retail environ-

ments with respect to in-store processes and the

suitability of specific technologies.

• Design as an Artifact The proposed automated check-

out artifact combines hardware (RFID readers and

antennas) and software components (data processing

and prediction routines) to ensure (1) the reliable and

timely detection of items and (2) the correct assignment

of these items to shopping baskets.

• Design Evaluation We evaluate the artifact using a

comprehensive experimental study in the laboratory.

Our setup takes into account the limited process control

in fashion retail stores by considering, for example,

multiple typical customer movement patterns, different

numbers of people, and different movement speeds.

• Research Contribution Our research contributes to the

understanding of the design of cyberphysical systems and

provides prescriptive knowledge regarding the design of

automated checkout systems. In addition, our research

demonstrates how machine learning approaches can help

mitigate the problem of environmental immutability.

• Research Rigor Our software components leverage

state-of-the-art supervised and unsupervised machine

learning techniques to implement a reliable automated

detection system. By relying on separate training and

test data sets, our artifact evaluation incorporates best

practices established in data science.

• Design as a Search Process Our design artifact is based

on existing models and research contributions (e.g.,

Hauser et al. 2015; Keller et al. 2014; Ma et al. 2018).

Moreover, the findings may be generalized and applied

to the design of other cyberphysical systems in retail

environments and beyond.

• Research Communication Our research informs both

technical and managerial audiences. The data mining

models primarily address audiences with a more

technical focus. In addition, we want to encourage

decision-makers to leverage the potential of low-level

RFID data with data analytics techniques.

3.3 System Architecture and Infrastructure

The architecture of our automated checkout artifact com-

bines hardware and software components (see Fig. 2). The

hardware consists of two RFID reader installations, a

ceiling-mounted system that helps track items, and a gate-

mounted system that helps to detect items that are leaving

the store. This infrastructure collects low-level RFID data

that is then processed by the software components. There

are two distinct software functionalities. The first software

component uses machine learning techniques to reliably

and instantaneously detect items that are leaving the store;

the second assigns items leaving the store (identified by the

first component) to individual shopping baskets. These

shopping baskets are the output of the artifact.

Figure 3 depicts the infrastructure with the two parallel

RFID readers from Impinj, a manufacturer of RFID devices

and software. The gate-mounted system features four far-

field antennas (Impinj Inc. 2017a), while the ceiling-

Item 
detection

Purchase
assignment

Processing

Customer 
shopping 
baskets

Input Output

RFID 
infrastructure

Fig. 2 Architecture of the

automated checkout artifact
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mounted system boasts an array of 52 far-field antenna

beams mounted in one housing (Impinj Inc. 2017b).

3.4 Item Detection Approach

The item detection software component has to reliably

distinguish between items that pass through a transition

area and others (e.g., static items near the RFID reader). If

items passing the transition area are not registered, we

speak of false-negative events. False-positive events, on

the other hand, denote situations in which items that do not

pass the transition area are classified as having done so.

Advanced data analytics techniques provide an avenue by

which to reduce the shortcomings of solely hardware-based

RFID solutions with respect to detection quality. To apply

machine learning algorithms, the RFID data streams first

need to be split into chunks to enable continuous evaluation

in real time. In a second step, these chunks are aggregated

to extract predictive features encoding information

regarding observed real-world events. These features are

then used to train classification models, which automati-

cally map RFID data streams to classification events.

3.4.1 Data Preprocessing

Table 1 provides a representative excerpt from the raw data

gathered by the RFID infrastructure. Each row reflects a

single tag read event triggered by one of the readers’

antennas. Here, EPC stands for Electronic Product Code

and is the unique identifier of the RFID tag, RSSI stands for

Radio Signal Strength Indication indicates the radio sig-

nal’s power, phase angle is the current state of the back-

scattered sinusoidal wave, and antenna is the ID of the

antenna that read the tag.

Prior research has usually considered aggregates for

single runs and the classification is thus performed after a

tag has moved through a transition area (e.g., Hauser et al.

2015; Keller et al. 2014; Ma et al. 2018). In contrast, we

aim to detect products at the very moment they are moved

through the gate (i.e., when a person leaving the store is

standing right in the middle of the RFID gate). This is

important because detecting a shopping basket after a

customer has left the store is obviously too late to initiate a

payment process. Similar to Parlak and Marsic (2013), we

first apply a sliding window approach to enable continuous

evaluations in real time. A sliding window is a window of a

certain size (e.g., detection events of the last 2 s) that is

updated at regular time intervals (Jeffery et al. 2006). Each

window contains only detection events from one particular

tagged product within reading range of the antennas. Our

research determined that window sizes of 2 s offer suffi-

cient information to reliably classify the events. To facili-

tate real-time evaluation, we apply window shifts every

250 ms.

Table 1 Representative low-

level RFID data excerpt
Reader EPC Timestamp Antenna RSSI Phase angle

Ceiling 3032…7D 1,453,989,765.31 15 - 59.0 3.50

Ceiling 3032…D1 1,453,989,765.31 15 - 56.0 2.91

Gate 3032…7D 1,453,989,765.34 4 - 69.0 2.72

Ceiling 3032…7D 1,453,989,765.34 17 - 56.0 3.07

Gate with gate-mounted antennas

Shopping area

Ceiling-mounted RFID reader with 
52 far-field antenna beams

Store exit

Fig. 3 Infrastructure with two parallel RFID reader installations
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3.4.2 Feature Engineering

In a second step, we examine the two-second windows and

extract features from the raw data stream. These features

condense information regarding observed real-world

events. Several authors stress the fact that feature genera-

tion is a key phase of any data mining project (Domingos

2012; Halevy et al. 2009). The considered features are

specific to the RFID analysis task at hand and must be

developed based on knowledge of the particular business

process in question.

Prior research leveraging data analytics techniques for

the improvement of RFID-based transition detection sys-

tems has almost exclusively focused on systems in con-

trolled environments such as production or logistics

facilities (e.g., Buffi et al. 2017; Keller et al. 2014; Ma

et al. 2018). In these environments, companies can instruct

their employees how to behave in the proximity of RFID

readers, which is clearly not possible when dealing with

customers. For this reason, we focus on the development of

features that facilitate the reliable identification of multiple

moving objects. We engineered 184 different features for

training of the classification models. One example of a

feature with high predictive power is the maximum RSSI

value measured in a series of detections of a particular tag

within the two-second windows. Here we first consider the

reader level and derive a maximum RSSI value for the gate

antenna detections and one for the ceiling antenna detec-

tions. In addition, we focus on the individual antenna level

and derive values for the detections of the antennas.

Maximum signal strength values are standard features

considered for the classification of RFID events in previous

studies (Keller et al. 2014; Ma et al. 2018). These features

are very useful in distinguishing static and moving tags, but

their ability to distinguish moving objects from other

moving objects is limited. For this reason, we came up with

additional features that put individual readings into tem-

poral relation to one another and augmented them with

antenna information. Examples are the parameters of a

Gaussian fit of the signal strength values for detections of a

particular tag within the two-second windows. A complete

list of the features considered in our classification models is

provided in ‘‘Appendix’’ (available online via https://www.

springerlink.com).

3.4.3 Modelling

We approach the classification problem using a set of

standard algorithms: logistic regression (LogReg) (Menard

2018), artificial neural networks (ANN) (Bishop 2006),

support vector machines (SVM) (Chang and Lin 2011), and

gradient tree boosting (XGBoost) (Chen and Guestrin

2016). We perform hyper-parameter optimization of the

classification models considering, for example, numbers of

hidden layers and nodes or maximum number of con-

structed trees (Witten et al. 2016).

Every 250 ms, the data-mining models consider two-

second windows of raw data for every tagged item within

reading range of the antennas and analyze whether the tags

in question have moved through the gate or not. To detect

whether an item has moved through the gate, the models

have to classify at least one of the associated two-second

windows as having moved through the gate (true-positive

event). In this context, associated windows are all the

windows containing detection events for a particular item

while the item was being moved out of the store. In con-

trast, to avoid false alarms (false-positive events), the

models must not classify any of the two-second windows

associated with detections of products that are in vicinity of

the gate but have not been moved through it (e.g., products

that are carried near the gate or products on shelves close to

the gate) as having moved through the gate.

3.5 Purchase Assignment Approach

The software component for purchase assignments asso-

ciates items leaving the store (identified by the first com-

ponent) with individual customers. To this end, we first

infer item paths in the shopping area in front of the gate

and then apply cluster analysis to group them. The proce-

dure rests on the assumption that the paths of items pur-

chased by one customer are more similar to each other than

to paths of other items.

3.5.1 Item Path Determination

We rely on state-of-the-art indoor localization techniques

to infer item paths. To this end, we apply the ‘‘Scene

Analysis’’ technique to estimate the position of an object

by matching its real-time measurements with the raw data

‘‘fingerprints’’ at different positions (Liu et al. 2007). We

again consider a sliding window approach with window

shifts every 250 ms to facilitate continuous evaluation. In

contrast to the development of the first software compo-

nent, we do not, however, rely on window sizes of equal

length but split the data such that each chunk contains only

detections from one collection cycle covering all 52 suc-

cessively activated antenna beams of the ceiling-mounted

RFID reader. The durations of the physical cycles depend

on the number of tags in the antenna field and therefore

vary over time. Considering time intervals of equal length

would have the drawback that some antenna beams might

not yet have been activated. This, in turn, would lead to

areas not being covered by the system, thus resulting in

undetected items. In the artifact’s first software component,

we consider time intervals instead of collection cycles
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because objects that are carried out of the store will defi-

nitely be detected by the gate antennas (in contrast to

objects that are somewhere within the shopping area in

front of the gate). Whereas the data from the ceiling

antennas is decisive for the localization of RFID-tagged

objects, the gate antennas are more important for the

identification of objects that pass through the gate.

We developed 174 features for the training of the clas-

sifiers that help localize tags within reading range of the

antennas. Most of them are antenna-based features per-

taining to the ceiling-mounted RFID system, but we also

leverage the low-level data from the gate antennas. For

instance, a high maximum signal strength from the gate

antennas in combination with a low number of reads from

the ceiling-mounted reader is a good indicator that an

object is very close to the exit. Intuitively, the high max-

imum signal strength indicates that the person is near the

gate, while the low number of readings suggests that the

person is facing away from the ceiling-mounted system

(i.e., that the person’s body is shielding the RSSI signals).

A complete list of the features considered in this second

classification model is again provided in ‘‘Appendix’’.

We apply multiclass classification for solving the

localization task, which requires dividing the shopping

floor area in front of the gate into grid fields and collecting

training data for each of these fields (raw data ‘‘finger-

prints’’). Here the number of grid fields denotes the number

of classes considered in the data-mining model. We con-

sider the same machine learning models as for the first

software component and again perform hyper-parameter

optimization. To determine item paths, we concatenate the

most probable locations of individual items over time.

3.5.2 Assignment Process

To assign items to individual shopping baskets, the artifact

needs to identify the correct customer associated with the

items that are currently leaving the store. This task can be

tackled by grouping the items within the antennas’ reading

range (i.e., the shopping area in front of the gate) such that

items in the same group are regarded as belonging to the

same customer. We approach the problem by first deter-

mining all individual item paths within the antennas’

reading range. The procedure for the assignment of items

then rests on the assumption that paths of items carried by

one customer are more similar to each other than to paths

of other items.

Figure 4 illustrates the assignment process. The process

is triggered every time the first software component detects

an item being moved through the gate. The assignment

component then has to determine all the other items that

also belong to this shopping basket. This is achieved by

analyzing the paths of all items within the antennas’

reading range. We first determine whether all the items

belong to a single customer by applying a simple threshold

rule based on the average Euclidean distance between pairs

of items. If all items belong to one customer, we assign

them to one shopping basket. Otherwise, we use clustering

techniques to determine the items that form a group with

the item that triggered the through the gate event. If the

first software component triggers another through the gate

event, we repeat the process but exclude items that are

already assigned to customer shopping baskets.

We follow a two-step approach to grouping items. We

first determine clusters for every possible number of cus-

tomer shopping baskets and evaluate each clustering result.

Then, in a second step, we choose the best result. To

determine the item groups, we use the Partitioning Around

Medoids (PAM) clustering algorithm (Reynolds et al.

2006). In order to evaluate the similarity between pairs of

tagged items, we again rely on the Euclidean distance. For

the evaluation of the goodness of the clustering results, we

calculate the average silhouette width for each cluster

result, which indicates whether objects are matched well to

their own clusters and can be distinguished from neigh-

boring clusters (Rousseeuw 1987).

4 Evaluation

We collected large data sets in a retail research laboratory

for instantiation and evaluation of the automated checkout

More than 
one 

customer?

Perform 
clustering

“Through 
the gate” 
events?

Exclude 
assigned 
objects

Yes Yes

No No

Fig. 4 Visualization of the process for the assignment of products to shopping baskets
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artifact. The artifact design necessitates, on the one hand,

the collection of RFID raw data traces stemming from tests

with people carrying RFID-tagged objects and simulating

real world customer movements in the experimental

shopping area. On the other hand, we need raw data fin-

gerprints at different locations within the shopping area for

training of the indoor localization data-mining model (see

Sect. 3.5.1).

4.1 Evaluation Setting

We set up an experimental shopping area in a retail

research laboratory for the evaluation of the automated

checkout artifact. The dimensions of our experimental

shopping area were 4.8 m by 4.8 m.4 For the collection of

training data for the indoor localization model, we divided

this area into 64 grid fields of equal size.

The artifact design necessitates the collection of

(1) RFID raw data fingerprints at different locations within

the shopping area for training and testing of the indoor

localization model and (2) RFID raw data traces stemming

from tests with people that carry RFID-tagged objects and

simulate real-world customer movements in the experi-

mental shopping area. For the collection of the first data

set, we collected RFID raw data fingerprints for each of the

64 grid fields within the experimental shopping area. To

achieve this, a person carrying garments stood in the

shopping area and held the garments such that they were

positioned right above one of the fields. During the tests,

the garments were moved up and down to reflect real-life

shopping situations. We collected approximately 2 min of

low-level RFID data for every grid field and two different

numbers of tagged items (one and three objects). The

resulting RFID data set comprises 1,515,918 individual tag

readings.

Our experimental setup takes into account the limited

process control at store exits by considering multiple

walking paths, different numbers of people and RFID-

tagged items, as well as different movement speeds

(i.e., walking and running). Figure 5 illustrates the

GFE H

CBA D

KJI L

end pointstart point store exit

Fig. 5 Test setting with typical customer movement patterns

4 The proposed system can be applied in retail environments that are

larger than our experimental shopping area because the automated

checkout solution we propose requires only observation by RFID

systems of the area in front of the store exit and not observation of the

entire store.
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customer movement paths that we considered in our anal-

ysis. Error sources that we identified during our experi-

ments are (1) customers with tagged objects who walk in

close proximity to the gate and (2) customers with tagged

objects who leave the store at the same time and on similar

movement paths. To account for such settings, we expan-

ded our analysis. Training and testing of supervised clas-

sification models necessitates labelled data. To obtain

precise labels concerning garment position, we additionally

installed a light barrier at the gate for the data collection

process to identify the exact time a tag was moved through

the gate. We did not use the information from the light

barrier for the development of our features. Our experi-

mental design includes 18 tests in total, each of which was

repeated 50 times. Table 2 provides a complete overview

of the experimental design. The data set comprises 1500

runs with a total of 1,431,347 individual tag readings.

4.2 Evaluation Results

The artifact evaluation is based on the tests with typical

movement paths in retail stores (i.e., the second data set).

To ensure representative results, we performed fivefold

cross validation: In each round, we used 80% of the data

for the training of the item detection model and the

remaining 20% for the evaluation of the automated

checkout artifact. We first evaluate the system’s ability to

detect, in a reliable and timely fashion, items that are

moved through the RFID gate. Subsequently, we evaluate

the assignment of purchases to shopping baskets.

4.2.1 Reliability of Detection

In our tests, 4350 items (1300 customer shopping baskets)

were carried through the gate and another 600 items (200

customer shopping baskets) were carried around the store

but did not leave the shopping floor area (see movement

patterns I, K, and L in Fig. 5). We base our evaluation of

the model’s reliability on the criteria of balanced accuracy,

precision, and recall. Balanced accuracy is the arithmetic

mean of the detection rates of both classes, while precision

represents the share of instances classified as moved

through the gate that were actually moved through the

gate. In our application, precision values below 100%

indicate that tags which were not moved through the gate

were erroneously classified as moved through the gate.

Recall measures the proportion of correctly classified

through the gate instances. For very conservative classi-

fiers that tend to classify instances as not through the gate

in uncertain cases, recall will be low.

The performance indicators for the four types of clas-

sifiers are summarized in Table 3. With the exception of

the logistic regression model (LogReg), all models achieve

a high level of classification performance. Recall values of

96.56% (SVM), 95.47% (XGBoost), and 98.85% (ANN)

indicate that the models appropriately classified almost all

items that were moved through the gate. A detailed anal-

ysis of the false positive classifications (false alarms)

reveals that most errors were caused by false classifications

of items that were carried in very close proximity to the

gate, but not through it (see movement pattern K in Fig. 5).

Recall values below 100% at item level (see Table 3) do

not necessarily imply that some items might not get

assigned to customers’ shopping baskets. This is because

the item detection component only needs to classify at least

one of the items in a shopping basket as through the gate in

order to trigger the assignment process for the items that

are currently within reading range of the antennas. To

obtain a more accurate evaluation of the item detection

component, we therefore additionally consider classifica-

tion results at basket level. Table 4 presents the evaluation

results. A basket is correctly classified as moved through

the gate if at least one item in that basket was correctly

classified as moved through the gate. Accordingly, the

component correctly identifies shopping baskets that did

not leave the shopping floor if it never classifies any of the

Table 2 Experimental design

(numbers in table fields indicate

numbers of repetitions per test)

People Tags Speed Movement patterns

A B C D E F G H I J K L

1 3 Walking 50 50 50 – – – – – – – – –

1 3 Running 50 50 50 – – – – – – – – –

1 6 Walking 50 50 50 – – – – – – – – –

2 6 Walking – – – 50 50 50 50 50 50 – – –

3 9 Walking – – – – – – – – – 50 50 50

Table 3 Item-level classification results

Classifier Balanced accuracy (%) Precision (%) Recall (%)

ANN 98.59 99.76 98.85

LogReg 79.23 98.70 64.62

SVM 98.13 99.95 96.56

XGBoost 97.57 99.95 95.47
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items in those baskets as moved through the gate. With

99.50% balanced accuracy, 99.85% precision, and 100%

recall the SVM and the XGBoost achieve the best classi-

fication results. The 100% recall rate indicates that the

models detected all the shopping baskets that were moved

through the gate.

4.2.2 Timeliness of Detection

Apart from reliability, the timeliness of detection is

important. If the shopping basket of a customer is detected

after the customer has already walked through the RFID

gate, it may be too late to initiate a payment process. The

initiation of a payment process long before the customer

actually walks through the gate, on the other hand, could

also be a source of potential error because these customers

might not yet have made up their mind and, on their way to

the exit, decide not to leave the store after all. Figure 6

visualizes the distribution of the detection times (difference

between the time at which the item detection component

correctly classified the shopping basket as moving through

the gate and the time at which the light barrier was trig-

gered by the customer carrying the basket in question). The

histograms and boxplots show that the classifiers detected

most baskets shortly after the customers walked through

the gate. As outlined above, the SVM and the XGBoost

classifiers achieved the best classification results at basket

level. With the earliest detection occurring at 0.16 s, a

2.5% percentile value of 0.55 s, a median detection time of

1.03 s, a 97.5% percentile value of 1.28 s and the latest

detection recorded at 1.63 s, the XGBoost classifier

Table 4 Basket-level classification results

Classifier Balanced accuracy (%) Precision (%) Recall (%)

ANN 97.75 99.31 100.00

LogReg 89.25 97.65 93.00

SVM 99.50 99.85 100.00

XGBoost 99.50 99.85 100.00
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Fig. 6 Detection time histograms and boxplots with 2.5 and 97.5 percentiles
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arguably detects items faster than the SVM classifier. For

this reason, we choose the XGBoost classifier for the item

detection component of our automated checkout artifact.

4.2.3 Purchase Assignment

Every time a basket is detected, the purchase assignment

component determines the items that are in the basket by

considering the paths of all items within the shopping area

in front of the gate. Table 5 presents the evaluation results

for the different movement patterns in our experiment and

the different classifiers that we considered for indoor

localization of RFID-tagged items. The results indicate that

the component assigns most purchases to customers cor-

rectly if we use XGBoost, SVM, or ANN for indoor

localization. In all three cases, the misclassifications arise

in particularly challenging test scenarios where multiple

customers approach the exit gate simultaneously on very

similar movement paths. The most difficult movement

patterns seem to be movement pattern I and movement

pattern J. In the first case (movement pattern I), two cus-

tomers approach the gate next to each other, but one of

them turns to the right just before reaching the gate and

walks by the gate. Under such circumstances in some of the

tests, the component assigns items of the customer not

leaving the store to the customer leaving the store. In the

second case (movement pattern J), three customers with

very similar movement paths leave the store next to each

other and at the same time, which results in some items

being assigned to the wrong shopping baskets.

5 Discussion

The present study aimed to design an automated checkout

system for fashion retail stores that reliably and instanta-

neously detects items leaving a store and correctly assigns

them to individual shopping baskets. We find that while

most purchases were correctly assigned to customers, our

artifact suffered from sub-par performance in more chal-

lenging test instances where multiple customers approa-

ched the exit gate simultaneously on very similar

movement paths. In practice, such a situation could easily

arise when friends are shopping together, which highlights

the limitations of the pilot implementation. To solve this

issue, various model improvements could be considered to

bolster detection reliability: Probabilistic models may be

able to improve the accuracy of item paths (Hauser et al.

2017). Furthermore, the integration of additional data

sources can improve the assignment process. One possi-

bility is the integration of information from additional

sensor systems or the inclusion of other data sources

(e.g., customer purchase history, sales data, and garment

characteristics). This approach is in line with Lee (2008),

who suggests that in such cases ‘‘the next level of

abstraction [...] must compensate with robustness.’’ In

addition, expanding the monitored area through additional

hardware (i.e., the installation of more ceiling-based RFID

systems) would make it possible to more accurately dis-

tinguish item movement paths.

We did not have access to real-world store data but

rather ran experiments in a retail research laboratory.

While our experimental setup tried to capture as many

particularities of retail environments as possible, the vast

number of different store layouts and products ultimately

limits the level of generalizability. As a next step,

expanding the test setting in the laboratory to scenarios that

are more complex (e.g., situations in which customers take

objects from shelves that are placed near the exits) could be

considered. A richer data set will also offer the potential to

refine the classifiers by introducing new features. To fur-

ther boost predictive power, ensemble methods and alter-

native algorithmic approaches (e.g., deep learning) may

help create a more reliable system. The ultimate objective

is to ensure the feasibility of our system under real-world

conditions in order to facilitate a subsequent roll-out in a

real store environment. Only then can retailers move

towards more advanced, customer-oriented smart service

offerings. In addition, further tests of the automated

checkout system should include consideration of the pay-

ment initialization process. This process differs depending

on the utilized wireless payment technology. Candidate

technologies include Bluetooth Low Energy and Near Field

Communication. Leveraging these technologies would

require that customers register upon entering a retail store

to ensure that they have a compatible device for wireless

payment.

Table 5 Correctly assigned

purchases
Classifier A–C (%) D (%) E (%) F (%) G (%) H (%) I (%) J (%) K (%) L (%)

ANN 100 100 100 100 100 100 42 50 100 90

LogReg 100 54 62 16 22 66 2 10 84 44

SVM 100 100 100 100 68 100 18 24 100 100

XGBoost 100 100 100 100 100 96 42 70 100 100
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Going forward, we want to enhance the generalizability

of the proposed automated checkout artifact and extend our

approach to form an entire system, i.e., a pervasive retail

store, instead of considering individual system compo-

nents. From the perspective of an entire service system,

automated checkout is only a small building block. Future

research on the design of cyberphysical systems for retail

environments should establish integrated smart environ-

ments instead of individual system components. Thereby,

the investment in costly technology is not made to augment

a single business process, but should rather fuel a trans-

formation of store environments as well as integration in

the context of omnichannel retailing.

6 Conclusion

Leading scholars in the field of design science research

have called for more research on the actual design of novel

and useful artifacts (Baskerville et al. 2018; Peffers et al.

2018). A particularly interesting form of design artifacts

are cyberphysical systems, which are expected to greatly

enhance previously non-digitized systems by providing

‘‘new use that was previously inaccessible’’ through tight

integration and coordination between physical and digital

resources (Brandt et al. 2017). Applications of such sys-

tems can be found in different areas such as manufacturing

(Lasi et al. 2014), personal transportation (The Economist

2016), power delivery (Amin and Wollenberg 2005),

healthcare (Lee and Sokolsky 2010), and retail

(Kourouthanassis and Roussos 2003). Specific challenges

in the design of cyberphysical systems include the con-

sistent, reliable detection and interpretation of events on

the physical level, which is critical for the quality and

efficiency of the digital services based on them. The design

of cyberphysical systems is considered challenging because

many of their characteristics cannot be freely designed, but

are limited by the environment in which the artifact is to be

embedded (Brandt et al. 2017; Khaitan and McCalley

2015).

Automated checkout is a particularly suitable showcase

for our design-oriented IS research study, as it features an

environment with immutable physical system components

(e.g., architectural constraints, lack of space) and

immutable non-physical system components (e.g., estab-

lished customer behavior patterns, unpredictable customer

behavior). Ours is the first automated checkout system

specifically developed for fashion stores. Existing systems

were developed for supermarket settings and are not

applicable in the fashion retailing domain because they

either (1) rely on shopping carts or baskets, (2) use camera

systems (which is problematic in key areas of fashion

stores), or (3) require changes to well-established customer

processes (e.g., returning a garment tried on in the fitting

room to the shelf from which it was picked up). To this

end, we conceptualized and implemented an RFID-based

system that reliably and instantaneously detects items that

are leaving a store and correctly assigns them to individual

shopping baskets. In contrast to existing solutions, which

rely on the continuous scanning of products, we developed

a system with a central point of scanning whereby items are

detected when customers leave the store. To this end, we

successfully leveraged machine learning techniques to

mitigate problems arising from immutable components of

the environment in which the system is to be embedded.

Apart from presenting prescriptive knowledge on the

design of an innovative IT artifact, our research also pro-

vides an example of how data analytics enables the

establishment of new internal processes which in turn may

result in innovative service offerings. Interestingly, our

artifact offers capabilities that can be applied in instances

beyond the intended checkout use case. First, automated

detection systems that can be implemented in environments

with limited process control offer various opportunities for

additional use cases in, for example, article surveillance

systems or fitting rooms that detect items within them in

order to provide customers with additional information.

Item path information, on the other hand, can be used to

trigger automatic stock replenishment or to improve pro-

duct recommendations, as it could help answer questions

such as ‘‘Did the customer spend a lot of time in a par-

ticular section of the fashion store?’’ or ‘‘Which items are

often tried on together?’’ Such generalizations of the

developed system are key for the successful introduction of

novel cyberphysical systems. Therefore, we conclude that

pilot implementations relying on a generic system infras-

tructure provide businesses with the opportunity to identify

related business cases.

Appendix: Feature descriptions

Table 6 describes the features used in the item detection

model (see Sect. 3.4); Table 7 the features used in the

localization model (see Sect. 3.5.1).
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