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Leveraging the Planning Fallacy to Manage Technical 
Debt in Agile Software Development Projects 

Maheshwar Boodraj 

Georgia State University 

mboodraj1@gsu.edu 

ABSTRACT  

One of the primary reasons for using agile software development (ASD) methods is to be agile – to deliver working 

software quickly. Unfortunately, this pressure often encourages ASD practitioners to make long-term trade-offs for 

short-term gains (i.e., to accumulate technical debt). Technical debt is a real and significant business challenge. 

Indeed, a recent study provides a conservative estimate of $361,000 of technical debt for every 100,000 lines of 

code. In this study, I examine the impact of the planning fallacy –  people’s tendency to underestimate the time 

required to complete a project, even when they have considerable experience of past failures to live up to planned 

schedules – on the accumulation of technical debt in ASD projects. Using an experiment, I seek to establish a causal 

relationship between the planning fallacy and technical debt and to demonstrate that solutions to the planning fallacy 

can be leveraged to manage technical debt in ASD projects.  

Keywords 

Planning Fallacy, Technical Debt, Agile Software Development, Time Underestimation, Scope Overload, Code 

Debt, Decision Making, IT Project Management, Experimental Design. 

INTRODUCTION 

Many of today’s innovations are driven by software. For example, autonomous cars, such as those being developed 

by Tesla, require sophisticated software to deliver control, navigation, monitoring, and entertainment capabilities 

(Archer Software, 2016b); conversational assistants such as Apple’s Siri and Amazon’s Alexa require advanced 

speech recognition algorithms to deliver a more natural user experience (Pisipati, 2017); and smart homes require 

software with ever-expanding capabilities to integrate and manage the multitude of smart devices that are being 

produced daily (Archer Software, 2016a). To meet the software demands to power these innovations, many 

organizations are turning to ASD methods such as Scrum and eXtreme Programming (XP). 

ASD methods are attractive for several reasons. For example, they enable organizations to go to market faster, they 

enable project managers to develop products that better meet customer requirements, and they are more responsive 

to today’s rapidly changing business environments. ASD methods are not without disadvantages, however. For 

example, to deliver software quickly, many ASD methods foster the accumulation of “technical debt” (Cunningham, 

1992). Technical debt describes the debt that development teams incur when they opt for an easy or quick approach 

to implementing in the short term, but with a greater possibility of a negative long-term impact (Alves, Mendes, de 

Mendonça, Spínola, Shull and Seaman, 2016). Examples of technical debt include poorly written source code that 

may need to be refactored later, minimal documentation which may necessitate additional person-hours in the long-

run to modify the source code, and limited testing which may manifest itself in poor quality software or degraded 

user experience over time. 

Technical debt is a real and significant business challenge. This is underscored in a recent study by Curtis, Sappidi 

and Szynkarski (2012), who analyzed 365 million lines of code – from 745 business applications spanning 160 

companies across ten industries – to provide a conservative estimate of $361,000 of technical debt for every 100,000 

lines of code. While much of this technical debt is the result of deliberate choices by project managers and project 

teams, some of this technical debt is incurred inadvertently (Fowler, 2009; Lim, Taksande and Seaman, 2012). The 

present challenge, therefore, is to reduce technical debt when it is undesirable. Over the last several years, there has 

been increasing interest from both research and practice to understand and manage technical debt (Kruchten, Nord, 

Ozkaya and Falessi, 2013), which presents a timely opportunity for me to contribute to the current academic 

discourse on technical debt. 
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I seek to contribute to the literature on technical debt by introducing the planning fallacy as a useful theoretical lens 

for exploring time underestimation and its effects on technical debt in ASD projects. The planning fallacy refers to 

people’s tendency to “underestimate the time required to complete a project, even when they have considerable 

experience of past failures to live up to planned schedules” (Kahneman and Tversky, 1979, 1982, p. 415). A familiar 

example of the planning fallacy can be observed when academics take home briefcases packed with work on 

Fridays, fully intending to complete everything over the weekend, despite not having gone beyond the first few tasks 

on any previous weekend (Buehler, Griffin and Ross, 1994). 

By using a randomized lab experiment, I aim to establish a relationship between the planning fallacy and technical 

debt – a relationship which remains largely unexplored in the literature. In doing so, I hope to prompt both 

researchers and practitioners to leverage solutions to the planning fallacy as potential solutions to managing 

technical debt in ASD projects. This would represent a significant contribution to practice by helping to reduce the 

$1 trillion global technical debt bill (Gartner, 2010). It would also represent a significant contribution to research by 

empirically bridging the nomological networks of the planning fallacy and technical debt. I, therefore, seek to 

answer the following two research questions in this study: 

RQ1: What is the impact of the planning fallacy on the accumulation of technical debt in ASD projects? 

RQ2: How does the planning fallacy contribute to the accumulation of technical debt in ASD projects? 

THEORETICAL BACKGROUND 

Technical Debt 

Technical debt, a term coined by Cunningham (1992), describes the debt that development teams incur when they 

opt for an easy or quick approach to implementing in the short term, but with a greater possibility of a negative long-

term impact (Alves et al., 2016; Li, Avgeriou and Liang, 2015). In a useful metaphor, Ampatzoglou, Ampatzoglou, 

Chatzigeorgiou and Avgeriou (2015) likened technical debt to financial debt, which consists of a principal and 

interest. According to Camden (2013), paying back the principal involves implementing the correct replacement, 

while paying back the interest involves working around the incorrect implementation. The primary difference 

between technical debt and financial debt, however, is that the interest associated with technical debt may or may 

not need to be repaid (Guo, Spínola and Seaman, 2016). For example, technical debt may not need to be repaid if an 

organization creates a temporary system, which they intend to discard in a few months or a few years. A major 

problem occurs, however, when these temporary systems become permanent fixtures in organizations. 

Several factors contribute to the accumulation of technical debt in ASD projects. For example, technical debt may be 

caused by an emphasis on quick delivery, architecture and design issues, inadequate test coverage, unclear 

understanding of system requirements, overlooked and delayed solutions and estimates, inadequate or delayed 

refactoring, and duplicate code (Behutiye, Rodríguez, Oivo and Tosun,  2017). One of the most common of these 

factors is an emphasis on quick delivery. Unmanaged, technical debt can lead to several undesired consequences. 

For example, technical debt can lead to reduced productivity, system quality degradation, increased cost of 

maintenance, complete redesign or rework of a system, market loss, and damaged business relationships (Behutiye 

et al., 2017). However, when technical debt is incurred strategically, it can provide benefits such as allowing 

organizations to capture market share or collect early customer feedback (Lim et al., 2012). 

In a systematic literature review of 38 primary studies on technical debt in ASD projects, Behutiye et al. (2017) 

identified five major research areas, of which, managing technical debt in ASD – the focus of this study – generated 

the most interest. According to Kruchten et al. (2013, p. 51), a “better understanding of the concept of technical 

debt, and how to approach it, both from a theoretical and a practical perspective is necessary to advance its state of 

the art and practice.” This call-to-action is further echoed by Alves et al. (2016, p. 118) who argued that “it is 

necessary to conduct further studies in the area to investigate new techniques and tools that could support developers 

with the control of technical debt.” According to Behutiye et al. (2017), the most common strategies for managing 

technical debt in ASD projects include (1) the use of specific tools, approaches, and models, (2) refactoring – 

restructuring existing computer code without affecting its external behavior, and (3) enhancing the visibility of 

technical debt. This study focuses on a less explored, but extremely important, approach – improving estimation 

techniques. Specifically, I explore the role of the planning fallacy on the accumulation of technical debt in ASD 

projects.  
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The Planning Fallacy 

The planning fallacy refers to people’s tendency to “underestimate the time required to complete a project, even 

when they have considerable experience of past failures to live up to planned schedules” (Kahneman and Tversky, 

1979, 1982, p. 415). The planning fallacy is, therefore, not only about making optimistic predictions but about doing 

so despite having historical evidence to the contrary. According to Lovallo and Kahneman (2003, p. 3), the planning 

fallacy causes managers to “make decisions based on delusional optimism rather than on a rational weighting of 

gains, losses, and probabilities.” We can observe the planning fallacy in everyday situations such as when students 

underestimate the time it will take them to prepare for an exam or complete a research paper despite ample historical 

evidence to the contrary. 

While several psychological mechanisms have been used to explain the planning fallacy (Buehler and Griffin, 

2015), the main cognitive model is the inside and outside view proposed by Kahneman and Tversky (1979). The 

inside view focuses on singular information such as the details of the focal task, while the outside view focuses on 

distributional information such as how the current task fits into the set of related tasks (Buehler, Griffin and Peetz, 

2010). In this model, the inside view is expected to lead to time underestimation whereas the outside view is 

expected to lead to more realistic, yet still imperfect, estimates (Kahneman and Lovallo, 1993). Also, this cognitive 

model is quite robust and has been demonstrated in both real-world examples and lab experiments (Buehler et al., 

1994; Flyvbjerg, 2013; Kahneman and Lovallo, 1993). 

In a recent study, Shmueli, Pliskin and Fink (2016) explored whether taking an outside-view approach, 

recommended for reducing the irrational behaviors associated with the planning fallacy, could also reduce time 

underestimation, scope overload, and over-requirement (also known as “gold plating”) problems plaguing planning 

decisions in software development projects. In their study, Shmueli et al. (2016) found that these problems are 

mitigated, but not eliminated, by presenting reference information about past completion times and by having 

participants adopt a consultant role – both outside view mechanisms. Further, Shmueli et al. (2016) observed 

relatively high correlations among these three variables and suggested that the correlations may be indicative of 

causal relationships that exist among the three variables. In this study, I seek to extend the work of Shmueli et al. 

(2016) by testing one of these causal relationships (time underestimation  scope overload), which I discuss in the 

next section, and by exploring its potential contribution to the accumulation technical debt in ASD projects. 

RESEARCH MODEL AND HYPOTHESES 

Research Model 

Based on the preceding discussion, I identify and define my key constructs in Table 1 and illustrate my research 

model – a single-level model operating at the group level (Kozlowski and Klein, 2000) – in Figure 1.  

Construct Definition 

Time 

underestimation 

The original definition of the planning fallacy refers to people’s tendency to underestimate the 

time required to complete a project despite having historical evidence to the contrary 

(Kahneman and Tversky, 1979). Since then, the definition of the planning fallacy has expanded 

to include people’s tendency to underestimate the costs and risks of future actions and to 

overestimate their benefits (Kahneman, 2011; Lovallo and Kahneman, 2003). In the remainder 

of this study, I retain the original definition, time underestimation, when I refer to the planning 

fallacy. 

Scope overload Scope overload refers to the excessive inclusion of software features within the scope of a 

project while consuming more resources than are available (Bjarnason, Wnuk and Regnell, 

2012; Shmueli et al. 2016). 

Code debt While technical debt was initially concerned with software implementation (Li et al., 2015), it 

has gradually extended to include software architecture, design, documentation, requirements, 

and testing (Brown et al., 2010). In the remainder of this study, I focus on code debt – poorly 

written code that violates coding best practices or coding rules (Li et al., 2015) – when I refer to 

technical debt. 

Table 1. Definition of Constructs 



Boodraj                                                                                                                               The Planning Fallacy and Technical Debt 

 
Figure 1. Research Model 

Hypotheses 

First, I argue that there is a significant total effect of time underestimation on code debt in ASD projects. To 

complete information technology projects successfully, project teams must skillfully manage the triple constraints of 

scope, time, and cost to produce a quality product, service, or result (Schwalbe, 2018; Project Management Institute, 

2017). In ASD projects, the time for each iteration is typically fixed and many times so is the budget. Project teams 

are therefore left to consider tradeoffs between scope and quality. I argue that since agile project teams need to 

deliver a potentially-shippable software increment during each iteration, they will do so at the expense of quality 

(i.e., they will accumulate code debt). This would be exacerbated by the planning fallacy which would cause these 

project teams to underestimate the time required to deliver a quality product, service, or result and consequently 

make even further trade-offs in software quality to meet the fixed deadline. My argument is supported by Holford 

(2013, p. 1), who states that “if we start a development cycle with an unrealistic schedule estimate, then we can just 

expect to be late from the start. In an atmosphere like this, ill-considered compromises are almost inevitable. These 

compromises constitute the primary source of technical debt introduced to a new code base.” I, therefore, 

hypothesize that: 

H1: An increase in time underestimation will lead to an increase in code debt in ASD projects. 

Second, I argue that there is a causal relationship between time underestimation and scope overload. During each 

iteration, ASD teams are responsible for committing to complete a set of user stories (i.e., some amount of work). 

While the business representative, or product owner, is responsible for creating a prioritized list of user stories to be 

completed, the ASD team has the latitude to determine how many user stories (in priority order) to complete during 

each iteration. I argue that if these teams underestimate the time required to complete the user stories, then they will 

select more user stories than can be reasonably delivered at the desired level of quality holding time and resources 

constant. This causal relationship was also proposed – but never tested – by Shmueli et al. (2016, p. 411) who 

argued that “if software engineers perceive each feature as less demanding in terms of the time needed for its 

development, they may have the impression that more features could be developed within a given project duration.” 

I, therefore, hypothesize that: 

H2: An increase in time underestimation will lead to an increase in scope overload in ASD projects. 

Third, I argue that the relationship between time underestimation and code debt is mediated by scope overload. If 

time underestimation does, indeed, lead to scope overload as I have argued in Hypothesis 2, then ASD teams will 

find themselves with more scope to deliver than there is time to deliver it at the at the desired level of quality 

holding time and resources constant. These teams may, therefore, take shortcuts, such as omitting to comment code 

and ignoring coding best practices, which will lead to the accumulation of code debt. I, therefore, hypothesize that: 

H3: The effect of time underestimation on code debt in ASD projects is mediated by scope overload. 

RESEARCH METHODOLOGY 

I will test my hypotheses using a randomized lab experiment with approximately 150 ASD practitioners (50 in each 

treatment/control group) recruited through Qualtrics. This method is appropriate for my study because experiments 

are especially powerful for making inferences about causal relationships due to their high internal validity (Shadish, 

Cook and Campbell, 2002; Trochim and Donnelly, 2006). 

Scope Overload 

Time 

Underestimation 
Code Debt 
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Experimental Design 

I will use a longitudinal design (Shadish et al., 2002), which will allow me to examine the effects of the planning 

fallacy during each of the three sprints (or time-periods) separately, to test whether participants in the control group 

improve their estimation from one sprint to the next (i.e., a learning effect), and to test whether the effect of the 

manipulation persists from T2 to T3 or if it dissipates once attention is no longer drawn to the distributional 

information (i.e., outside view). This design is illustrated in Figure 2 using the notation from Shadish et al. (2002), in 

which R represents the random assignment of units, X represents a treatment (subscripts identify different 

treatments), and O represents either a pre-test or a post-test. 

 
Figure 2. Experimental Design 

Experimental Procedure 

My experiment involves collecting data for three sprints: T1, T2, and T3. At the beginning of the experiment, 

participants will be randomly assigned to one of three groups: Treatment Group A (which will receive the outside 

view manipulation), Treatment Group B (which will receive the inside view manipulation), and Control Group 

(which will receive no manipulation). At the beginning of each sprint, participants will be given the same 

experimental scenario and asked to identify a set of incomplete tasks that they plan to complete in the current sprint. 

Participants will then be asked to estimate the time that they will need to complete each task. At the end of each 

sprint, participants will be asked to provide the actual time that it took to complete each task. Participants in 

Treatment Group A will be asked to look across other projects in the past and present and focus on distributional 

information (including summary data from all participants’ responses in the first sprint, T1) when providing 

estimates, participants in Treatment Group B will be asked to look forward and focus on singular information 

relevant to the set of tasks at hand, and participants in the Control Group will simply move from the first sprint (T1) 

to the second sprint (T2) without any manipulations. 

Measures  

My measures are described in Table 2 along with key references from which they were derived. 

Construct Description of Measure Key References 

Time 

underestimation 

I will compute time underestimation (in hours) as the difference 

between the actual time to complete the agreed-upon project scope 

and the estimated time to complete the agreed-upon project scope for 

each iteration as reported by the project teams. 

Shmueli et al. (2016) 

Scope overload I will measure scope overload as the total number of features that the 

project team commits to delivering for each iteration. 

Shmueli et al. (2016) 

Code debt I will measure code debt as the number of hours required to resolve 

all issues that were identified in the source code for each iteration as 

computed by a source code analyzer such as SonarQube 

(SonarSource, 2017). 

Letouzey (2012); 

Letouzey and Ilkiewicz 

(2012); Luhr (2015) 

Table 2. Description of Measures 

  

T1  T2 T3 

Treatment Group A R O XA O O 

Treatment Group B R O XB O O 

Control Group  R O  O O 
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ANALYSIS AND EXPECTED RESULTS 

I will test my mediation model using a series of regressions following the path analytic approach by Shrout and 

Bolger (2002) instead of the classical causal steps approach by Baron and Kenny (1986), which has met with 

several criticisms since it was initially proposed. Also, I will conduct manipulation checks using a combination of t-

tests, ANOVA, and ANCOVA (Field, 2013) to determine whether time underestimation differs between the treatment 

and control groups during the various sprints. While I do not expect to find any significant differences at T1 before 

the treatment is administered, I expect to find a significant difference at T2 after the treatment has been 

administered. Whether I detect a significant difference between the groups at T3 will depend on whether the 

treatment effect persists. Further, I will conduct control checks to determine whether demographic factors such as 

age, gender, and work experience contribute to any significant differences between the treatment and control groups.   

EXPECTED CONTRIBUTIONS 

Implications for Research 

My primary contribution to research will stem from answering my first research question: What is the impact of the 

planning fallacy on the accumulation of technical debt in ASD projects? Studies linking the planning fallacy and 

technical debt, or even time underestimation and code debt, are virtually non-existent in the literature. However, 

there seems to be an important link between these two research areas. Establishing a relationship between the 

planning fallacy and technical debt would represent an important contribution to research because it would advance 

our knowledge about the causes of technical debt. Also, linking the nomological networks of the planning fallacy 

and technical debt would open the door for researchers to explore various ways to leverage existing knowledge 

about the planning fallacy as potential solutions to managing technical debt in ASD projects. 

Another key contribution to research would stem from answering my second research question: How does the 

planning fallacy contribute to the accumulation of technical debt in ASD projects? By identifying scope overload as 

an intervening mechanism between time underestimation and code debt, I would have not only established a causal 

relationship between time underestimation and scope overload (which has not been previously tested), but I would 

have also provided a glimpse into the black box connecting time underestimation and code debt. This would open 

the door for other researchers to identify additional mediators and possibly even moderators of the relationship 

between the planning fallacy and technical debt. 

Implications for Practice 

Technical debt is a real and significant business challenge. Therefore, studies that identify ways to manage technical 

debt represent important contributions to practice. By finding empirical support for my research model, I would 

inform practice of the role that the planning fallacy can have in contributing to the accumulation of technical debt in 

their ASD projects. Also, by demonstrating that the use of reference information (an outside view mechanism) can 

mitigate the effects of time underestimation on scope overload and code debt, I would provide practice with a 

technique that can be immediately applied to reduce technical debt in their ASD projects. Further, by mitigating the 

effects of the planning fallacy on technical debt in ASD projects, developers, customers, and end users are likely to 

be more satisfied with the final product, service, or result.  

Limitations and Future Research 

Like all studies, this one is not without limitations. First, by deciding to conduct a lab experiment, I have 

consciously decided to sacrifice some external validity for greater internal validity. Second, recruiting practitioners 

is costly, and therefore the number of participants will be constrained by funding that is available for this study. 

Third, the manipulation may not be robust enough to detect small but real effects in the sample. Fruitful avenues for 

future research include examining whether the findings from this study hold in field settings, whether several outside 

view mechanisms could be combined to create more potent manipulations, and whether other decision-making 

biases interact with the planning fallacy. 
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