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Abstract The most prominent Business Process Model

Abstraction (BPMA) use case is the construction of the

process ‘‘quick view’’ for rapidly comprehending a com-

plex process. Some researchers propose process abstraction

methods to aggregate the activities on the basis of their

semantic similarity. One important clustering technique

used in these methods is traditional k-means cluster anal-

ysis which so far is an unsupervised process without any

priori information, and most of the techniques aggregate

the activities only according to business semantics without

considering the requirement of an order-preserving model

transformation. The paper proposes a BPMA method based

on semi-supervised clustering which chooses the initial

clusters based on the refined process structure tree and

designs constraints by combining the control flow consis-

tency of the process and the semantic similarity of the

activities to guide the clustering process. To be more pre-

cise, the constraint function is discovered by mining from a

process model collection enriched with subprocess rela-

tions. The proposed method is validated by applying it to a

process model repository in use. In an experimental vali-

dation, the proposed method is compared to the traditional

k-means clustering (parameterized with randomly chosen

initial clusters and an only semantics-based distance mea-

sure), showing that the approach closely approximates the

decisions of the involved modelers to cluster activities. As

such, the paper contributes to the development of modeling

support for effective process model abstraction, facilitating

the use of business process models in practice.

Keywords Business process model abstraction � Order-

preserving � Semi-supervised clustering � Activity

aggregation � Constrained k-means clustering � Virtual

document

1 Introduction

Scientific papers that describe Business Process Modeling

Abstraction (BPMA) techniques by no means always use this

exact label, but rather refer to developing process views (see

Bobrik et al. 2007a; Eshuis and Grefen 2008), or focus on

process simplification (see Günther and van der Aalst 2007).

The essential purpose of these techniques is in line with the

way BPMA was characterized by Smirnov et al. (2012). In

Smirnov et al. (2010b, 2012), the authors show that the most

prominent use case of BPMA is a construction of a process

‘‘quick view’’ for rapidly comprehending a complex process.

To deal with such a demand, the process model can then be

displayed as a partially ordered set of coarse-grained activ-

ities, each of which is correlated to a group of lower-level

activities. Obviously, there are alternative ways to aggregate

activities. From the user perspective, groups of activities that

semantically belong together are of particular value (Smir-

nov 2012). The structure-based abstraction (Polyvyanyy
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et al. 2008, 2009a; Vanhatalo et al. 2009) derives coarse-

grained activities only based on control flow relations but not

considering the domain semantics of activities, so that it can

not answer such questions as ‘‘how to discover the domain

interrelated activities’’. To overcome the disadvantages of

the structure-based abstraction, some researchers investigate

methods that aggregate activities according to their business

meaning. A number of recent contributions exist that con-

sider semantic aspects for aggregation (e.g., Smirnov et al.

2010b; Francescomarino et al. 2013). However, their

assumptions, e.g., the existence of an activity ontology

(Smirnov et al. 2010b), are too strict for generic use. The

approach in Smirnov et al. (2011) is based on the application

of the vector space model, an algebraic model popular in

information retrieval (Salton et al. 1975). But the space

dimensions correspond to activity property values p which

builds on the assumption that all kinds of semantic infor-

mation, such as data objects, roles, and resources, can be

observed within the descriptions of process models in

industrial collections. Moreover, these semantics-based

methods aggregate the activities only according to business

semantics similarity but not considering the order-preserv-

ing requirement of the model transformation (Bobrik et al.

2007a; Eshuis and Grefen 2008; Smirnov 2012; Polyvyanyy

et al. 2009a; Liu and Shen 2003), so that the activities in the

generated clusters (candidate subprocesses) are relatively

dispersed from the perspective of order consistency and

structural connectedness (Reijers et al. 2010).

Therefore, this paper investigates methods that aggre-

gate activities according to both their business semantics

and control flow consistency. In other words, given a

business process model, we search for activity sets that

each has a self-contained business semantics with as little

as possible control flow loss. As an example, a process

model (Smirnov et al. 2011) that captures the creation of a

forecasting report is shown in Fig. 1. We assume that there

are four reasonable subprocess candidates, and different

shadings are used to mark the corresponding activities.

In this paper, we propose a BPMA method based on a

semi-supervised clustering algorithm. Semi-supervised

clustering is based on unsupervised clustering, e.g., the k-

means clustering used in (Smirnov et al. 2011), by using

labeling data (or constraint relations) to guide the cluster-

ing process in order to improve the quality of clustering

(Gao et al. 2008). Semi-supervised clustering algorithms

can be divided into three categories: the first contains a

constraint-based semi-supervised clustering algorithm

which uses the class labels or pairwise constraints to

improve clustering algorithm itself (Wagstaff and Cardie

2000; Wagstaff et al. 2001; Basu et al. 2002, 2004; Demiriz

et al. 1999; Bilenko et al. 2004; Ruiz et al. 2007; Gaynor

and Bair 2013). The second category includes metric-based

or distance-based semi-supervised clustering algorithms.

Such algorithms use the class labels or pairwise constraints

to learn a new distance measure function to satisfy the

constraints (Kamvar et al. 2003; Xu et al. 2005; Klein et al.

2002; Wang et al. 2007; Xing et al. 2003; Schultz and

Joachims 2003; Bar-Hillel et al. 2003; Tang et al. 2007;

Hastie et al. 2009; Cohn et al. 2009; Yin et al. 2010). The

third method is a combination of these two kinds of semi-

supervised clustering algorithms (Bilenko et al. 2004; Basu

et al. 2004; Tang et al. 2007). Our approach designs the

initial parameters and constraints by combining the control

flow consistency of the process and the semantic similarity

of the activities to guide the clustering process. Due to the

order-preserving and block-structured nature of the

abstraction based on the refined process structure tree

(RPST) decomposition (Vanhatalo et al. 2009; Reijers et al.

2010), we choose k canonical components of the RPST

constructed for the process model as the initial clusters

(seed sets) and compute the initial cluster centroids (cen-

ters). We also design a new constraint function by com-

bining the semantic similarity and the control flow ordering

requirement to constrain the traditional k-means clustering

process, not only aggregating the activities with similar

business semantics but also reducing the control flow loss

of the abstract results. In particular, we discover the con-

straint function by mining from a process model collection

enriched with subprocess relations. We validate the pro-

posed method by applying it to a process model repository
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that is in use with a large joint venture automobile pro-

duction enterprise (China’s largest automobile manufac-

turing organization) and its partner logistics company. The

repository incorporates hierarchical relations between high-

level activities and the activities that they aggregate. Also,

the process models contain various types of semantic

information. In an experimental validation, we compare the

proposed method to the traditional k-means clustering

(parameterized with randomly chosen initial clusters and a

distance measure solely based on semantics), showing that

our approach closely approximates the decisions of the

involved modelers to cluster activities.

The structure of the paper is as follows. In Sect. 2 we

continue explaining the proposed algorithm, along with

providing the required background knowledge. Section 3

empirically validates the proposed approach by using an

industrial set of process models from the companies we

mentioned above. Finally, Sect. 4 concludes the paper with

a summary and discussion.

2 Activity Aggregation

This section elaborates on the proposed activity aggrega-

tion algorithm. After the introduction of the main concepts,

we argue how activity aggregation can be interpreted as a

semi-supervised clustering problem. We discuss a con-

strained clustering algorithm with suitable initial parame-

ters. We explain how the aggregation setup is realized and

show how the setup information can be mined from an

existing process model collection.

2.1 Fundamentals

When business users talk about process model abstraction,

they often imply the abstraction of activities, requesting a

transition from low level steps to high level tasks (Poly-

vyanyy et al. 2009a). In this section, we introduce some

concepts of Smirnov (2012) which will be used in the

subsequent sections.

2.1.1 Process Model Decomposition

Firstly, we introduce Smirnov’s concept of the business

process model (Smirnov 2012).

Definition 2.1 A tuple PM = (A, G, F, t, s, e) is a busi-

ness process model where:

• A is a finite nonempty set of activities.

• G is a finite set of gateways.

• N = A[G is a finite set of nodes with A\G = [.

• F � N � N is the flow relation, such that (N, F) is a

connected graph.

• Every activity has no more than one incoming and no

more than one outgoing edge.

• s is the only one activity which has no incoming edges

– a start activity and e is the only one activity which has

no outgoing edges – an end activity.

• t : G! and; xorf g is a function that assigns to each

gateway a control flow construct.

• Every gateway is either a split or a join; splits have

exactly one incoming edge and at least two outgoing

ones; joins have at least two incoming edges and

exactly one outgoing one.

The execution semantics of a process model is given by

a translation into a Petri net following common formal-

izations (see Smirnov 2012 in detail). Then, we introduce

the decomposition into fragments with single entry nodes

and single exit nodes which results in a RPST. According

to Smirnov (2012), in the context of process modeling the

resulting fragments can be considered as self-contained

process parts. As such fragments have a single entry node

and a single exit node, structurally they can be isolated into

a subprocess. And this decomposition is unique. The RPST

can be constructed in time linear to the number of nodes in

the process model (Polyvyanyy et al. 2010).

Definition 2.2 Let PM = (A, G, F, t, s, e) be a process

model. A fragment f of process model PM is a tuple

f = (Af, Gf, Ff, tf) where Af [ Gf ;Ff

� �
is the connected

subgraph of the graph ðA [ G;FÞ and function tf is the

restriction of t of PM to set to Gf .

Definition 2.3 Let PM = (A, G, F, t, s, e) be a process

model with a process model fragment PMF = (APMF,

GPMF, FPMF, tPMF). A node n 2 NPMF is a boundary node of

PMF if 9e 2 inðnÞ [ outðnÞ, in which the functions inðnÞ
and outðnÞ are respectively the sets of the outgoing edges

and incoming edges of node n. If n is a boundary node, it is

an entry of PMF, if in nð Þ \ FPMF ¼ ;. A node n is an exit

of PMF, if it is a boundary node of PMF and

out nð Þ \ FPMF ¼ ;.

Definition 2.4 Let PM = (A, G, F, t, s, e) be a process

model with a process model fragment PMF = (APMF,

GPMF, FPMF, tPMF). The fragment PMF is a component if it

has exactly two boundary nodes: one entry node and one

exit node.

Let F be the set of all components in a process model

PM.

Definition 2.5 A component PMF = (APMF, GPMF, FPMF,

tPMF) is canonical if 8PMF0 2 F : PMF 6¼ PMF0 )
FPMF \ FPMF0 ¼ð ;V FPMF � FPMF0ð Þ _ FPMF0 � FPMFð ÞÞ:

Definition 2.6 Let PM = (A, G, F, t, s, e) be a process

model. The refined process structure tree of a process
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model PM is an arborescence RPSTPM ¼ ðX; r; vÞ such

that:

• X is a set of all canonical components of PM.

• r is a component that is the root of the tree.

• v � X� X is a relation between a component and its

child component.

We take the simplified version of Fig. 1 for example to

show the structural decomposition, see Fig. 2.

2.1.2 Order-Preserving Abstraction

We introduce the order-preserving abstraction defined in

Smirnov (2012) according to the behavior of systems

which can be described in terms of behavioral profiles

(Weidlich et al. 2011). Let T PM be the set of complete

process traces for a process model PM which contains lists

of the form sA � e such that a list comprises the execution

order of activities. Let a 2 r with r 2 T PM denote that an

activity a is a part of a complete process trace.

A behavioral profile captures behavioral characteristics

of a process model by three relations between pairs of

activity nodes. These relations are based on the notion of

weak order. Two activities of a process model are in weak

order, if a trace exists in which one activity occurs after the

other.

Definition 2.7 (Weak Order Relation) Let PM ¼
ðA;G;F; t; s; eÞ be a process model, and T PM its set of

traces. The weak order relation �PM� ðA� AÞ contains all

pairs ða; bÞ, such that there is a trace r ¼ n1; . . .; nl in T PM

with j 2 f1; . . .; l� 1g and j\k	 l for which holds nj ¼ a

and nk ¼ b.

Based on the weak order relation, the behavioral profile

is defined as follows.

Definition 2.8 (Behavioral Profile) Let PM ¼
ðA;G;F; t; s; eÞ be a process model. A pair ða; bÞ 2 ðA� AÞ
is in one of the following relations:

– strict order relation  PM , if a �PM b and a¤PMb.

– Exclusiveness relation þPM , if a¤PMb and b¤PMa.

– Interleaving order relation jjPM , if a �PM b and

b �PM a.

The set of all three relations BP ¼ f PM;þPM ; jjPMg is

the behavioral profile of PM. a% PMb represent there is no

weak order relation from a to b. The relations of the

behavioral profile, along with the inverse strict order

 
�1 ¼ fða; bÞ 2 ðA� AÞjðb; aÞ 2 g, partition the

Cartesian product of activities.

Definition 2.9 (Function Aggregate) Let PM ¼
ðA;G;F; t; s; eÞ be a process model and PMa ¼
ðAa;Ga;Fa; ta; sa; eaÞ its abstract counterpart. Function

aggregate: Aa ! P Að Þn;ð Þ specifies a correspondence

between one activity in PMa and the set of activities in PM.

Definition 2.10 (Order-Preserving Business Process

Model Abstraction) Let PM ¼ ðA;G;F; t; s; eÞ be a pro-

cess model, and business process model abstraction a maps

PM to PMa ¼ ðAa;Ga;Fa; ta; sa; eaÞ, i.e.,

a : ðPM; activity groupsÞ ! PMa, so that activities of PM

are abstraction objects. Let the function aggregate also

establish a correspondence between activities of PM and

PMa. Operation a is order-preserving business process

model abstraction, iff 8x; y 2 Aa; x 6¼ y holds that 8a; b 2 A

such that a 2 aggregateðxÞ and b 2 aggregateðyÞ:

– a PMb) x PMa
y

– a �1
PMb) x �1

PMa
y

– aþPM b) xþPMa
y

– ajjPMb) xjjPMa
y:

a b

c

g h

d

e

f

i j

P1
B1

P2

P3

B2 P4

P5

P1

B1

P2 P3
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a b i j

c f g h

d e

(a)  A process model decomposed into canonical component (b) A RPST of the process model in (a)

Fig. 2 A simplified process model of Fig. 1 and its RPST
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2.2 Activity Aggregation as a Semi-Supervised Cluster

Analysis Problem

Activity aggregation can be conducted according to some

structural criteria, such as pattern-based methods (Poly-

vyanyy et al. 2008; van der Aalst et al. 2003; Gschwind

et al. 2008; Smirnov et al. 2009) and decomposition-based

methods (Polyvyanyy et al. 2009a, b; Vanhatalo et al.

2007, 2009). The process fragments discovered by struc-

tural methods of BPMA are not always semantically

complete and the activities contained in the discovered

process fragments may not semantically belong together

(here we refer to business semantics). Activity aggregation

can also be interpreted as a problem of cluster analysis

(Smirnov et al. 2011) according to the business semantics

of activity. The set of objects to be clustered is the set of

activities Ai. The objects are clustered based on a distance

measure: objects that are ‘‘close’’ to each other according

to this measure are put together. The semantic part of the

distance measure can be computed according to various

representations for the business semantics of activities. To

avoid that the strong assumption from the space dimen-

sions corresponds to activity property values (Smirnov

et al. 2011) or that the cluster error results from insufficient

information described only by an activity label (Reijers

et al. 2010), we consider utilizing as much information

related to the activity as possible by introducing the virtual

document (Qu et al. 2006), as Weidlich et al. (2010) did, to

represent an activity. In addition, we interpret activity

aggregation as a problem of semi-supervised cluster anal-

ysis and consider not only the business semantics similarity

of activities but also the requirement of an order-preserving

model transformation.

We now proceed to a discussion of our modifications to

the traditional k-means clustering of BPMA used by

Smirnov et al. (2011). Firstly, instead of a random method,

we choose initial clusters (seed sets) by using the canonical

components of the RPST, which, according to the block-

structuredness of the subprocess (Reijers et al. 2010), can

be a good basis for detecting subprocesses. Thus the

knowledge that combines the control flow consistency and

the semantic similarity between the grouped activities can

be expressed as a set of instance-level constraints on the

clustering process. After a discussion of the kind of con-

straints we are using, we describe the constrained k-means

clustering algorithm of BPMA.

The final issue is how to choose k. For the process model

that is flattened from a model with human-designed sub-

processes (used for our empirical validation in Sect. 3), we

make use of the value of k where it is already known (i.e.,

all of the manually designed subprocesses); for the prac-

tical problem of finding subprocesses in a flattened busi-

ness process model with unknown k, we use a value of

k specified by users according to their experience. In the

considered scenario, the user demands control over the

number of activities in the abstract process model. For

example, a popular practical guideline is that five to seven

activities are displayed on each level in the process model

(Sharp and McDermott 2008). Provided a fixed number,

e.g., 6, the clustering algorithm has to assure that the

number of clusters equals the request by the user. In

addition, in future work we will design a proper evaluation

index to assess the process abstraction models and generate

the optimal number of the subprocesses.

2.3 Constrained k-Means Clustering of BPMA

2.3.1 Initial Clusters

The requirement for a business process to be block-struc-

tured is quite common (Reijers et al. 2010). The canonical

components of the RPST are a good basis for detecting

subprocesses, i.e., the activities of the same canonical

component tend to belong to the same subprocess. There-

fore, under the presumption that the original process model

is block-structured, we choose k canonical components of

the RPST constructed for the process model in question as

the initial clusters. Before generating the initial clusters we

make the following assumptions in order to maximize the

dispersion while choosing the initial clusters in the process

model PM. These assumptions restrict the left-to-right

order of the nodes of each hierarchy in RPST, i.e., for any

pair of son nodes, y and z, of node x:

– y is on the left of z, if y PMz,

– z is on the left of y, if y �1
PMz,

– The order of y and z is random, otherwise.

Let T be the RPST of a process model PM, and let’s call

the canonical component that is composed of a single

activity the atomic component. We choose k initial clusters

(seed sets) into the set S ¼ ðS1; . . .; SkÞ successively in the

following order of priority:

1. For each canonical component C of T, if C is

composed of more than one individual activities or

atomic components, then Si  C; repeat with i 
iþ 1 until no such canonical component is left or

i[ k;
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2. If i\k, then randomly select one activity from each

hierarchy as seed Si from those leaf nodes of T which

are on a different hierarchy than the already chosen

nodes; repeat with i iþ 1 until no such activity is

left or i[ k;

3. If i\k, then randomly select one activity not directly

adjacent to the already chosen nodes as seed Si; repeat

with i iþ 1 until no such activity is left or i[ k;

4. If i\k, randomly select one single activity as seed Si;

repeat with i iþ 1 until i[ k.

The above steps preferentially choose the canonical

components composed of single activities or atomic com-

ponents as the initial clusters [step (1)]. From the per-

spective of the control flow’s order-preserving

requirement, there is a high probability for such compo-

nents to be contained in a subprocess. Step (2) to step (4)

are executed when the number of the initial clusters is less

than k; the first two of these steps try to ensure that dis-

persed single activities are selected, and the last step ran-

domly selects single activities to complete the construction

of k initial clusters. The number k of subprocesses (clus-

ters) in a business process model is far smaller than the

number of activities; therefore when we use the real world

process models to generate initial clusters, we can in most

cases generate all the k initial clusters before or within step

(2) that ensures the dispersion of the initial clusters.

We take Fig. 1 as an example:

If k = 2, the initial clusters are

S1 ¼ B2 ¼ d; ef g; S2 ¼ P3 ¼ g; hf g;
If k = 3, the initial clusters may be S1 ¼ B2 ¼

d; ef g; S2 ¼ P3 ¼ g; hf g; S3 ¼ xf g x 2 a; b; i; jf gð Þ:

2.3.2 Constraint Function

As an intrinsic property of abstraction is information loss,

an abstract model contains fewer ordering constraints than

its detailed counterpart. In the attempt to satisfy the

requirement of an order-preserving model transformation

as well as business semantics, we furthermore consider the

effect on the process control flow when assigning an

activity to a cluster (candidate subprocess). Our approach

designs a constraint function to guide the classifying pro-

cess, which consists of two parts: business semantics dis-

tance and control flow ordering conflict.

For the first part, we introduce the virtual document (Qu

et al. 2006), as Weidlich et al. (2010) has done, to represent

activities and compute the semantic distance between two

activities or between an activity and an activity set

(cluster). A virtual document of a node consists of the

words of all textual information that is related to that node

(Weidlich et al. 2010). In our settings, the virtual document

of an activity includes not only the terms of activity

property labels but also the terms of all textual descriptions

for this activity. Specifically, a virtual document for an

activity consists of the terms that are derived from the

activity label and, if this information is available, the labels

of the roles that are authorized to perform the activity, the

assigned input and output data, and a textual description of

the activity (Weidlich et al. 2010). For a group of activities,

the virtual document is derived by joining the documents of

the respective nodes. The creation of virtual documents

includes a normalization of terms, the filtering of stop-

words, and the term stemming (Porter 1980). Given two

virtual documents, their similarity can be calculated based

on their distance in a vector space, in which the dimensions

are the terms that appear in the documents and the values

for the dimensions are computed using term frequency

(Euzenat and Shvaiko 2007).

For example, given two virtual documents d1 and d2

represented by their term vectors vd1

�! and vd2

�! respectively,

the similarity is defined by the cosine of the angle between

the two vectors, i.e.,

sim d1; d2ð Þ ¼ cosð vd1

�!; vd2

�!Þ ¼ vd1

�! � vd2

�!= vd1

�!�� �� vd2

�!�� ��.
Then, the distance between two virtual documents is

dist d1; d2ð Þ ¼ 1� simðd1; d2Þ. Take the activities: ‘‘g:

Prepare data for quick analysis’’ and ‘‘h: Perform quick

analysis’’ of Fig. 1 as an example; the virtual documents of

these two activities, dg and dh, and the virtual document of

the subprocess composed of them, dgh, are respectively

shown in Fig. 3. Then, the distance between dg and dh is

dist dg; dh
� �

¼ 1� sim dg; dh
� �

¼ 0:27:

Let A ¼ fa1; . . .; ang be the set of activities of a business

process model PM and D ¼ fd1; . . .; dng be the corre-

sponding virtual document set. Let fl1; . . .; lkg represent

the k partition centers of the clusters fS1; . . .; Skg initialized

prepare(1)

data(1)

quick analysis(1)

QA data(1)

Raw data(1)
analyst(1)

perform(1)

quick analysis(1)

QA data(1)

Raw data(1)

analyst(1)

prepare(1/2)

data(1/2)

quick analysis(1)

QA data(1)

Raw data(1)

analyst(1)

dg dh dgh

Fig. 3 The virtual documents of g, h and the subprocess composed of

them
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in Sect. 2.3.1. For each a 2 A, when assigning it to a

cluster Si, we consider not only the semantic similarity (or

distance) between a and li; but also the possible conflicts

of the control flow order with a joining Si (the second part

of the constraint function). Thus we combine the semantic

similarity and the control flow order to constrain which

cluster the activity should belong to. That is, when

assigning the activity a to a certain cluster it may belong to,

we select the Si that minimizes the following objective

function:

objectiveðSi; aÞ ¼ w1dist d; lið Þ þ w2conflicts
�ðSi [fagÞ

ð1Þ

where d is the virtual document of a; dist d; lið Þ represents

the distance between a and the center of cluster Si com-

puted in terms of above virtual documents measure;

conflicts�ðSi [fagÞ shows the possible control flow order

conflict resulting from assigning a to Si.

Each activity in the abstract model is mapped to a group

of detailed activities in the original model. The control flow

relation between two abstract activities may lead to order

inconsistency of the corresponding detailed activities in the

original model. How to deliver the control flow relations of

the abstract activities is beyond the scope of this paper (see

Smirnov et al. 2010a, b, c). For example, suppose a, b and

c are the activities of the original model PM, a and b are

respectively mapped to the abstract activity x, and c is

mapped to the abstract activity y, where x and y are the

activities of PM’s abstract counterpart, PMa. If in the

abstract model the relation between x and y is r, then the

relations between a and c, b and c are accordingly r. But if

you suppose that in the original model the relation between

a and c is r1 and the relation between b and c is r2, if

r1 = r2, then this abstract model obviously results in an

order inconsistency with the original model. Thus, to

aggregate a and b, one of the key factors is whether or not

the control flow relation between a and the other activities

is consistent with that between b and the same activities,

see Fig. 4.

In line with the behavioral profile, there are four order

relations: R = { PM, �1
PM, þPM, jjPM}, i.e., for the above

example, r1; r2 2 R. There are six different kinds of com-

binations of r1 and r2 for condition r1 = r2, e.g.,

 PM 6¼ þPM, and we assign a weight value to each of them

to represent the tolerance for this inconsistency, where ‘‘1’’

shows no aggregation for this kind of inconsistency while

‘‘0’’ denotes ignorance for this kind of inconsistency.

To depict this clearly, we use a matrix W to represent the

tolerance of all the six conflict combinations. The values of

W can be prespecified according to the user’s abstraction

goal. Let PM ¼ ðA;G;F; t; s; eÞ be a process model and

PMa ¼ ðAa;Ga;Fa; ta; sa; eaÞ its abstract counterpart and

BP the behavioral profile of PM. For the activities

a; b; c 2 A, suppose 9z 2 Aa, such that a; b 2 aggregate zð Þ,
c 62 aggregateðzÞ, BP a; cð Þ ¼ ri and BP b; cð Þ ¼ rj

(ri; rj 2 f PM,  �1
PM, þPM, jjPMg), then the value of the ri

row and the rj column, W ri; rj
� �

, shows the possible con-

flict weight value resulting from aggregating a and b into z.

For instance, we use a matrix W with strict conflict

weight values in this paper and the values are provided as

Eq. (2).

W ri; rj
� �

¼ 0 if ri ¼ rj
1 otherwise

�
ð2Þ

The corresponding matrix W is shown as follows:

Users can loosen the conflict weight values according to

various abstraction objectives. For example, in terms of the

ratio of adding or deleting the ordering relations, we can

define W  PM;þPMð Þ ¼ 0:5, W  PM; jjPMð Þ ¼ 1=3,

W jjPM;þPMð Þ ¼ 0:75, and so on.

Let S � A be a subset of A, for each activity ak 2 AnS,

the conflict value of S (as an abstract activity, a cluster or a

subprocess) and ak is computed as Eq. (3).

conflicts S; akð Þ ¼ 1

Sj j Sj j � 1ð Þ
X

ai; aj 2 S

1	 i	 j	 Sj j

WðBPðai; akÞ; BPðaj; akÞÞ

ð3Þ

a

b

c

x

y

PM PMa

r1
r2

r

(r1≠r2)

 

Fig. 4 An example for control flow order inconsistency
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where Sj j denotes the number of the activities in the set S.

The control flow conflict value of S is represented by

Eq. (4).

conflicts� Sð Þ ¼ 1

jAnSj
X

ak2AnS
conflictsðS; akÞ ð4Þ

Consider the process model PM of Fig. 5. The behavior

profile is listed in Table 1.

When we select the cluster a3 may belongs to, we can

compute the structural conflict values of aggregating a3
into S1 or S2 according to Expression (3) and (4), i.e.,

conflicts� S1ð Þ ¼ 1=3, conflicts� S2ð Þ ¼ 0. So if a3 is

semantically close to S1, this value can play a regulation

role for a3 to choose a relatively reasonable cluster from

the perspective of both business semantics and control flow

order.

If the abstraction is realized by a human, the modeling

habits of the designer are reflected in the abstraction

operation as well. Hence, the values of w1 and w2

(0	w1;w2	 1) may imply a designer’s abstraction

emphasis: if w1 ¼ 1 and w2 ¼ 0, the classification is based

solely on activity business semantics; if w1 ¼ 0 and

w2 ¼ 1, the classification only considers preserving the

control flow order. We foresee two ways to obtain the

values of w1 and w2: In the first way, the user explicitly

specifies the values according to their emphasis; the second

way implies that values are mined from a process model

collection enriched with subprocess relations. We will now

describe an approach in which the values of w1 and w2 can

be discovered from such a process model collection.

Activities of a process model collection are aggregated

into abstract activities, i.e., subprocess placeholders, by the

model designer. The exact criteria are unknown. Yet, for

each activity and each subprocess we can observe the

outcome: Either the activity belongs to the subprocess or

not. For a process model collection, we use the function

belong to formalize this observation:

belong a; Sð Þ ¼ 0; if a 2 S;
1; otherwise:

�
ð5Þ

To mine the values of w1 and w2, we select them in such

a way that the behavior of the function objective approxi-

mates the behavior of belong. The discovery of the values

of w1 and w2 is realized by means of linear regression. In

our setting, the values objective are considered independent

variables and the value of the function belong the depen-

dent variable. w1 and w2 are the regression coefficients.

2.3.3 Constrained Clustering Algorithm for Activity

Aggregation

Based on the seeded-KMeans algorithm of Basu et al.

(2002), we use the initial clusters generalized in Sect. 2.3.1

and the new objective function objective of Eq. (1) as the

input parameters to provide a constrained clustering algo-

rithm for BPMA.

Table 1 The behavioral profile

of PM in Fig. 5
a1 a2 a3 a4

a1 þPM þPM  PM  PM

a2 þPM  PM  PM

a3 þPM þPM

a4 þPM

a1

a2

a3

a4

S1

S2

Fig. 5 A simple process PM to show the ordering conflict of activity

aggregation
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As the function objective involves not just the initial

cluster centers but also the control flow relations of the

activities in the initial clusters, the initial k partitioning

fClgkl¼1 are assigned with the set S.

We take the process model of Fig. 1 as an example to

compare the proposed approach to the unsupervised clus-

tering used in (Smirnov et al. 2011) and to analyze the

advantages and limitations of the proposed approach. For

brevity, we use the letters in the simplified process model

of Fig. 2a to represent the corresponding activities of

Fig. 1, e.g., a: Receive forecast request, b: Collect data, etc.

We take the subprocess candidates shown in Fig. 1 as one

of the reasonable partitions according to human designers,

i.e., k = 4, C1 ¼ a; bf g, C2 ¼ c; d; e; ff g, C3 ¼ g; hf g,
C4 ¼ i; jf g.

(1) The effect of the initial clusters on the clustering

results

Instead of randomly generating initial cluster centers,

the developed approach makes use of the Refined Process

Structure Tree for decomposing the original process model

and for deriving initial clusters.

For example, we respectively run the algorithm of

Sect. 2.3.3 with the randomly generated initial clusters and

with the ones obtained by our method of Sect. 2.3.1.

With our method, we may obtain the initial clusters:

S1 ¼ af g (or {b}), S2 ¼ d; ef g, S3 ¼ g; hf g, S4 ¼ if g (or

{j}). The algorithm will converge with the clusters

C1 ¼ a; bf g, C2 ¼ c; d; e; ff g, C3 ¼ g; hf g, C4 ¼ i; jf g,
which are consistent with the reasonable subprocess shown

in Fig. 1. However, if we randomly generate the initial

clusters, for example, S1 ¼ af g, S2 ¼ bf g, S3 ¼ cf g,
S4 ¼ ff g, the algorithm will output the clusters C1 ¼ af g,
C2 ¼ bf g, C3 ¼ c; d; e; g; hf g, C4 ¼ f ; i; jf g which obvi-

ously possess less reasonable business semantics and more

control flow conflicts than the results derived by our

approach, for instance, f integrating with i and j results in

not preserving the order with g and h. Actually, we con-

ducted twenty experiments parameterized with randomly

generated initial cluster centers and only three of them

output the same partitions as the subprocesses of Fig. 1

while the rest did not meet the order-preserving

requirement.

(2) The advantage of the distance measurement com-

bining business semantics and control flow

consistency

We can see from above that the results of clustering are

closely related to the initial cluster centers. However, in the

proposed algorithm, the clustering is guided not only by the

business semantics of activities but also by the considera-

tion of keeping control flow order as far as possible. Even

for the ‘‘bad’’ initial clusters, it can therefore still result in

relatively reasonable clusters compared to the method (e.g.,

Smirnov et al. 2011) using similarity measurement solely

based on semantics.

For example, with the initial clusters S1 ¼ af g,
S2 ¼ bf g, S3 ¼ cf g, S4 ¼ ff g, if we use the semantics

based similarity measure such as the first part of the

objective function (1) of this paper, the algorithm will

converge to the clusters C1 ¼ a; i; jf g, C2 ¼ bf g,
C3 ¼ c; d; e; g; hf g, C4 ¼ ff g; if we use the objective

function (1) as similarity measure, then the algorithm may

obtain the clusters C1 ¼ af g, C2 ¼ bf g,
C3 ¼ c; d; e; g; hf g, C4 ¼ f ; i; jf g.

Though neither of the above clustering results can

directly deliver a reasonable order-preserving abstract

model, obviously the latter one is a better guide to generate

another possible partition: C1 ¼ af g, C2 ¼ bf g,
C3 ¼ c; d; e; g; h; ff g, C4 ¼ i; jf g. Under the assumption of

given desired clusters, we can also compare the two

methods quantitatively, see the indexes in Sect. 3.

Of course, if we parameterize with the initial clusters

obtained by our method, i.e., S1 ¼ af g (or {b}),

S2 ¼ d; ef g, S3 ¼ g; hf g, S4 ¼ if g (or {j}), both similarity

measure will make the algorithm converge to the clusters

C1 ¼ a; bf g, C2 ¼ c; d; e; ff g, C3 ¼ g; hf g, C4 ¼ i; jf g
which is consistent with Fig. 1. But with the semantics

based similarity measure, after the first loop of clustering,

the distances between activity b and the four cluster centers

are respectively 0.75, 1, 0.75, and 0.75. If we do not assign

b to S1 but to S3 or S4, it will not generate the above results.

Yet with our proposed objective function (1), after the first

loop of clustering, the distances between activity b and the

four cluster centers are respectively 0.38, 0.52, 0.40, and

0.42, the activity b is without doubt assigned to S1 and the

algorithm converges.

(3) Errors of clustering

The activity clustering in this paper signifies a hard

partition by which each activity has to be assigned as

belonging to exactly one cluster, and when classifying an

activity, the closest cluster center is selected. But in the

BPMA use case of ‘‘quick view’’, if the abstraction is

realized by a human (such as the process model collection

already enriched with subprocess relations that we use for

empirical analysis in Sect. 4), we find there are usually

some activities belonging to no subprocesses or not

assigned to the closest cluster center. We divide these kinds

of activities into the following two cases according to the

process fragment in Fig. 6:

1. If a is semantically closest to S2, the k-means

clustering will classify a to S2. But due to the order-
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preserving requirement, it may be classified to S1

manually.

2. If a is semantically closest to S1, it must be classified to

S1 based on the k-means clustering. But as it’s still not

close enough according to some threshold that human

designers predefined, it at last belongs to no

subprocesses.

We classify activities by using the distance measure-

ment combining control flow consistency and business

semantics, as in the objective function (1), but behavioral

profiles are known to be problematic in the context of

cycles (particularly larger ones). For instance, if we put the

process fragment of Fig. 5 into a loop, then all relations

between the activities become ‘‘?’’, so in this situation the

second part of function (1) will not work anymore. The

main reason for this problem is the fact that we have not

considered an evaluation for the resulting abstraction

model so that the hard partition cannot guarantee correctly

classifying activity a of Fig. 6. Thus we can conclude that

it is not sufficient to classify an activity solely based on the

closest-center rule. A predefined threshold is a good con-

straint when deciding if an activity should be assigned to

some cluster, but it is not easy to be sufficiently deter-

mined. We are considering to introduce fuzzy clustering

technique in future work. The novel method will compute a

fuzzy matrix regarding all activities and the cluster centers,

in which each activity has at least one nonzero value for

some cluster center. Based on this matrix, we can deter-

mine all special activities such as a of Fig. 6 and their

belonging states. We enumerate all possible resulting

abstraction models according to the state combination of

the special activities and design a new index evaluating the

abstraction model to identify the final clusters of these

activities.

3 Empirical Analysis

In order to learn how well the proposed method approxi-

mates the abstraction results of human modelers, we per-

formed an empirical validation of the approach by

conducting an experiment with a real world business pro-

cess model collection. This section provides a detailed

discussion of the validation and explains in detail the

experiment design and the validation results.

3.1 Validation Setup

3.1.1 Choosing the Set of Business Process Models

As a research object we chose a set of business process

models from a large automobile production enterprise

(China’s largest automobile manufacturing organization)

and its partner logistics company. This research was sup-

ported by the laboratory we work in and we have cooper-

ated with these two companies for years. The models they

provide possess normal representation and high quality,

many with large number of nodes already include human-

designed subprocesses. We chose 50 elaborate models

enriched with the normal and relatively complete descrip-

tion of activity labels and activity attributes labels, of

which 40 models were composed of human-designed

subprocesses. To represent the activities as vector spaces

by using the words of the related labels, we furthermore

renormalized the terms and reached an agreement with the

employees involved in our research. In addition, for

achieving as much information as possible, we also con-

sidered the control flow of the processes and put the

extracted label words of the adjacent activities into the

virtual documents. The label words were transformed into

variable names according to their meanings when they

were composed of single numbers.

The processes of this automobile enterprise are very

complex and there are often many subprocesses with dif-

ferent domains included in one process, like the subprocess

of Logistics Transportation Management included in the

process of Assembly Line. So intuitively we chose the

process models: (1) whose sizes were moderate, (2) which

included as few cross-domain subprocesses as possible, (3)

which as far as possible included no more than two hier-

archies of subprocesses. Table 2 outlines the relevant

properties of the process models, of which the models M1–

M40 are enriched with human-designed subprocesses and

M41–M50 are flattened models.

3.1.2 Mining the Constraint Function

To formally validate how well the designed activity

aggregation approximates the behavior of modelers clus-

tering a set of activities into the same subprocess, we

selected the following approach adopted in Smirnov et al.

(2011). For each pair of an activity and a process hierarchy,

we evaluated two values in the process model collection:

belong and objective. Here, belong describes the human

abstraction style, which indicates whether a certain activity

is decided to be placed in the subprocess or not. The value

aS1

S2

S1

Fig. 6 An exemplified process fragment
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of objective represents the distance between the activity

and the subprocess in accordance with our approach con-

sidering both semantics and structure. To discover if the

two approaches yield similar results, we studied the cor-

relation between the two variables. A strong correlation of

two variables implies that objective is a good constraint

function in the clustering algorithm. Given the nature of the

observed variables, we employed Spearman’s rank corre-

lation coefficient.

In the following, we firstly investigate the human

abstraction style in the model collection as a whole. Then,

we apply the K-fold cross validation process of Smirnov

et al. (2011) to verify the results. We choose 30 models

(M1–M30) with human-designed subprocesses and as in

Smirnov et al. (2011), we also partition the model sample

into four subsamples, i.e., K = 4 and perform four tests. In

each test, the partition is random and three subsamples are

used to discover the values of w1 and w2, while the fourth

subsample is used to evaluate the correlation values

between belong and objective.

3.1.3 Evaluating the Constrained Clustering Algorithm

for BPMA

We applied the constrained clustering algorithm (Con-

strained_Clustering_for_BPMA) proposed in Sect. 2.3 and

the unsupervised k-means clustering process (called K-

Means_for_BPMA) to BPMA. The latter approach, similar

to Smirnov et al. (2011), automatically obtained a sub-

process decomposition of the flattened process model by

computing the distance between an activity and a cluster

only according to business semantics (‘‘dist’’ of this paper)

and initializing the cluster centers with the randomly

chosen activities. We compared the abstraction results

produced by these two methods. The validation of the

algorithms included two parts: the first part transformed the

process models M31–M40 enriched with manually designed

subprocesses into the corresponding flattened models,

respectively used Constrained_Clustering_for_BPMA and

K-Means_for_BPMA to generate clusters (subprocesses),

and then compared the proximity degree to human

designed subprocesses; the second part ran Con-

strained_Clustering_for_BPMA and K-Means_for_BPMA

for models M41–M50 and handed out the results to the

employees who were involved in this research to evaluate

and analyze.

We introduced metrics partially taken from Reijers et al.

(2010) to compare the characteristics for the decomposition

done by humans and the decomposition that were done

automatically. The metrics was described as following:

• Subprocesses: total number of subprocesses in the

model.

• Avg. activities per subprocess: average number of the

activities in each subprocess.

• Max. activities each subprocess: maximum number of

the activities in the subprocess.

• Min. activities per subprocess: minimum number of the

activities in the subprocess.

• Precision: the number of subprocesses that are both

automatically found and existing according to humans,

divided by the number of subprocesses that are found.

• Recall: the number of found and existing subprocesses

divided by the number of existing subprocesses.

• Overshoot: the fraction of found activities that does not

belong in a subprocess.

• Undershoot: the fraction of activities that do belong but

that are not found.

The precision and recall were defined in terms of the

number of matched activities that constituted the subpro-

cesses, rather than in terms of the number of (exactly)

matched subprocesses. According to (Reijers et al. 2010),

the metrics was computed as follows.

Let N be the set of all activities in a process (including

its subprocesses), PM � PN be the set of all subprocesses

that were determined manually by humans and PA � PN

be the set of all subprocesses that were determined auto-

matically, PM 2 PM be a subprocess that was determined

manually by humans and PA 2 PA be a subprocess that was

determined automatically. The overlap between PA and PM

was:

Overlap ¼ jPA \PMj
max PAj j; PMj jð Þ

PA was the most relevant match for PM if its overlap

with PM was greater than 0 and there was no other auto-

matically determined subprocess P0A 2 PA with a higher

overlap than PA. Let the function match:PM ! PN

Table 2 The relevant

properties of the process models

M1–M50

M1–M40 M41–M50

Activities Subprocesses Activities of subprocesses Activities

Average 94.10 7.97 7.52 71.00

Maximum 127.00 20.00 10.50 101.40

Minimum 59.00 3.00 4.20 57.00
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returned the most relevant match for each manually

determined subprocess, or the empty set if no such match

existed.

Precision and recall were defined as follows.

Precision ¼
P

PM2PM
PM \match PMð Þj j
P

PA2PA
PAj j

;

Recall ¼
P

PM2PM
PM \match PMð Þj j

P
PM2PM

PMj j :

The F Score was the harmonic mean of the precision and

the recall: F ¼ 2� precision� recall=ðprecisionþ recall:Þ
Overshoot and undershoot were defined as follows.

Overshoot =

P
PM2PM

match PMð Þ � PMj j
P

PA2PA
PAj j

;

Undershoot ¼
P

PM2PM
PM �match PMð Þj j

P
PM2PM

PMj j:

In the second part of the validation, we ran Con-

strained_Clustering_for_BPMA and K-Means_for_BPMA

for models M41–M50. And then the results wer handed out

to ten employees who were involved in our research. The

employees analyzed and evaluated each of the generated

abstract models based on their experiences. Each employee

independently added activities or deleted the activities

included in the generated subprocesses to revise them to

the final subprocesses conformed to their own experiences.

According to the validation method, we derived ten dif-

ferent values of each metric for the models M41–M50. We

took the average value as the evaluation results of each

model.

For brevity, we only recorded the number, nadd, of the

activities that the employees added (the fraction of activi-

ties that belonged to the subprocess but were not found in

the generated subprocesses) and the number, ndel, of the

activities that the employees delete (the fraction of found

activities that did not belong to the subprocess). Then the

value of PAj j þ nadd � ndel represented the number of

activities of the subprocesss after the employees revised. If

PA þ nadd � ndel ¼ 0j j, then the process fragment PA was

not a meaningful subprocess, i.e., did not match any human

designed subprocess.

The metrics could be deducted from the ones in the first

part of the validation and computed as following, where

jGroupj denoted the number of the employees in the cor-

responding group.

Overshoot*¼

P
person2Group

P
PA2PA

ndelP
PA2PA

PAj j

Groupj j ;

Undershoot*¼
X

person2Group

P
PA2PA

naddP
PA2PA

PAj jþnadd�ndelð Þ

 !,

jGroupj;

Precision*¼

P
person2Group

P
PA2PA

PAj j�ndelð Þ
P

PA2PA
PAj j

Groupj j ;

Recall*¼
X

person2Group

P
PA2PA

ð PAj j�ndelÞP
PA2PA

ðjPAjþnadd�ndelÞ

 !,

jGroupj;

F� ¼
X

person2Group

2� precision� � recall�

precision� þ recall�

 !,

jGroupj:

3.2 Results and Analysis

Table 3 outlined the validation’s results of mining the

values of w1 and w2. The columns in the table corresponded

to the function objective. The values of w1 and w2 used in

objective were obtained using linear regression as descri-

bed in the previous section. The rows of Table 3 corre-

sponded to the experiments. Rows 1–4 described the results

of 4 tests along the K-fold cross validation we explained

earlier, while the last row provided the average correlations

observed in the 4 separate tests. The correlation values that

were presented in Table 3 were all significant when using a

confidence level of 99%, i.e., all pw values are lower than

0.01. Overall, the presented correlation values ranged

around 0.7 except for that of the first test which was a little

lower (0.55). This level was generally considered to indi-

cate a strong correlation (Smirnov et al. 2011), particularly

in situations where human decision making was involved.

Therefore, we could speak of a strong relation between the

belong and objective measures.

We mined the values of w1 and w2 from all models of

M1–M30 four times and used the average values as the

parameters of Expression (1) to run Constrained_Cluster-

ing_for_BPMA and K-Means_for_BPMA and compared

the abstraction results produced by these two methods.

Table 4 showed the validation results for the first part of

the experiments on the process models M31–M40 which

were initially enriched with manually designed subpro-

cesses and were transformed into the corresponding flat-

tened models before the test. For brevity, we only give the

average values of the metrics introduced in the previous

section for these 10 models.

Table 3 Correlation values observed in the K-fold cross validation

Experiment qðbelong; objectiveÞ

Test1 0.55

Test2 0.70

Test3 0.77

Test4 0.68

Average1–4 0.68
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Table 5 shows the validation results for the second part

of the experiments on the flattened process models M41–

M50. The number, k, of subprocesses is predetermined by

modelers according to their experience.

The F-Score is the most important metric, because it

provides an indication of how well a subprocess division

approximates the original manual subprocess (Reijers et al.

2010). We can see from Tables 4 and 5 that the algorithm

Constrained_Clustering_for_BPMA can be used better to

approximate manual division into subprocesses than K-

Means_for_BPMA can.

For the second part of experiment, the involved

employees added or deleted activities only depending on

the single cluster without considering the control flow of

the whole abstract process model. So we found many

revised subprocesses reused the same activities or even

other subprocesses. But the F-Score of 0.76 indicates that

the automatic abstraction results closely approximate the

manual subprocesses.

As we used the constraint function combining semantics

and structure to guide the clustering process, the maximum

number of activities in each automatically generated sub-

process was greatly reduced and close to the maximum

number of activities in the human designed subprocess.

This indicates a relatively effective control for assigning

activities to a cluster (subprocess).

However, we also found that the values of Overshoot

and Undershoot were relatively high in both parts of the

experiment. Both Constrained_Clustering_for_BPMA and

K-Means_for_BPMA are hard clustering methods which

means each activity should belong to one exact subprocess.

But in practical cases, we found activities not belonging to

any manual subprocess. Figure 7 shows the total number of

activities in models M31–M40 and the number of those

activities contained in the manual subprocesses. In the

average case, 10 percent of the activities did not belong to

any manual subprocess. But these activities were still

clustered into the automatically generated subprocesses

which partly contributed to the high values of Overshoot

and Undershoot.

Table 4 The average values of

the metrics for models M31–M40

Metric Constrained_Clustering_for_BPMA K-Means_for_BPMA Original

Subprocesses 8.4 8.4 8.4

Avg activities per subprocess 12.57 12.59 8.31

Max activities each subprocess 24.6 34.8 15.8

Min activities per subprocess 4.7 2.5 4.1

Precision 0.53 0.32 –

Recall 0.59 0.35 –

F 0.56 0.33 –

Overshoot 0.38 0.59 –

Undershoot 0.41 0.65 –

Table 5 The average values of

metrics for models M41–M50

Metric Constrained_Clustering_for_BPMA K-Means_for_BPMA Revised

Subprocesses 9.07 9.07 6.7

Avg activities per subprocess 8.8 8.1 9

Max activities each subprocess 16.5 27 10.2

Min activities per subprocess 2.7 1 3

Precision* 0.76 0.31 –

Recall* 0.76 0.44 –

F* 0.76 0.36 –

Overshoot* 0.39 0.4 –

Undershoot* 0.24 0.35 –

0
20
40
60
80

100
120
140

M31 M32 M33 M34 M35 M36 M37 M38 M39 M40

Ac�vi�es of subprocesses in M31-M40 Ac�vi�es in models M31-M40

Fig. 7 Distribution of the activities in M31–M40
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Another reason for high Overshoot and Undershoot is

that, using a human designer’s criterion, some activities are

assigned to one subprocess S1 even though they are

semantically or structurally closer to another subprocess S2,

i.e., the distance (computed by our proposed function ob-

jective or other distance functions) between these activities

and the subprocess they are assigned to is greater than the

distance between them and the subprocess they are not

assigned to. In this case, it seems insufficient to classify

activities only according to the similarity of the activity

and the subprocess.

4 Related Work

The topic of business process model abstraction can be

related to several research streams. This paper mainly

focuses on the discipline of business process management

which is concerned with using methods, techniques, and

software to design, enact, control, and analyze operational

processes.

A large body of knowledge relates to the process model

analysis based on model transformations. An example of

such model transformation methods is based on structural

patterns. It is a widely made observation that process

models exhibit recurrent structures (van der Aalst et al.

2003; Gschwind et al. 2008; Lau et al. 2009; Smirnov et al.

2010a). The consideration of such recurrent structures

facilitates several formal model analysis methods, e.g.,

Fahland et al. (2011) and Mendling et al. (2008) argue how

recurrent structures speed up the soundness checking. The

topology of the recurrent structures is described by patterns

and a transformation method is specified for each pattern.

Structural patterns can be used to realize process model

abstraction, i.e., patterns along with the associated trans-

formations are natural candidates for the implementation of

aggregation. Smirnov (2012) defines the combination of

the structural pattern and its transformation specification as

an elementary abstraction. However, the identified set of

process model fragment types is definitely not complete

with respect to the structure of process models observed in

practice. Consequently, not every process models can be

abstracted by the presented set of elementary abstractions.

Against this background, various research endeavors sug-

gest broader elementary abstraction sets. For instance, the

study in Polyvyanyy et al. (2008) complements sequence,

block, and loop elementary abstractions with the dead end

elementary abstraction. Bobrik et al. (2007b), Dumas et al.

(2010), and Liu and Shen (2003) advocate more sophisti-

cated elementary abstractions.

But each elementary abstraction set requires an argu-

ment concerning the model class reducible with the given

elementary abstractions. The need for such an argument is

the main limitation of pattern-based approaches. Process

model decomposition approaches are free of this limitation:

they seek for process fragments with particular properties.

An example of such a decomposition is presented in

Vanhatalo et al. (2009), where single entry single exit

fragments are discovered. The result of process model

decomposition is the hierarchy of process fragments

according to the containment relation, i.e., the process

structure tree. Such a tree can be used for abstraction in

process models (Polyvyanyy et al. 2009b).

Finally, one can distinguish model transformations that

preserve process behavior properties. In Van der Aalst and

Basten (1997), the authors introduce three notions of

behavioral inheritance for WF-nets and study inheritance

properties. The paper suggests model transformations, in

which the resulting model inherits the behavior of the

initial model. An approach for process model abstraction

can exploit such transformations as basic operations. Kolb

and Reichert (2013a) have introduced a framework for

enabling order-preserving process model abstractions

based on parameterized aggregation and reduction opera-

tions. In particular, these operations may be configured in

different ways to either preserve the behavior of the orig-

inal process model or to allow for some relaxations (i.e.,

order constraint violations) depending on the respective

application context.

The outlined model transformations can support a

solution of the general problem of process model abstrac-

tion, but they all focus on structural and behavioral aspects

of models and model transformations, disregarding the

semantic aspect.

Semantic aggregation of activities relates to research on

semantic business process management, and process

models enriched with semantic information facilitate many

process analysis tasks, see (Hepp et al. 2005). Along this

line of research, several authors describe how to use

activity ontologies to realize activity aggregation (Casati

and Shan 2002; Alves de Medeiros et al. 2008). It should

be noted, however, that such approaches imply the exis-

tence of a semantic description for model elements and

their relations, which is a restriction that rarely holds in real

world settings. Smirnov et al. (2010b) present a semi-au-

tomated approach for activity aggregation that reduces the

human effort. However, it requires the help of predefined

information external to the model: a domain ontology

specifying activity meronymy relations to evaluate the

activity relatedness. Smirnov et al. (2011) provide an

approach that exploits semantic information within a pro-

cess model, beyond structural information, to decide which

activities belong to one another. The approach aggregates

activities solely according to the business semantics with-

out discussing control flow, and the abstraction style is

mined from one model collection of the particular domain
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which makes the distance measure not sufficiently general.

Weidlich et al. (2010) propose an approach to identify a

group of activities functionally similar to a given activity.

But the matching is between two distinct models so that it

is not able to be directly applied to the activities within one

singular model. Reijers et al. (2010) investigate three types

of criteria when deciding whether nodes should be put

together into a subprocess: block-structuredness takes the

canonical components of RPST (Vanhatalo et al. 2009) as

candidate subprocesses; the connectedness criterion uses

graph cluster analysis (Schaeffer 2007) to establish col-

lections of nodes that are strongly connected to each other

in a business process. These two criteria discover subpro-

cesses based on structure and many generated subprocesses

are too large or too small or incomplete from the per-

spective of business semantics. The label similarity crite-

rion builds on the idea that nodes with more similar labels

can be considered to have a higher probability of belonging

to the same subprocess than nodes that have very different

labels. But to only depend on the activity names is not

enough to show the similarity relations between the

activities.

Structure-based business process model abstraction

tends to be suitable for the situation of user control where a

user can determine which activities are significant and

which are irrelevant. Then the abstraction operation hides

the irrelevant ones by concealing them in structure patterns

or decomposed components. In the context of requiring a

quick view of a process model, the abstraction is com-

pletely out of user control to provide all the subprocess

candidates with meaningful business semantics. In such a

case, the business process model abstraction only based on

structure cannot answer questions such as ‘‘how to discover

the semantics related activities’’ or ‘‘whether or not the

candidate subprocess is meaningful for business’’.

Semantics-based business process model abstraction pro-

poses discovering aggregated activities from the perspec-

tive of the business semantics, however, it solely considers

the semantics leaving the control flow out of regard so that

quite a lot of activities in one candidate subprocess are not

structure-connected, resulting in the lack of order preser-

vation in the abstract models. We proposed an approach to

extend the canonical components of RPST by discovering

the set of activities whose semantic description is most

similar to the extended canonical component (see Nan et al.

2015). But the discovering activity is restricted to the nodes

which are directly adjacent to the canonical components of

RPST which makes this method more similar to structure-

based abstraction. At present there is no explicit research

combining business semantics and control flow to guide the

activity aggregation.

Establishing an activity’s granularity level is also a

recurrent challenge in process mining, where logs contain

records that are often very fine-granular. Process mining

refers to the extraction of process models from event logs

(van der Aalst et al. 2004). Real-life processes tend to be

less structured than expected. As such, the process models

directly mined from the logs can be overloaded with

information making them hard to comprehend. Therefore,

some researchers have proposed abstraction techniques to

improve the mined models. In Bose and van der Aalst

(2009), the authors showed that common execution pat-

terns (e.g., tandem arrays, maximal repeats etc.) manifested

in an event log can be used to create abstractions and that

these abstractions are used in their two-phase approach to

process discovery (Li et al. 2010) as a pre-processing of the

event log enabling the discovery of hierarchical process

models. But the patterns they defined are closely related to

the process control flow and depend on the availability of

rich process logs. In our approach the activities to be

abstracted are discovered by considering not only the

control flow consistency but also the business semantics

implied in human’s design standards and we generate them

based on a detailed process model’s ontology description

without needing any process logs. Actually, models are

rarely enriched with such detailed execution information

(Smirnov et al. 2012).

In Bose et al. (2012), the authors demonstrate the dis-

covery of hierarchical process models using a chain of

plugins implemented in ProM. The (enhanced) fuzzy miner

plugin (Günther and van der Aalst 2007) is applied on the

transformed log. Günther and van der Aalst (2006, 2007)

propose activity aggregation mechanisms based on clus-

tering algorithms. The mechanisms extensively use infor-

mation present in process logs, i.e., timestamps of activity

starts and stops, activity frequencies, and transition prob-

abilities, which however are less common for process

models. Thus, in contrast to the activity aggregation

approach proposed in our paper, process mining considers

other activity property types for clustering and utilizes

different clustering algorithms.

5 Conclusions and Future Work

Business process model abstraction has been addressed in a

number of research endeavors, but we propose a novel

approach to this area. Our main contribution is a method

based on constrained k-means clustering analysis to dis-

cover sets of related activities taking into account both

business semantics and control flow ordering, where each

set corresponds to a coarse-grained activity of an abstract

process model. As a second contribution, we propose an

approach that mines the clustering constraint from a given

process model collection, which is reusable for abstraction

of new process models. The experimental validation
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provides strong support for the applicability and effec-

tiveness of the presented ideas.

Our approach is characterized by a number of limita-

tions and assumptions. First of all, it builds on the

assumption that the number of subprocesses k can be pre-

determined; however, in practice this number is difficult to

identify based on modelers’ experiences. The experimental

validation of Table 5 and Fig. 7 shows that the number of

revised subprocesses is not exactly equal to the pre-speci-

fied number of subprocesses (an estimated value according

to the modelers’ experiences).

Secondly, k-means clustering is a hard partition for the

data set which means that each activity should belong to

one subprocess. But in practice, activities exist which do

not belong to any manual subprocess. And although some

activities are closer to one subprocess based on our pro-

posed objective function, they are assigned to another

subprocess when manually classified.

Thirdly, we utilized as much information as possible to

compute the similarity between activities, but when

delivering an abstract process model, we only considered

control flow and disregarded other perspectives (e.g., data

objects, data flow, and resources).

These and other limitations guide our future research

plans. The very next step for us is to design a proper eval-

uation index to assess the process abstraction results and

generate the optimal number of subprocesses. A further step

will be to apply and improve soft clustering techniques,

such as Fuzzy C-Means (FCM) clustering, to replace k-

means clustering, so that we can assign the activities to a

subprocess more flexibly. Furthermore, we can explore how

other perspectives (e.g., Kolb and Reichert 2013b), support

control flow when abstracting a process model.
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