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A TAXONOMY OF RECURRING DATA ANALYSIS
PROBLEMS IN MAINTENANCE ANALYTICS

Research paper

Zschech, Patrick, TU Dresden, Dresden, Germany, patrick.zschech@tu-dresden.de

Abstract

Modern maintenance strategies increasingly focus on vast amounts of diverse data and multifaceted
analytical approaches in order to make efficient use of given resources and unveil hidden potentials.
While there is often no universal solution approach to a specific case at hand, it is still possible to ob-
serve recurring problem classes for which generic solution templates can be applied and thus the es-
tablishment of a reusable knowledge base appears beneficial. To this end, we apply a taxonomy devel-
opment approach to identify and systematize dimensions and characteristics of recurring data analysis
problems in data-driven maintenance scenarios. Our research method integrates findings from a sys-
tematic literature review and expert interviews with data scientists from industry. Thus, we add de-
scriptive theory to the field of maintenance analytics and propose a taxonomy that distinguishes be-
tween analytical maintenance objectives, data characteristics and analytical techniques.

Keywords: Big Data Analytics, Data Analysis Pattern, Condition-Based Maintenance, Predictive
Maintenance.

1 Introduction

In recent years, utilizing big data has been established as a core topic in information systems (IS) re-
search and practice, where the term refers to a situation of expanding availability of large amounts of
data that are generated with increasing frequency from multiple business activities and heterogenous
systems (Abbasi et al., 2016; Watson, 2014; Chen et al., 2012). From an organizational perspective,
this ubiquitously generated data can be seen as a primary asset that changes the way how corporate
decision-making is carried out (Constantiou and Kallinikos, 2015; Sharma et al., 2014; Zschech et al.,
2017). However, big data cannot be regarded as self-explanatory, as it requires analytical techniques in
order to identify valuable insights from vast amounts of noise-affected data (Miller et al., 2016). In
this context, analytics as a multidisciplinary concept can be defined as ““(...) the process of introspect-
ing data to discover hidden patterns, meaningful relationships, and interesting associations which can
be converted into actionable insights” (Ramannavar and Sidnal, 2016, p.294). Depending on the ques-
tion to be answered and the data given at hand, the complexity of analytical techniques may range
from simple tasks, e.g. the summarization of univariate measures, up to more sophisticated tasks, e.g.
the identification of non-linear and complex high-level interactions between variables (Ramannavar
and Sidnal, 2016). Hence, the field of big data analytics (BDA) comprises manifold techniques from
various converging disciplines, including statistical analysis, mathematical modelling, data mining or
machine learning, which allow access to the diversity of data from multiple perspectives (Chen et al.,
2012; Kaisler et al., 2014; Manyika et al., 2011).

A promising area for the application of BDA is the manufacturing sector. According to Manyika et al.
(2011), more data are generated in this sector than elsewhere. In 2010 alone, they estimated an amount
of two exabytes of newly generated data, which provides a fundamental basis for improving various
areas of interest, such as process performance, quality control, production scheduling, energy efficien-
cy or maintenance (Brodsky et al., 2015; Flath and Stein, 2018; Manyika et al., 2011). The area of
maintenance is of particular interest, since today’s industry is characterized by increasingly complex
production systems and machinery, which require sophisticated maintenance systems to guarantee low
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environmental risks, high reliability and human safety. Thus, it is necessary to establish a maintenance
strategy that makes efficient use of given resources and avoids redundant expenditures (Bousdekis et
al., 2015; Elattar et al., 2016; Peng et al., 2010; Heng et al., 2009). At this point, the amount and the
variety of data is a vital asset, since the ubiquitous use of IT facilitates the generation of multifaceted
data, such as sensor values from condition monitoring, machine settings from operation profiles, event
logs from process executions or status messages from machine applications. This is an ideal starting
point for the discovery of unknown potentials and the realization of various benefits, including higher
transparency, better understanding of technical processes for health assessment and root cause analy-
sis, replacement of subjective decision-making and faster response to faults due to minimal human
intervention (Accorsi et al., 2017; Karim et al., 2016; Manyika et al., 2011; Meeker and Hong, 2014).
Thus, the application of BDA in maintenance (hereinafter referred to as ‘maintenance analytics’, MA)
offers great opportunities to extract hidden knowledge and make better use of given resources.

However, applying BDA to unveil hidden potentials can often be a complex and challenging task,
since it requires multidisciplinary expertise like solid domain understanding, experiences with differ-
ent data sources or analytical modelling skills (e.g. Agarwal and Dhal, 2014; Debortoli et al., 2014;
Schumann et al., 2016). Even if the focus is placed on a specific problem, such as performance predic-
tion, there is often no ‘silver bullet approach’ that conquers the multidisciplinary problem with a uni-
versal solution (Stein and Flath, 2017). Nevertheless, on a certain level of abstraction, it is still possi-
ble to observe recurring problem classes for which generic solution templates can be applied and thus
the establishment of a reusable knowledge base appears beneficial (e.g. Brodsky et al., 2015;
Bousdekis et al., 2015; Eckert and Ehmke, 2017). In this context, Russo (2016) introduces the vision
of so-called ‘data analysis patterns’ in analogy to design patterns in software engineering. Such pat-
terns can be considered as guiding models or templates to instruct users how to apply an intentional
solution design for recurring data analysis problems (RDAP) based on accumulated experiences in-
stead of rediscovering a problem solution every time again from scratch. Thus, solution designs for
RDAP could help to convey analytical expertise to domain-experts without deep analytical skills. This
is particularly helpful against the backdrop of BDA, where data of different types and structures need
to be accessed via multiple analytical techniques. Once being developed, such models could, for ex-
ample, be integrated into superior data analysis platforms based on reusable model repositories for
solving recurring analytics tasks (e.g. Brodsky et al., 2015). Towards this vision, the scope of this re-
search paper is on the establishment of a reusable knowledge base, focusing on RDAP in data-driven
maintenance environments from a BDA perspective and thus we pose the following research question:

RQ: What are dimensions and characteristics of recurring data analysis problems in maintenance
analytics?

Despite the fact, that there is a huge body of knowledge considering the existent literature on (data-
driven) maintenance, the establishment of RDAP from a big data perspective can be considered as a
relatively young field. For this reason, we choose a taxonomy development approach to answer our re-
search question and add to the field by providing descriptive theory in terms of analyzing and summa-
rizing salient dimensions and characteristics of the phenomenon under consideration (Gregor, 2006).
Following this approach, this paper is structured as follows: In Section 2, we provide a conceptual
background and refer to related work. In Section 3, we describe the taxonomy development process in
detail. In Section 4, we present the results and subsequently discuss our contribution and its limitations
in Section 5. Finally, we draw a conclusion and give an outlook for further research in Section 6.

2 Conceptual Background and Related Work

Data-driven approaches have been used in maintenance for a long time, since data can be considered
as a vital resource in order to obtain a machine’s health and examine deviations from the expected be-
haviour (Schwabacher, 2005). From a technical perspective, this kind of maintenance is often referred
to as ‘condition-based maintenance’ (CBM). In CBM, comprehensive data collections are gathered
and processed by a condition monitoring (CM) system to assess the current state of the equipment and
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derive recommendations for the optimal time of maintenance (Jardine et al., 2006; Peng et al., 2010;
Veldman et al., 2011). Thus, in contrast to reactive maintenance strategies, divergent machine behav-
iour can be detected and classified at an early stage by means of diagnostic techniques to avoid unnec-
essary work. Furthermore, by using suitable indicators and prognostic techniques, it is possible to de-
termine the future state of a machine or its remaining useful lifetime, which is often also referred to as
‘predictive maintenance’ (PdM) (Hashemian and Bean, 2011; Peng et al., 2010; Elattar et al., 2016).
Due to the ubiquitous use of IT, the amount and the variety of maintenance-related data has increased
considerably, including for example high-dimensional time series data, machine states, image data or
textual error messages. This leads to novel BDA approaches to unveil valuable insights, such as
demonstrated by Sipos et al. (2014), where the authors use event logs for equipment failure prediction.

When searching for explicit concepts dealing with MA from a BDA perspective, only a few contribu-
tions could be identified (see Section 3.2 for details on the search process): Karim et al. (2016) intro-
duce an MA concept highlighting the importance of big data and the process of knowledge discovery
in maintenance. The concept distinguishes between four types of analytical perspectives, which can be
arranged as interconnected phases. Kans and Galar (2017) adopt this approach without any significant
modifications and discuss its relevance in a broader scope with regard to the digital transformation in
industry. Similarly, Famurewa et al. (2017) refer to the existing MA concept, but apply it to railway
infrastructure maintenance as a specific domain and thus extend it by additional aspects. The MA con-
cept proposed and discussed within all three contributions stays at an abstract level though, without
specifying more profound characteristics of RDAP. Nevertheless, it can be considered as a valid start-
ing point, providing sufficient space and flexibility towards the achievement of our research goal.

Moreover, by taking into account a broader scope on (data-driven) maintenance research, it can be
seen that the body of knowledge is extensive, as hundreds of papers are published every year in aca-
demic journals, conferences or technical reports (see Section 3.3 for details on the search process).
They address diverse topics due to a broad variety of systems and components and range from theories
to practical applications. Due to the plethora of maintenance research, there are also numerous review
papers structuring the field with an emphasis on different technologies, models and algorithms for data
processing and decision-making. Bousdekis et al. (2015), for example, examined patterns of character-
istics for the combination of different analytical methods. However, this approach suffers from a nar-
row scope, since it is limited to prognostic-based decision support. As such, to our best knowledge,
there is no single contribution yet that structures the field accordingly from a BDA perspective, ad-
dressing the diversity of objectives, data types and analytical techniques in a holistic manner.

3 Research Method

Taxonomies play an important role in IS research, since they provide a structure to organize
knowledge of a specific field, help to understand and analyze complex domains and enable researchers
to study the relationship among concepts (Nickerson et al., 2013). Moreover, taxonomies help to de-
scribe and classify characteristics and dimensions of objects by summarizing commonalities found in
discrete observations and thus serve as a viable research approach for manifesting descriptive theories
(Gregor, 2006). In our particular case, we aimed at identifying, describing and structuring dimensions
and characteristics of RDAP within the field of maintenance.

To carry out the taxonomy development process, we applied the method proposed by Nickerson et al.
(2013), as it provides systematic guidance for taxonomy development. As such, we followed the ex-
ample of recently developed taxonomies in both analytics research (e.g. Nadj and Schieder, 2017) and
other IS domains (e.g. Johnk et al., 2017; Plschel et al., 2016; Tilly et al. 2017). The method basically
consists of the following main elements: (i) determining a meta-characteristic, (ii) specifying ending
conditions, and (iii) identifying dimensions and characteristics towards the taxonomy creation. The
actual step of the taxonomy creation can be carried out either with an ‘empirical-to-conceptual’ or a
‘conceptual-to-empirical’ path. We applied a combination of both by running several iterations, which
can be summarized with three major phases: First, we created a baseline taxonomy using initial litera-
ture on MA. Second, we extended the initial taxonomy using survey papers derived by a review on
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CBM and PdM. Third, we revised and modified the taxonomy conducting qualitative, semi-structured
interviews with data science experts from industry. In the following, we describe the development
process in detail referring to the meta-characteristic, ending conditions and all three phases applied.

3.1 Meta-characteristic and Ending Conditions

The meta-characteristic is the root element within the taxonomy development process, as it is the most
comprehensive one and serves as a basis for the choice of all other characteristics (Nickerson et al.,
2013). Thus, our meta-characteristic was defined in accordance with the research question: character-
istics of recurring data analysis problems. However, since RDAP can be considered as an abstract
concept, it required a more precise manifestation to derive appropriate characteristics. While Russo
(2016) leaves the design of constituent elements unspecified, a useful approach could be identified
within the contribution of Tsai et al. (2014). The authors discuss the analysis of multifaceted data
types in ‘internet of things’ environments and state that any data analysis problem can be broken down
into the following three elements: (i) objectives - defining the problem to be solved in terms of con-
textual information such as assumptions and limitations, (ii) data - describing specific data character-
istics, and (iii) mining algorithms or analytical techniques - specifying the actual step of data pro-
cessing to fulfil the requirements given by the objectives. This structure was adopted as a tripartite
meta-characteristic, as it could help to distinguish between outputs, inputs and throughputs of RDAP.

Due to the iterative method character, it also required the specification of ending conditions, which
can be either subjective (SEC) or objective (OEC) (Nickerson et al., 2013). For SEC, we adopted the
criteria of a taxonomy being sufficiently robust (i.e. it contains enough dimensions and characteristics
to clearly differentiate the objects of interest, SEC1), concise (i.e. it is not overloaded with too many
dimensions and characteristics to not exceed the cognitive load of the taxonomy user, SEC2) and com-
prehensive (it can classify all known objects within the domain under consideration, SEC3). For OEC,
we adopted the following four criteria: All objects have been examined (OEC1), at least one object is
classified under every characteristic of every dimension (OEC2), no new dimensions or characteris-
tics were added in the last iteration (OEC3) and no dimensions or characteristics were modified in the
last iteration (OEC4). Moreover, Nickerson et al. (2013) postulate the fundamental objective require-
ments of characteristics being mutually exclusive and having non-redundant dimensions. However,
due to hierarchical and combinatorial relationships, both criteria led to an inflated set of characteristics
within individual dimensions. For this reason, we followed the example of other recently developed
taxonomies (e.g. Johnk et al., 2017; Pischel et al., 2016) and allowed non-exclusive characteristics
and the creation of sub-dimensions to guarantee transparency and parsimony within our taxonomy.

3.2 Phase 1: Initial Literature on Maintenance Analytics

In a first iteration, we started with a conceptual-to-empirical approach using initial literature on MA.
To identify relevant contributions, we carried out a literature review, since reviews help to identify
sources being relevant to the topic and support the effective use of existing knowledge (vom Brocke et
al., 2009; Webster and Watson, 2002). In particular, we applied a database search using the following
digital libraries: EBSCOhost, ScienceDirect, ACM Digital Library, JSTOR, IEEE Xplore Digital Li-
brary and AIS Electronic Library. Since we explicitly focussed on the MA concept in this first step,
the search term was limited to the keyword ‘maintenance analytics’ using the search fields ‘title’, ‘ab-
stract’ and ‘keywords’ whenever such filter mechanisms were provided by the digital libraries. More-
over, the search was restricted to articles that address concepts or frameworks from a BDA perspective
as introduced in Section 1 (i.e. considering multiple analytical objectives, techniques and data
sources). Based on this search, it was possible to identify one paper which deals with a conceptual dis-
cussion of MA (Karim et al., 2016) and another two relevant articles could be identified which refer to
this approach by conducting a forward search (Kans and Galar, 2017; Famurewa et al., 2017; day of
search: 2017-08-06). Further details on their respective research focus are outlined in Section 2.

Examining this literature, a first draft of a taxonomy could be derived. In line with the tripartite meta-
characteristic, we extracted initial dimensions and related characteristics to gather distinct features of
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RDAP. Of particular interest was the distinction between descriptive, diagnostic, predictive and pre-
scriptive analytics tasks, as proposed by Karim et al. (2016) in terms of constitutive pillars for MA.
This elementary distinction could also be confirmed by Kans and Galar (2017) and Famurewa et al.
(2017), who adopted the conceptual proposal, but also by Brodsky et al. (2015), where the authors ap-
plied a similar structure to the reusable knowledge base for manufacturing analytics. Moreover, it was
possible to derive a simple data type classification and a distinction between different classes of ana-
Iytical techniques. At this stage, however, the resulting taxonomy was neither sufficiently robust
(SEC1) nor was it comprehensive enough (SEC3) due to missing dimensions and characteristics which
are able to adequately differentiate among RDAP. For this reason, we carried out a second iteration by
making use of the plethora of research on (data-driven) maintenance.

3.3 Phase 2: Literature Review on CBM and PdM

To make use of the large body of knowledge on maintenance research, a second literature review itera-
tion was initiated, thus following again a conceptual-to-empirical approach. However, since the con-
cept of MA is not widely recognized yet within the literature, alternative search terms had to be select-
ed. Thus, by screening taxonomies for maintenance philosophies (e.g. Kothamasu et al., 20086,
p.1014), we identified the keywords ‘predictive maintenance’ and ‘condition based maintenance’ as
representative approaches for data-driven maintenance. Both approaches can be considered as solid
maintenance concepts, where data utilization plays an important role as previously introduced in Sec-
tion 2. Considering only the results of the database ScienceDirect, both terms led to a high number of
search results (2.103 hits for CBM, 3.063 hits for PdM, day of search: 2017-08-08), illustrating the
extent of the existing knowledge base. At a closer look, these results could be roughly divided into
four groups: (i) development of context-specific maintenance solutions, (ii) comparison and evaluation
of different maintenance strategies, (iii) conceptual discussion of CBM and PdM programs and com-
ponents, and (iv) survey/review papers summarizing the field with an emphasis on different technolo-
gies, models and algorithms for data processing and decision-making. Due to the quantity and the type
of the search results, we decided to focus only on contributions that represent the current state of re-
search and summarize the field. For this reason, we combined the previously derived concept names
with the keywords ‘review’, ‘survey’, ‘overview’ and ‘state of the art’, using the same databases and
search fields as in the first phase (see Section 3.2). Thus, after the removal of non-review articles, du-
plicates and contributions with limited access, a total number of 94 survey papers could be identified.
This amount had to be further reduced due to a narrowly limited focus of 79 articles, which address
too specific components, techniques or other particular aspects. Moreover, another five review papers
could be identified conducting a backward search. Hence, a total number of 20 survey articles served
as basis for the second iteration of the taxonomy development process (Ahmad and Kamaruddin,
2012; Ahmadzadeh and Lundberg, 2014; An et al., 2015; Ao, 2011; Bousdekis et al., 2015; Dragomir
et al., 2009; Elattar et al., 2016; Goyal and Pabla, 2015; Hashemian and Bean, 2011; Heng et al., 2009;
Jardine et al., 2006; Kothamasu et al., 2006; Lee et al., 2014; Peng et al., 2010; Prajapati et al., 2012;
Schwabacher, 2005; Si et al., 2011; Veldman et al., 2011; Vogl et al., 2016; Zhu et al., 2016).

Using this knowledge base, it was possible to extend the initial taxonomy draft. While only a few but
essential modifications could be derived for the meta-characteristic ‘analytical maintenance objectives',
we obtained extensive and crucial input for the distinction of data characteristics and analytical tech-
nigques based on existing classification schemas from the literature. Thus, more than 80 characteristics
were identified that could be grouped and organized within more than 25 dimensions. As such, the
resulting taxonomy was robust enough considering the amount of characteristics and dimensions
(SEC1). However, now it lacked of being concise (SEC2) and comprehensive (SEC3), as it consisted
of too many unstructured, partially overlapping dimensions and thus could not be applied to real-life
objects. A major issue could be observed within the meta-characteristic ‘analytical techniques’ due to
a high degree of complexity, since techniques can often be classified in several ways as exemplified
by Elattar et al. (2016, p.132): “Sometimes, the classification is based on the type of available data
and knowledge about the system. Another time (...) to the type of the used methodology.”. Hence,
more iterations were planned using insights from the empirical practice in order to meet all SEC.
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3.4 Phase 3: Interviews with Data Science Experts

In a third phase, we applied an empirical-to-conceptual approach to integrate knowledge from indus-
trial practice and see how real world scenarios could be mapped to our previously derived taxonomy.
In particular, we followed the example of Johnk et al. (2017) conducting multiple interviews with ex-
perts from industry. The interviewees were selected based on experiences with data analysis problems
in maintenance. Since it was planned to carry out several interview iterations incorporating the find-
ings from all other interviewees, which required short contact paths and fast response times, we select-
ed experts working for the same company. To avoid biases, however, we chose a network partner op-
erating as a service provider, who deals with a wide range of client projects. As such, it was possible
to survey a total of seven experts from a medium-sized IT service provider offering data-driven solu-
tions to clients from various industrial branches, such as plant engineering, automotive or semiconduc-
tor industry. All interviewees had several years of data science (DS) working experience and success-
fully carried out various analytical maintenance projects for industrial clients (cf. Table 1). Moreover,
we took care that the experts chosen were not involved in too many identical client projects to pre-
serve the diversity of maintenance projects and prevent potential biases. Hence, by taking all distinct
projects into account, we were able to incorporate the experience from a total of at least 19 mainte-
nance projects, while each project, moreover, consisted of several individual data analysis problems.

. . . Yrs.of DS | Maint. | Feedbackin | Feedbackin | Feedback in
ID | Position of the interviewee . .
experience | projects | sequence | sequence Il | sequence 111
1 System Analyst 6 7 01: MJC 08: MNC 15:NC
2 Project Manager 4 5 02: MJC 09: NC 16: NC
3 System Analyst 9 8 03: MNC 10: MNC -
4 Executive System Architect 6 6 04: MNC 11: NC -
5 System Analyst 3 5 05: MJC 12: NC -
6 Division Manager Analytics 10 7 06: NC 13: NC -
7 Head of Industry Division 12 7 07: MNC 14: NC -
MJC: major change - MNC: minor change - NC: no change
Table 1. Descriptive details on the semi-structured expert interviews

To carry out the interviews, we applied a qualitative, semi-structured approach. Qualitative interviews
have the advantage of taking account for the respondents’ specific context and thus are suitable for
explorative studies (Schultze and Avital, 2011). As such, we included closed- and open-ended ques-
tions within personal face-to-face interviews, where it was possible to discuss specific taxonomy ele-
ments by means of additional material and modification proposals. Moreover, each interview was de-
signed to be a single empirical-to-conceptual iteration within the overall development process, i.e. the
feedback of each interview was directly incorporated in the taxonomy in order to be available for all
other interviewees. Thus, due to the given OEC, any modification of characteristics and/or dimensions
(OEC3, OEC4) had to be revised by all other experts (OEC1). However, to keep the number of itera-
tions low, the interviews were organized in sequences, where the overall process stopped after all ex-
perts revised major and minor changes without proposing any further modifications. As a result, a total
of 16 empirical-to-conceptual iterations were carried out (cf. Table 1). Within the interviews, we ap-
plied a semi-structured interview guide (Myers and Newman, 2007) and addressed the following three
main aspects: First, we provided information about the research project and introduced the scope of
the taxonomy development approach. Second, the interviewees delivered contextual information about
their maintenance projects and described recurring commonalities of data analysis problems. Third,
the taxonomies were discussed and the expert feedback was incorporated. This tripartite structure was
applied to the first seven interviews, using the taxonomy results from the second literature-driven
phase as well as the modified version from the previous interview iterations. In the remaining nine
interviews only potential modification were discussed until no more changes were necessary.

As a result of this third major phase, the findings of both conceptual-to-empirical iterations could not
only be evaluated, but also be enriched with experiences and insights from the industrial practice.
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Thus, it was possible, one the one hand, to reduce the degree of complexity to make the taxonomy
more precise (SEC2) and, on the other hand, to add more necessary characteristics to make the taxon-
omy more comprehensive (SEC3). As a result, we were confident that, after the conduction of all three
phases, our defined OEC and SEC were met and no more iterations were required. The final taxonomy
consists of 67 characteristics organized in 21 dimensions, which are distributed among the tripartite
meta-characteristics as follows: analytical maintenance objectives (18/7), data characteristics (27/9),
analytical techniques (22/5). When presenting the detailed results in the following section, we point
out whether the selection and inclusion of the taxonomy elements are rather motivated by the findings
of the literature review or the results of the expert interviews.

4 A Taxonomy of Recurring Data Analysis Problems

In this section, we present the final version of our resulting taxonomy, distinguishing between various
dimensions and characteristics of RDAP in MA (cf. Figure 1). The following subsections are orga-
nized in accordance to the tripartite meta-characteristic.

Analytical Maintenance Objectives

Analytical Type Descriptive Diagnostic Predictive/Prognostic Prescriptive
Descriptive Measures Visualizations

Diagnostic Fault Detection | Fault Isolation | Fault Identification
Predictive/Prognostic System Health State Remaining Useful Life

Prescriptive Optimal Time of Maintenance Optimal Action of Maintenance
Maintenance Paradigm Breakdown Maintenance | Time-Based Preventive Maint. | Condition-Based Maintenance
Degree of Maintenance Perfect Maintenance Imperfect Maintenance

Data Characteristics

Data Type Mogict)gl"jiir:igogata Event Data Metadata Business Data
Condit. Monitoring Type Single Value Time Waveform Multidimensional
Monitoring Frequency Continous Records Regular Records Irregular Records
Variety of Sensors Single Sensor Multiple Homogeneous Sensors Multiple Heterogeneous Sensors
Physical Relation Direct Data Indirect Data

Event Type Machine State Operating Step | Machine Configurat. | Malfunction | Maint. Action
Malfunction Type Continous Degradation Sudden Change of State Sudden Incident

Data Labeling Labeled Data Unlabeled Data

Data Censoring Censored Data Uncensored Data

Analytical Techniques

Knowledge Integration Empirical Observations Physical Models Expert Knowledge

Descriptive & Summary Statistics | Hypothesis Testing Clustering | Classification

Diagnostic Approach Anomaly Detection | Frequent Pattern Mining | Process Mining

Predictive/Prognostic Machine Learning Trend Projection Reliability & Hazard - .

A —. Models Models Rate Models Stochastic Filters Graphical Models

Decision-Making Appr. Evidence-Based | Optimization | Simulation

. . - . Natural Language . .

Pre-processing Signal Processing Image Processing Processing Single Value Processing

Figure 1. Taxonomy for recurring data analysis problems in maintenance analytics

4.1 Analytical Maintenance Objectives

From an organizational point of view, the maintenance function pursues various objectives, such as
ensuring availability, reliability and product quality or preserving plant and environmental safety
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(Muchiri et al., 2011). From a data-driven perspective, however, it is rather of interest how given data
assets can be analytically exploited in order to support the achievement of such superior objectives. As
such, Karim et al. (2016) basically distinguish within their original MA concept between descriptive,
diagnostics, predictive and prescriptive tasks, defining the core of analytical objectives. All four types
are related to maintenance-relevant questions and can be differentiated as follows: Descriptive MA
primarily deals with questions like “What happened/is happening?”, since it summarizes collected
data from various maintenance sources and provides summary statistics in terms of measures (e.g.
number of faults) and visualizations (e.g. failure rate chart). Diagnostic MA tries to answer questions
like “Why did/does it happen?” by discovering patterns and delivering explanations for abnormal be-
haviour. It can basically be divided into fault detection (i.e. indicating faults and malfunctions), fault
isolation (i.e. determining the cause and the related component) and fault identification (i.e. designat-
ing the type and the nature of the fault) (Jardine et al., 2006; Kothamasu et al., 2006; Vogl et al.,
2016). While descriptive and diagnostic MA are rather focused on the past, predictive or prognostic
MA is concerned with a more forward-looking perspective to answer the question “What is likely to
happen?”. The goal of this approach is to take current machine conditions and past operation profiles
into account and either predict the probability that a machine operates without a failure up to a time in
the future (i.e. system health state estimation) or calculate the remaining useful life (RUL) as the time
left before a failure occurs (Peng et al., 2010; Elattar et al., 2016; Bousdekis et al., 2015; Jardine et al.,
2006; Dragomir et al., 2009). Prescriptive MA goes one step further and supports the process of
maintenance decision-making to answer the question “What should be done?”. For this purpose, it
builds on the results of the previously described types, integrates additional data (e.g. costs and re-
source information), and transforms them into actionable maintenance recommendations to identify
the optimal actions and/or the optimal time of actions (Bousdekis et al., 2015; Jardine et al., 2006).

In addition to the distinction between analytical objectives, it also needs to be distinguished between
different maintenance strategies which have been applied in the past and which in return should be
carried out in the future. Besides the existence of more fine grain taxonomies for maintenance para-
digms (e.g. Veldman et al., 2011), it can basically be differentiated between breakdown maintenance
(i.e. after a failure occurs), time-based preventive maintenance (i.e. after a defined period of time)
and CBM (i.e. consideration of current state) (Bousdekis et al., 2015; Goyal and Pabla, 2015; Prajapati
et al., 2012). This consideration is necessary, since the choice of analytical approaches depends on
individual requirements, such as maintenance costs, quality aspects or safety issues. For example, it
may not always be advisable to switch from a breakdown strategy to a CBM approach if the costs of
failure and replacement of a component are lower than the costs for measuring its condition. Similarly,
it should be divided between perfect and imperfect maintenance actions. The first type implies a situ-
ation of full restoration, while the latter allows minor corrections, since it might not always be desira-
ble to restore a unit to its original health condition (Heng et al., 2009; Kothamasu et al., 2006).

4.2 Data Characteristics

According to the literature, maintenance-relevant data can be grouped into two main categories: event
data and condition monitoring data (Jardine et al., 2006; An et al., 2015; Si et al., 2011). CM data are
measurements related to the health conditions of a physical asset, such as vibration data, temperature,
pressure or humidity. Event data, on the other hand, refer to information about what happens on a
physical asset (e.g. faults, failures, operations) and which actions are taken (e.g. repair, configurations)
(Jardine et al., 2006). Furthermore, two additional categories could be determined within the expert
interviews: metadata and business data. Metadata provide further context details of the physical asset
(e.g. machine type, location, machine manufacturer), whereas business data are used to describe the
environmental context, ranging from quality measures and performance indicators over different
maintenance-related cost and resource information up to comprehensive productions plans and sched-
uling specifications. At a next level of granularity, the CM data and event data can be further classi-
fied, where the specifications lead to different pre-processing and analysis techniques. CM data can be
divided into single values, time waveforms and multidimensional data (Jardine et al., 2006). A single
value is a CM variable which is measured at a particular time or aggregated for a certain period of
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time (e.g. average, min, max). Time waveforms, on the other hand, refer to a collection of time series
data that spans over a certain period of time with single values at each point of time. Multidimension-
al data are usually images, such as infrared thermographs or X-ray images, where data points cannot
directly be mapped to a single variable (Jardine et al., 2006). Considering the monitoring frequency of
CM data, three types can be distinguished: Continuous records implying an equidistant measurement
at constant intervals (e.g. every five seconds), regular records at a defined inspection interval (e.g.
once a day or depending on the current state), and irregular records at no particular time (Jardine et
al., 2006). Another dimension is the variety of sensors, where it is possible to differentiate between
data from multiple sensors or data from a single sensor (Jardine et al., 2006). For example, in legacy
systems the measurements of CM data might be limited to only a few signals like power consumption.
Additionally, according to the interviewees, multiple sensor data should be further classified into het-
erogeneous and homogenous types in order to distinguish whether the sensors are of different types
(e.g. temperature vs. power consumption) or of the same type, since redundancy, for example, may
help to avoid measurement errors or deliver better insights from slightly different perspectives. Fur-
thermore, CM data can be grouped into direct and indirect CM data (Si et al., 2011), where the first
type can directly describe the underlying health state of a physical asset (e.g. crack sizes, wear) and the
latter can only indirectly or partially indicate the underlying state (e.g. vibration data, temperature) and
thus failure event data needs to be derived from additional sources.

In contrast to the CM data, the use of event data is rather rare or of secondary importance within the
CBM literature (e.g. for labelling purposes using failure events), since there is the erroneous belief that
CM data are sufficient to reduce equipment failures (Elattar et al., 2016; Jardine et al., 2006). Howev-
er, they play a major role in reliability modelling (e.g. Heng et al., 2009; Jardine et al., 2006) and ac-
cording to all interviewed data scientists, event data provide an important information base towards
the understanding of maintenance-related processes, ranging from simple flags to mark specific events
up to comprehensive textual messages delivering more context about faults or maintenance actions
carried out. Due to a missing categorization, the interviewees classified event data into the following
five groups: machine states, operating steps, machine configurations, malfunctions and maintenance
actions. Machine states describe the current status of a machine (e.g. running, standby, overloaded),
while operating steps represent the current activity of a machine (e.g. cleaning, milling) and machine
configurations can be understood as current settings and machine parameters (e.g. workload, pace,
frequencies). Malfunctions, on the other hand, describe all kinds of misbehaviour in terms of failures,
faults or warnings and maintenance actions comprise all activities recorded within the data to main-
tain a machine and resolve malfunctions occurred (e.g. repair, replacement, oil change).

As the core of MA is the identification and prevention of all kinds of malfunctions, it is also important
to classify different types of system behaviour in order to apply the appropriate analytical techniques.
In this context, it can basically be distinguished between a continuous degradation, which follows
some sort of deterioration process until a failure occurs (Hashemian and Bean, 2011), and a rather
sudden, intermittent effect, which affects or even terminates the asset’s normal behaviour (Elattar et
al., 2016; Ahmad and Kamaruddin, 2012; Vogl et al., 2016). In the latter case, it should be further dif-
ferentiated whether a sudden effect leads to another machine condition in terms of a characteristic
state (e.g. another health state or failure) or only results in a temporary incident (e.g. warning mes-
sage occurred because a threshold was temporarily exceeded). However, having a wide range of event
and CM data, it cannot necessarily be guaranteed that relevant information about the misbehaviour and
malfunctions to be prevented is available in order to gain further insights. Thus, a distinction can be
made whether the data at hand are labeled or unlabeled. The latter refers to a situation where infor-
mation about faults or failures is missing and needs to be derived from other sources and approaches
(e.g. consideration of produced quality, consumption of additional resources). One of the main reasons
for this situation is that critical assets are usually not allowed to run to failure and thus are replaced or
overhauled before they fail. Hence, it can be further distinguished whether records are either censored
or uncensored. Thus, censored data refer to a situation where it is not known how long the asset might
have run if it had been left unaffected (Heng et al., 2009).
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4.3 Analytical Techniques

From an analytical point of view, there exist a broad range of techniques with many modifications,
extensions or specializations (e.g. Bousdekis et al., 2015; Kaisler et al., 2014; Manyika et al., 2011,
Lee et al., 2014). For this reason, most of the identified survey papers already provide classification
schemes for structuring maintenance-relevant techniques. Some of them even distinguish approaches
at a fine grain level and discuss advantages and disadvantages or deliver decision criteria for selecting
appropriate techniques according to specific problems (e.g. Heng et al., 2009; Elattar et al., 2016;
Bousdekis et al., 2015; Ahmadzadeh and Lundberg, 2014; An et al., 2015). However, to keep the tax-
onomy at this stage sufficiently generic, some abstraction was required and thus we focused on a high
level classification of techniques.

A first distinction can be made with regard to the type of integrated knowledge. While we primarily
focus on data-driven approaches, where insights are derived from an abundant amount of empirical
observations, further knowledge can be derived from either physical models or human expertise (Peng
et al., 2010; Elattar et al., 2016; An et al., 2015; Vogl et al., 2016). Physical models are usually math-
ematical representations of physical processes that influence the health state of a technical system.
Such models have the advantage of being very accurate, since they are built on natural laws (e.g. spe-
cific degradation laws such as Paris’ law for fatigue crack growth). However, the development of
physical models can be considered as costly and time consuming, as it requires a thorough understand-
ing of the physical mechanisms relevant to the system under consideration. Expert knowledge, on the
other hand, is based on experiences from human domain experts. Such knowledge can be integrated,
for example, in terms specific domain rules, the application of experience-based thresholds for CM
variables or towards the establishment of fuzzy models.

At a next level, analytical techniques can be grouped due to their output and thus we distinguish again
between descriptive, diagnostic, prognostic and prescriptive approaches. At this point, descriptive and
diagnostic approaches are considered together, since there is no strict distinction between the tech-
niques applied. Both approaches aim at providing transparency and explanations about all mainte-
nance-related issues, especially with regard to faults and failures. Hence, there is a broad variety of
data-driven techniques to reveal descriptive and diagnostic insights (e.g. Veldman et al., 2011; Jardine
et al., 2006; Goyal and Pabla, 2015; Schwabacher, 2005; Accorsi et al., 2017). According to the litera-
ture and interview results, the following seven categories could be identified: Summary statistics, hy-
pothesis testing, clustering, classification, anomaly detection, frequent pattern mining and process
mining. Summary statistics deliver insights in terms of univariate measures (e.g. counts of faults),
multivariate measures (e.g. correlation coefficients), aggregated measures (e.g. effectiveness of
equipment) and visualizations (e.g. plots, charts, tables). Hypothesis testing is based on statistical
models and inference and specifies how and why certain empirical phenomena occur (e.g. explanation
of causal relationships between malfunctions and specific CM variables). Clustering techniques allow
the identification of heterogeneous groups whose members are similar to each other (e.g. grouping
signals into different fault categories or separation of normal behaviour from abnormal behaviour).
Classification techniques are built on a given target variable and help to identify to which class a new
object belongs (e.g. classification of faults to designated type). Anomaly detection deals with the
identification of objects which do not conform to an expected behaviour (e.g. detection of malfunc-
tions). Frequent pattern mining is concerned with the discovery of regularities in terms of associa-
tion rules or sequential patterns (e.g. identification of frequent co-occurrence of different faults). Pro-
cess mining can be used to reconstruct sequences of activities based on visual process models, which
are extracted from event data (e.g. revision of executed operations and detection of deviations).

Compared to descriptive and diagnostic approaches, the variety of prognostic approaches is much
smaller, since the task is limited to the estimation of the system health state or RUL prediction (Jardine
et al., 2006). Data-driven prognostics is based on techniques from either statistics, using parametric
and non-parametric approaches, or artificial intelligence, using machine learning (ML) algorithms to
learn complex, non-linear interactions between input data (e.g. CM variables) and the target variable
(e.g. failure event) (Si et al., 2011; Vogl et al., 2016). ML approaches include, for example, decision
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trees, support vector machines, artificial neuronal networks (e.g. feed forward, recurrent and polyno-
mial networks) and other regression and classification techniques, which are closely related to statis-
tics (e.g. linear and logistic regression, partial least square, linear discriminant analysis) (Peng et al.,
2010; Heng et al., 2009; Elattar et al., 2016; Vogl et al., 2016). Statistical approaches, on the other
hand, are primarily based on stochastic processes and state space models, which can be characterized
diversely due to a variety of modelling mechanisms (Si et al., 2011). However, the following four cat-
egories could be identified for classifying the most commonly used techniques within the literature:
Trend projection models use trend forecasting techniques for time series data, such as exponential
smoothing or autoregressive models (e.g. autoregressive moving average) to provide simple predic-
tions (Heng et al., 2009; Jardine et al., 2006). Reliability and hazard rate models are built on time to
failure data. While traditional reliability models only focus on event data and use different distribution
models (e.g. Weibull, log-normal, Poisson) to estimate the mean time to failure or the probability of
reliable operations, more enhanced approaches (e.g. proportional hazard rate models) additionally con-
sider CM data as covariates to provide more accurate predictions (Peng et al., 2010; Heng et al., 2009;
Elattar et al., 2016; Jardine et al., 2006; Ahmad and Kamaruddin, 2012). Stochastic filters, such as
Kalman filter or particle filter, are estimations techniques where Bayesian inference is used to estimate
and recursively update unknown variables based on measured data. Such techniques are often applied
in combination with physical models, where the model parameters need to be estimated (An et al.,
2015; Dragomir et al., 2009). Graphical models use graphs as diagrammatic representations to visual-
ize the structure of probabilistic models (e.g. Bayesian networks or hidden Markov models) and thus
make it easier to examine model properties and perform complex computations (Peng et al., 2010;
Dragomir et al., 2009).

Building on all the aforementioned techniques, the goal of prescriptive approaches is eventually to
support the actual phase of decision-making. At this point, it can basically be distinguished between
evidence-based techniques, optimization and simulation (Bousdekis et al., 2015; Jardine et al., 2006;
Ahmad and Kamaruddin, 2012). Evidence-based techniques are the simplest form of decision support
as the results of descriptive, diagnostic and prognostic techniques can directly be used for decision
guidance (e.g. derived explanations, rules, thresholds, probabilities). However, it is often the case that,
under certain conditions, such as costs, resources and security (expressed with the “business” data
type), a decision must be made towards the best possible solution among several alternatives (i.e. op-
timal type and/or time of maintenance action) (Bousdekis et al., 2015). For this purpose, optimization
techniques can be applied from the field of mathematical programming (e.g. stochastic programming,
dynamic programming), where different alternatives, utility functions and constraints are taken into
account to find an optimal solution. Furthermore, simulation techniques can be used to imitate the
behaviour of a system by integrating the results of descriptive, diagnostic and predictive models and
thus evaluate different decision alternatives based on the simulated behaviour (Brodsky et al., 2015).

Besides that, it is important to note that analytical techniques often require intensive pre-processing,
such as data cleaning, filtering, normalization or noise reduction (Peng et al., 2010; Elattar et al., 2016;
Jardine et al., 2006). Even though such aspects are not part of the current research, the interviewees
and some survey papers (e.g. Jardine et al., 2006) highlighted some fundamental pre-processing tech-
niques, which constitute important prerequisites for further analysis depending on the data types given.
Thus, we organized those techniques within a last dimension and categorized them into the following
four groups: Signal processing comprises various techniques for dealing with time waveform data to
extract useful features, including time-domain analysis (e.g. peak, skewness, kurtosis), frequency-
domain analysis (e.g. fast Fourier transform), and time-frequency analysis (e.g. short-time Fourier
transform, wavelet transform) (Jardine et al., 2006). Image processing deals with multidimensional
data for feature extraction in images, including techniques from closely related disciplines like object
recognition. Natural language processing, on the other hand, comprises techniques to handle textual
content in event data, provided either by logging engines or manual data entries of maintenance work-
ers. The fourth group includes techniques for single value processing, such as trend analysis or tech-
niques for dimensionality reduction (e.g. feature selection based on information gain or feature extrac-
tion using principal component analysis) (Jardine et al., 2006).
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5 Discussion

In the following, we discuss our results with regard to the merits and limitations of the taxonomy ap-
proach and outline implications for further research and practical applications.

From a methodical point of view, the development of a taxonomy for structuring RDAP of a specific
domain can be considered as a suitable approach for several reasons. Having a high number of varying
conditions and requirements, the application of BDA is a complex and challenging task. However, by
decomposing a complex task into single dimensions, it is possible to bring it into a manageable struc-
ture and create well-defined solutions that consist of characteristic properties. Moreover, applying
BDA can be considered as a knowledge-intensive process, which requires multidisciplinary expertise
like domain understanding, experiences with different data sources and analytical modelling skills.
This knowledge is often distributed among various actors involved, including domain experts, IT pro-
fessionals, analysts, etc. (e.g. Brodsky et al., 2015). To this end, a taxonomy not only organizes
knowledge in a structured manner, it also provides a tool for communication and a common under-
standing. This is particularly helpful to bridge the gap between domain-specific contexts and domain-
independent practices, while a convergence is possible from both directions. Thus, domain experts can
use the taxonomy as a starting point to understand the analytical tool set referring to standards and best
practices, while data analysts can gain insights into the particularities of the domain. In the case of the
specially developed taxonomy for MA, it can be seen, for example, that common data analysis prob-
lems are characterized by various aspects that are highly specific to the domain, such as the signifi-
cance of CM and event data to monitor and control machine behaviour, the strong impact of diagnostic
and prognostic models to avoid machine failures or the possibility to integrate physical models based
on natural laws. Thus, the taxonomy gives a quick and comprehensive overview about contextual as-
pects relevant for all actors involved to overcome the hurdles of entering a multidisciplinary problem
space. Following this argumentation, we claim that this taxonomy is not limited to the field of mainte-
nance, but rather could be used to systematize RDAP in any digitized, data-intensive domain. Possible
fields of application could be, for example, areas with strong analogies to industry-related questions
such as process performance analysis in manufacturing analytics (e.g. Brodsky et al., 2015), but also
areas with completely different contexts and data sources such as social media analytics (e.g.
Kleindienst et al., 2015) or sales force analytics (e.g. von Bischhoffshausen et al., 2015).

A critical root element within the overall approach was the choice of the tripartite meta-characteristic
to distinguish between outputs, inputs and throughputs of RDAP (i.e. analytical maintenance objec-
tives, data characteristics and analytical techniques). From another perspective, this structure can also
be associated with the three aspects domain understanding, data understanding and analytical model-
ling, which are helpful points to decompose the multidisciplinary nature of BDA tasks as described
above. A similar decomposition can be found in common procedure models applied in data mining
practices, where data analysis projects are broken down into well-defined steps to provide a road map
for performing data analysis in a structured manner. Looking at such models’ commonalities (Kurgan
and Musilek, 2006), it can be argued that, besides those three parts above, our taxonomy lacks three
essential aspects that are not yet fully covered with our tripartite meta-characteristic, but which are
necessary to satisfy all important steps provided by common procedure models: data preparation,
evaluation and deployment. Of particular interest is a more detailed consideration of the data prepara-
tion step, since our taxonomy already classifies major groups of pre-processing techniques, but ig-
nores, for example, the systematization of recurring data quality treatments, such as outliers or missing
values, which can occur when dealing with maintenance-related data. But also the classification of
evaluation measures and techniques offers potentials to get an even more profound picture on RDAP
in MA. At this stage, such additional aspects were not explicitly considered to keep the complexity of
the taxonomy manageable. However, they show possible directions for further investigations.

By drawing further analogies to procedure models that help to perform recurring data analysis tasks,
some more limitations of the taxonomy approach can be observed. Procedure models usually have an
iterative character (Kurgan and Musilek, 2006), since data analysis is often carried out with many iter-
ations, feedback cycles and an experimental design. As such, the attempt to break down a sophisticat-
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ed data analysis problem and describe it in terms of an oversimplified framework appears contradicto-
ry. This issue becomes particularly apparent during the systematization of analytical techniques (see
Section 4.1), where a sufficiently generic taxonomy structure required a flat and abstract representa-
tion of multifaceted analytical approaches, which, in contrast, should rather be classified hierarchically
and multi-perspectively. For example, in our taxonomy, clustering and process mining approaches are
organized at the same level, although clustering cannot only be considered as an diagnostic method to
detect different machine behaviour but also serves as a pre-processing step to cluster event logs for
subsequent process mining analyses. Nevertheless, in agreement with the experts surveyed, a suitable
level of abstraction had to be found to preserve one of the most important purposes of the taxonomy,
namely the comprehensibility for a quick orientation into the topic. Moreover, it can be argued that a
data analysis problem is often that complex that it requires more than just a single technique. It rather
demands a sequence of method combinations with algorithmic fine tuning. However, even in this case,
it is possible to break down enhanced analysis problems into more fine grain sub-problems or tasks
and then recombine them into a coherent whole. As such, we are still confident that our results may be
an important step towards the conceptualization of RDAP to establish a reusable knowledge base.

Furthermore, we are confident that, despite the existence of procedure models, the taxonomy approach
cannot be regarded as a dispensable tool. Rather, it should be understood as a possible supplement that
can be integrated into process models to enrich them with the necessary context. This vision was also
endorsed by two of the seven experts surveyed (head of division and division manager), who see po-
tential for further research in such a project. The IT service provider already uses process models in
data analysis projects, but they criticize that the existing process models are too generic and domain-
independent to be used in a certain application context such as MA. Additionally, the respondents in-
dicated two main scenarios in which they see potential benefits of the taxonomy to support their opera-
tional activities: First, as a communication tool in consulting and development meetings, where cus-
tomer requirements for data-driven solutions are identified together with different stakeholder groups
and then translated into solution drafts, and second, for internal and external qualification purposes to
structure the field, identify current knowledge gaps and close them with suitable training programs.

6 Conclusion and Outlook

Applying BDA within the industrial practice can be a challenging task due to a variety of data types
and multifaceted analytical techniques. At this point, this paper dealt with the establishment of a reus-
able knowledge base for MA, initiating the identification of dimension and characteristics of RDAP in
data-driven maintenance scenarios. As a result, a taxonomy could be derived by applying the devel-
opment method proposed by Nickerson et al. (2013). By not only using existing MA concepts and sur-
vey papers summarizing a large body of knowledge on maintenance research, but also conducting in-
terviews with experts from a medium-sized IT service provider, it was possible to iteratively refine
dimensions and characteristics towards a robust, precise and comprehensive taxonomy. Thus, the re-
sults can help researchers and practitioners to provide an overview about contextual aspects and deliv-
er a systematization from a BDA perspective, as it structures the field by considering different specifi-
cations of analytical maintenance objectives, data characteristics and analytical techniques of RDAP.

In the next step, it is planned to use the results to establish reusable model repositories within an ana-
Iytical platform for solving recurring analytics tasks in data-driven maintenance environments, such as
exemplified by Brodsky et al. (2015). By integrating experiences from practice, the results have been
validated in a first cycle of iterations. In further research, it is planned though to apply the results with-
in more iterations to broader maintenance cases from the industrial practice to examine how well the
derived taxonomy covers important dimensions and characteristics of real maintenance scenarios. At
this stage, the paper does not claim to provide a taxonomy which is fully exhaustive, since the field of
analytics is subject to a fast developing environment, where we expect the emergence of more diverse
data types and new enhancements of analytical approaches in the near future. However, the results can
be considered as a first proposal towards the systematization of RDAP in data-driven maintenance
environments and we encourage practitioners and researchers to participate in further developments.
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