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Abstract  
The rising prevalence of non-communicable diseases calls for more sophisticated approaches to support 
individuals in engaging in healthy lifestyle behaviors, particularly in terms of their dietary intake. Build-
ing on recent advances in information technology, user assistance systems hold the potential of combin-
ing active and passive data collection methods to monitor dietary intake and, subsequently, to support 
individuals in making better decisions about their diet. In this paper, we review the state-of-the-art in 
active and passive dietary monitoring along with the issues being faced. Building on this groundwork, 
we propose a research framework for user assistance systems that combine active and passive methods 
with three distinct levels of assistance. Finally, we outline a proof-of-concept study using video obtained 
from a 360-degree camera to automatically detect eating behavior from video data as a source of pas-
sive dietary monitoring for decision support. 
Keywords: Decision support, user assistance systems, dietary monitoring, deep learning.  

1 Introduction 
Non-communicable diseases such as cardiovascular disease, cancer, and diabetes are the leading cause 
of death globally (WHO, 2017). Major contributing factors include common lifestyle choices such as 
unhealthy diet and insufficient physical activity. Obesity continues to rise as every third U.S. adult is 
now obese (Hales et al., 2017). Although information regarding better nutrition is widely available via 
information systems (IS), current studies indicate that the intended effect on eating behavior is limited. 
For instance, in Australia less than 4% of adults eat sufficient amounts of vegetables per day, whereas 
one third of their calories are from “junk” foods (Australian Bureau of Statistics, 2016). Interventions 
are lacking targeted guidance for specific goals such as increased intake of dietary fiber. The desired 
behavior change requires us to address not only capability by providing information to users, but also 
opportunity and motivation (Michie et al., 2011). IS designed to achieve effective behavior change need 
to consider these factors to deliver targeted assistance, counteracting the tendencies introduced by the 
population’s shift to a largely sedentary lifestyle. 
Dietary monitoring lays the foundation for personalized behavior change interventions by recording 
what, how much, and when foods and drinks are consumed. Active methods, the most-widely used ap-
proach in practice, achieve this by relying on self-report by the user. However, dietary monitoring using 



Rouast et al. / Deep Learning for Nutrition Assistance Systems 

 
Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth, UK, 2018 2 

 

these methods can be highly time-consuming and burdensome. It consequently faces a lower adoption 
than the related energy expenditure monitoring, which largely relies on passive sensors (Krebs and 
Duncan, 2015). While an increasing body of research is emerging on passive methods of dietary moni-
toring (Vu et al., 2017), it has yet to produce viable standalone artefacts for mainstream use. Modern 
computer algorithms based on machine learning, especially deep learning (LeCun et al., 2015), are ex-
pected to improve on this. 
In this paper, we advocate the use of passive methods of dietary monitoring in combination with active 
methods to provide user assistance on improving dietary intake for improved health outcomes. Passive 
methods enabled by sensor data and deep learning techniques play a key role by gathering real-time 
information in an unobtrusive manner, as this information may assist the user with the use of active 
methods and hence improve the overall quality of dietary assessment. Considering the goal of behavior 
change, this allows us to address the factors of opportunity and motivation rather than merely providing 
the user with information. Based on the taxonomy by Morana et al. (2017), we develop a framework for 
a system providing user assistance in the context of diet and nutrition considering the following compo-
nents: (i) improvement of dietary monitoring by suggestive prompting, pre-completion, and review of 
data entry, (ii) informing nutrition decisions by leveraging dietary monitoring for informational assis-
tance, and (iii) situation-aware invocations for proactive assistance based on real-time information. Fi-
nally, we report our progress on a proof-of-concept study in which we assess the feasibility of passively 
obtaining data for such systems. For this purpose, we use videos of eating occasions from a 360-degree 
camera and deep learning techniques. 

2 Background and Literature Review 
Dietary assessment pursuits the goal of obtaining unbiased data on typical food intake. By contrast, 
dietary monitoring aims at changing behavior or reinforcing positive behavior. Individual and situation-
aware assistance helps to achieve these goals, thus requiring accurate and reliable data on food intake 
and eating habits. In the following sub-sections, we review active and passive methods to acquire such 
data. We determine which methods are used in practice today, as well as their drawbacks and future 
potential. We also give a short primer on user assistance systems in the context of dietary monitoring, 
what purposes these systems serve, and challenges in their establishment. 

2.1 Active Methods of Dietary Assessment and Monitoring 
Dietary assessment can be the basis for guidance by dietitians or monitoring systems; it is traditionally 
conducted in the form of food records, recalls, or specialized questionnaires (Block, 1982). These meth-
ods require subjects to record all individual consumed foods along with corresponding estimated or 
measured weights. The recall and questionnaire methods rely on memory, as intake amounts and fre-
quencies are logged at intervals such as 24 hours or 7 days. With growing availability of consumer-
grade cameras, images taken of meals before and after eating have also been used widely to report food 
intake to dietitians and reduce user burden (Ashman et al., 2017). In the age of the smartphone and 
portable devices, traditional methods of keeping records on paper have been replaced by dedicated mo-
bile and web applications connected to large food databases that somewhat simplify the process (Darby 
et al., 2016). Many available applications now serve the purpose of active self-monitoring. 
Active methods of dietary assessment and monitoring, such as the ones discussed above, have enabled 
dietitians’ work for decades and made countless contributions to research possible. However, some areas 
of improvement remain. For one, they are perceived as burdensome by the user (Turner-McGrievy et 
al., 2013), hence there is potential to employ IS to reduce the perceived effort of keeping food records. 
Furthermore, manual reports have been found to be inaccurate in many cases. Several studies suggest 
that individuals report expected intake instead of real intake (Lichtman et al., 1992; Westerterp and 
Goris, 2002), by failing to report some meals and snacks, incorrectly labelling foods, and misjudging 
portion sizes. To remedy this effect, sensor-based systems could support users in entering their meals. 
Objectively detected values could be used as suggestions to nudge users in the right direction. Research 
also suggests that individuals request more behavioral and interactive elements when monitoring dietary 
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intake (Lee et al., 2017; Solbrig et al., 2017), to make the process more engaging (Burke et al., 2017). 
Especially for recall, active assessment and monitoring methods do not emphasize the temporal and 
behavioral aspects of food consumption. They are designed for manual review where corresponding 
feedback is delivered at a delay. Real-time information with accurate timestamps for eating occasions 
allows IS to provide instantaneous decision support to users concerning their eating behavior. 

2.2 Passive Methods of Dietary Assessment and Monitoring 
Approaches to passive dietary assessment take advantage of the characteristic properties of human food 
intake and mechanical digestion processes; this enables them to automatically gather information 
through a variety of sensors. They typically handle the tasks of eating behavior detection, food type 
classification, and volume or weight estimation (Vu et al., 2017). 
Current research mainly focuses on visual, acoustic, and inertial means of collecting information. Some 
work has been done to automate the process of estimating calories from images of food using computer 
vision and machine learning. Such techniques may be applied to images taken with everyday cameras 
in active assessment (Zhu et al., 2010), or integrated in passive systems that automatically take such 
images (Sun et al., 2014). Visual signals have also been used in video acquired from stationary cameras 
to automatically detect chewing events. In this visual approach, food classification accuracies of 80%-
90% can be achieved, albeit based on limited types of food (Vu et al., 2017). An approach based on deep 
learning reports a classification accuracy of 72% on 100 classes of food (Kawano and Yanai, 2014). 
Swallowing and chewing events as well as basic food types are shown to be detectable in acoustic ap-
proaches using wearable microphones (Amft et al., 2005). Similarly, the inertial approach detects food 
intake events using wrist-worn gyroscopes or accelerometers typically available in smartwatches (Dong 
et al., 2012). The acoustic and inertial approaches can achieve up to 85% of accuracy for swallowing 
detection, 90% for eating detection, and 94% for eating gesture detection (Vu et al., 2017). Further 
approaches explored in the literature involve physiological and piezoelectric signals, as well as fusions 
of different approaches (Vu et al., 2017). 
In general, accuracies of food type classification and weight estimation present some of the main chal-
lenges for the passive methods. Although the goal of fully autonomous dietary assessment in real-life 
situations proves to be too difficult for the state-of-the-art, one can imagine useful applications of the 
information gathered by prototypes to improve existing active assessment and monitoring systems. At 
the same time, we can expect substantial improvements in accuracy and scope of passive systems as 
both sensors and machine learning research are progressing. 

2.3 User Assistance Systems 
In the age of the smartphone, it is technologically feasible to design IS that allow users to actively cap-
ture virtually all aspects of their diet. However, the practical feasibility of systems that solely rely on 
active capture methods is questionable, as they require a high level of user involvement. Hence, it does 
not come as a surprise that dietary monitoring systems building on active capture methods are often 
perceived as time-consuming and burdensome which in turn detrimentally affects the quality of dietary 
assessment. A promising context that has received increasing research attention in recent years are so-
called user assistance systems (UAS). UAS are software components that enrich information systems 
aiming to assist users to perform their tasks better (Maedche et al., 2016). A common form of assistance 
provided in such UAS are guidance design features, that can be further classified along dimensions such 
as target, directivity, mode, and invocation (Morana et al., 2017). In this context, past failures like Mi-
crosoft’s Clippy exemplify that UAS are not trivial to design, and that it is crucial to exhibit context-
awareness. Considering dietary monitoring, data collected with passive capture methods (e.g., sound, 
video) paired with the advances in the field of artificial intelligence have the potential to provide such 
systems with information to base assistance and guidance features on. 
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3 Theoretical Foundations 

3.1 Framework 
To support individuals in making better decisions about their diet, we consider the components that 
influence human behavior: Capability is linked to an individual’s knowledge and can be addressed by 
providing information such as dietary advice. This is the primary focus of traditional approaches and 
most systems available today. Motivation and opportunity refer to internal and external factors affecting 
an individual’s decision making, respectively. An intervention aiming at changing behavior, such as 
dietary intake, should take all three components into account simultaneously (Atkins and Michie, 2015; 
Michie et al., 2011; Aljaroodi et al., 2017). 
In terms of the design of IS, the Fogg Behavior Model (Fogg, 2009) postulates that for a system to be 
persuasive in influencing user behavior, it must address three factors: The user must be sufficiently 
motivated and have the ability to perform the behavior, while at the same time being triggered to do so. 
Evidently, existing dietary monitoring systems building on active methods don’t achieve high enough 
levels of ability and motivation to keep users engaged long enough: While users are initially motivated 
by the hope of becoming healthier, findings from recent research suggest that they find methods purely 
based on active monitoring burdensome, and that a lack of assistance leads to fading motivation (Solbrig 
et al., 2017). In order to sustain this motivation, user assistance is needed that makes interaction with 
the system simpler by targeting users’ ability (Oinas-Kukkonen and Harjumaa, 2009). It includes factors 
such as time, physical activity, and brain cycles (Fogg, 2009). An additional caveat of systems relying 
on active methods is a lack of information to effectively place triggers. Users of nutrition-related systems 
prefer to receive relevant notifications and reminders (Krebs and Duncan, 2015), but without context-
awareness of the system, these may appear at inappropriate points in time.  
In Figure 1, we propose a framework for a UAS in this setting, building on the taxonomy by Morana et 
al. (2017). We argue that combining passive methods for food intake monitoring alongside active meth-
ods can be effectively integrated into a UAS that contributes to facilitating behavior change for healthy 
nutrition. Informed by passively monitored data, user assistance features can address the problems pre-
viously identified with system persuasiveness. This, in turn, allows us to better address motivation and 
opportunity. Assistance should rely on interaction with the user and exhibit intelligence by being situa-
tion-aware. Artefacts with these capabilities have also been referred to as anticipating UAS, and are 
argued to be the logical next step in user assistance within IS (Maedche et al., 2016). 

 
Figure 1.  A user assistance systems framework for dietary monitoring. 

In specifying the UAS, we follow the taxonomy of Morana et al. (2017) to describe the outlined guidance 
design features: Assistance should be provided both during eating occasions and when reviewing a diet. 
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Both informative and suggestive assistance should be provided, as detailed in the next section. Assis-
tance can be invoked either directly by the user or intelligently based on the user’s behavior; timing can 
occur concurrently or retrospectively to the corresponding user activity. The most obvious format of 
assistance is text-based. However, multimedia formats such as audio could also be explored. The assis-
tance intention is to provide dietary recommendations, which aim to have some learning effect for the 
user. As the underlying machine learning models are trained in a supervised way from a database of 
examples labelled by experts, the delivered content type is adapted expert knowledge. The audience will 
mostly be novice users, but we anticipate that experts with a dietetics background will want to rigorously 
assess the performance of passive systems. Robust systems implementing this framework will incorpo-
rate proactive trust-building through accuracy and helpfulness of recommended assistance. 

3.2 Levels of Assistance 
As illustrated in Figure 1, the UAS integrates active and passive monitoring. The passive component is 
a key element, although the user does not directly interact with it. As it facilitates the gathering of real-
time information, the system becomes situation-aware: The nature of the available data creates oppor-
tunities to complement the active component and to provide proactive user assistance. This is instru-
mental in enriching and improving the dietary assessment, lowering the burden of active monitoring on 
the user, and then targeting user capability, motivation, and opportunity to support behavior change. 
Three levels within the UAS work to achieve these goals: 

1. Improve the dietary monitoring by suggestive prompting, pre-completion, and review of data entry 
During food intake, passive monitoring provides data from available sensors (e.g., video frames of 
eating occasion, accelerometer data, or audio) to the UAS. Automatic detection of eating behavior 
allows the system to infer the timing of individual eating occasions (the when). Firstly, this oppor-
tunity allows the system to remind the user that a meal should be logged – failing to record meals 
and snacks is a known contributor to under-reporting (Westerterp and Goris, 2002). Secondly, au-
tomatic classification of food type consumed during eating occasions (the what) and food volume 
estimation (the how much) have the potential to be used for pre-completion or assistance during 
active monitoring. Such assistance may help to reduce effort associated with manual entry. Availa-
ble data can also help to point out errors in user entry if the estimates are far off. Progress in machine 
learning and sensor technology will lead to a gradual decrease in user effort and obtrusiveness as-
sociated with active entry, whilst increasing robustness and accuracy. Ultimately, the user’s active 
contribution could be reduced to confirming values reported by the passive component. 

2. Inform nutrition decisions by leveraging dietary monitoring for informational assistance 
Given an accurate account of dietary intake and associated habits based on active and passive mon-
itoring, the UAS can dynamically derive personalized nutrition briefings (e.g., daily) to address the 
user’s psychological capability and motivation. These have the function of (i) providing motiva-
tional support regarding recent data, projecting how well the user has done, and how soon specific 
goals can be achieved; (ii) the educational effect of pointing out how behavior changes contribute 
to user health; and (iii) recommendations for optimally adjusting diet and goals. Personalized deliv-
ery of supportive information takes the role of the advice given by a dietitian: It has potential to 
keep the user motivated (Solbrig et al., 2017) and improve the user’s capability to realize a behavior 
change. 

3. Situation-aware invocations for proactive assistance based on real-time information 
It is well known that goals are most likely to be achieved if they are tailored to the individual situa-
tion of the person. However, providing feedback is also important (Locke and Latham, 2002). Ap-
propriately timed and relevant reminders allow the UAS to target opportunity and motivation. Since 
passive monitoring enriches the system with real-time information, the system can provide context-
sensitive feedback. This feedback should be designed in a way that keeps the user motivated and 
engaged, reminding them of their health goals. It may include hints indicating that a target value is 
close to being reached (e.g., total amount of fiber consumed). Research shows that eating behavior 
with specific time signatures (e.g., night, weekend), is often linked to adverse health effects due to 
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overeating (Vu et al., 2017). If such tendencies are detected, the user could be informed of this 
potentially unhealthy eating behavior and given information on how to improve. The rate of eating 
is also of interest, as it has been shown to have positive effect on obesity (Sasaki et al., 2003) – 
detection of such behavior could trigger similar hints reminding the user to slow down. 

3.3 Deep Learning for Nutrition Monitoring 
In passive nutrition monitoring, we require algorithms to handle complex real-time detection, prediction, 
and estimation tasks on multimodal sensor datasets. Driven by the availability of more computational 
power, large labelled datasets and advanced learning algorithms, the field of machine learning has re-
ceived a lot of attention in the past years. Deep learning, the state-of-the-art in artificial neural networks, 
boasts unprecedented results in problems characterized by highly varying functions such as speech and 
object recognition (LeCun et al., 2015). The recent interest in deep learning primarily originated from 
the advances in computer vision research (Krizhevsky et al., 2012) using convolutional neural networks 
(CNNs) that are inspired by biological visual systems and designed specifically to learn from image 
data. An increasing amount of research and use in practice involves advanced recurrent neural networks 
(RNNs) (Hochreiter and Schmidhuber, 1997) that use a ‘memory’ component to master the intricacies 
of sequential data such as text, audio and video. As the capabilities of CNNs in object- and action recog-
nition from visual and auditory sensor data are approaching human level, such architectures are also 
suitable for working with recordings of eating occasions. Within the UAS framework introduced in 
Section 3.2, we see the following application areas for deep learning: 

1. Detection of information regarding eating occasions from sensor data (level 1). Deep learning in 
the form of CNNs and RNNs could be applied to detect information regarding the when (e.g., 
detecting eating occasions, individual hand-to-mouth movements, chewing or swallowing from 
video, audio recordings, or inertial sensor data), the what (e.g., food type classification from image 
or video data), and the how much (e.g., food volume estimation from image or video data). 

2. Prediction of suitable timings for notifications and triggers (level 3). Given contextual information 
and usage patterns, interactive systems could use deep reinforcement learning to predict suitable 
points in time to deliver notifications and triggers (Christiano et al., 2017). 

4 Research Methodology 
Building on the framework introduced in the previous section, our research aims at assessing the feasi-
bility of a surveillance video-based passive food intake monitoring system as data source for a UAS. 
This is an exemplary implementation of the first application area of deep learning proposed in Section 
3.3. The approach is to use a standalone camera instead of requiring subjects to be wearing individual 
dedicated sensors. This approach is favored for its simplicity, unobtrusiveness, and cost-effectiveness, 
allowing the monitoring of multiple people in parallel by placing a 360-degree video camera in the 
center of a dining table as shown in Figure 2. A deep network is trained to learn from a database of 
labelled videos depicting eating occasions in a controlled eating environment. The study is comprised 
of three stages: Creation of a video database, training a model to detect basic eating behavior (targeting 
the when), and training a model to detect more advanced information (targeting the what and how much). 
Stage 1. A sample of 100 healthy participants without food allergies will be recruited on campus using 
flyers and a social media campaign. At the estimated rate of 40 hand-to-mouth movements per eating 
occasions, this will provide enough examples to train and test a deep network. During the experiment, 
participants are provided with a standard meal consisting of different types of food that require fingers, 
knife and fork, and spoon to eat. Since they can be identified from video recordings, transparency about 
data use and protection of their privacy is given special attention. Participants receive an information 
statement when signing up for the experiment, and are asked to sign a consent form to participate. In-
clusion of their data in a dataset for the larger research community and usage in publications are strictly 
opt-in. Otherwise, all data is stored securely on university servers and solely used during labelling, and 
to train and test our models. This data collection has been approved by the ethics committee at The 
University of Newcastle. For each session, four participants are asked to eat from a pre-prepared meal; 
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images of the meal are recorded before and after consumption. Participants are also asked to complete 
a post-experiment questionnaire which explores the factors that determine users’ technology acceptance 
for this application. We expect the individual eating sessions to take no longer than 30 minutes. Subse-
quently, the videos are labelled by experts with information of interest: calories consumed, as well as 
hand-to-mouth movements with associated timestamps, used vessel, and food type. 
Progress: Since confirmation of ethics approval, a pilot experiment of two sessions has been conducted; 
the recorded videos have been processed and labelled, amounting to a total of eight eating occasions. 

 
Figure 2. The video is recorded spherically and then remapped to an equirectangular represen-

tation for further segmentation and processing. 

Stage 2. Initially, we consider the task of automatically detecting individual hand-to-mouth movements 
during eating occasions. These allow us to derive measures like total duration of an eating occasion, 
eating pace, number of bites consumed, as well as bite-to-bite intervals. For image-based classification, 
CNNs are the preferred choice in the literature, while RNNs aid in the modelling of sequential data. We 
will explore different configurations and combinations of both to learn from the sequential video data. 
As illustrated in Figure 2, pre-processing consists of mapping a spherical recording to equirectangular 
representation, and segmenting the individual subjects.  
Progress: We used TensorFlow (Abadi et al., 2016) to train a six-layer CNN from scratch on our pilot 
dataset. We use four convolutional layers and two fully connected layers. This is a simplified version of 
the well-known AlexNet (Krizhevsky et al., 2012) architecture, a CNN designed for visual recognition. 
For each frame, the binary classification determines whether the subject is engaged in a hand-to-mouth 
movement or idle. Test data consists of one subject unknown to the trained network. Although we 
achieve 70% accuracy on the class-balanced test set, there is a considerable amount of overfitting at-
tributable to the small amount of data. We expect significant improvements in accuracy with the larger 
dataset of 100 participants and architecture improvements such as regularization and sequence model-
ling using an RNN. Figure 3 illustrates example data the network sees during training and test. 

 
Figure 3. Example frames from the pilot experiment 

Stage 3. In this stage, we will assess our model’s learning capability of understanding the context of 
each hand-to-mouth movement. Image-based classification of food types and calories based on images 
with similar techniques have previously been attempted (Kawano and Yanai, 2014; Miyazaki et al., 
2011). We plan to extend this to video-based detection. Based on our dataset, we will train our model to 
distinguish between food and drink intake, as well as used vessel (e.g., fork, spoon, hand) and food type 
(lasagna, bread, yoghurt) used during the experiments. For these classifications, our models will rely on 
the visual differences between the gestures used in consuming different foods with different vessels. We 
believe that even information such as body pose during consumption gives away details about the type 
of food consumed. We also plan to experiment with limited caloric intake detection. Here, our models 
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360º

Remap



Rouast et al. / Deep Learning for Nutrition Assistance Systems 

 
Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth, UK, 2018 8 

 

will rely on both the count of registered hand-to-mouth movements as well as the associated food types. 
Previous research has shown that bite count itself contains significant information about calorie con-
sumption (Scisco et al., 2014). We expect that additional knowledge would lead to better estimates. 

5 Discussion and Further Research Agenda 
Dietary intake is the largest single factor contributing to disability-adjusted life expectancy in the global 
burden of disease (Popkin et al., 2012). In this paper, we have identified the need for UAS in the context 
of dietary monitoring as a facilitator for healthy nutrition. Existing systems primarily focusing on active 
capture methods are found to lack behavioral and interactive elements to maintain user motivation, while 
being perceived as burdensome. To this end, we have reviewed the status quo of active nutrition moni-
toring and its drawbacks, as well as current research on passive monitoring. The given framework is 
intended to provide a groundwork for UAS in the context of dietary monitoring. We then go on to outline 
a study as proof-of-concept of specific aspects of the framework. We expect the benefits of extending 
active food monitoring solutions by our framework to include (i) reduced amounts of under-reporting 
similar to previous results (Gemming et al., 2015; O’Loughlin et al., 2013) and (ii) a reduction in the 
perceived effort of keeping a food diary, which is often associated with guidance design features 
(Maedche et al., 2016; Morana et al., 2017). Going further, the informational and proactive assistance 
based on dietary assessment and behavioral observation should also (iii) contribute to a behavior shift 
towards healthier nutrition. Existing studies indicate that provision of memory aids in image format can 
significantly reduce under-reporting (Gemming et al., 2015), and reminders based on passive detection 
can lead to improved food journaling (Ye et al., 2016). However, empirical research will be required to 
evaluate the system, and to determine the efficacy of UAS to achieve behavior change. 
In our approach, we chose computer vision-based passive monitoring as a source of information, due to 
its recent breakthroughs in object and action detection. Another item on our research agenda is a multi-
modal approach, where our models learn from both video and inertial sensor data from wrist movements. 
Deep learning models will initially be helpful in detecting timing (the when) of food intake, which will 
in turn support active monitoring. In the foreseeable future, monitoring of food types (what) and amounts 
(how much) will still require an active component, especially when considering condiments. An achieve-
ment of high detection accuracies in these tasks requires hundreds of training examples for each food. 
More ambitious applications of deep learning in this field will therefore require the creation of much 
larger databases, including a wide variety of settings, food types, eating utensils, and eating styles. This 
need for labelled data is one of the main challenges of deep learning today. Progress in research on 
unsupervised and semi-supervised learning, where only a fraction of examples need to be labelled, could 
reduce the dependence on the time-intensive labelling process. 
Assessing eating occasions raises important concerns over end-user privacy (Purpura et al., 2011). We 
believe that all data should by default remain confidential, and that the user should be in control of what 
happens with their data. An end-user system building on our model would consist of a 360-degree cam-
era outfitted with a processor and a trained deep learning model. While we envision all video processing 
to take place on the user-owned device, there will have to be an interface to communicate derived infor-
mation to the UAS. Another limitation is the level of user acceptance given the need for constant video 
monitoring. The technology will ask the user to trust that the “black box” system uses sensor data solely 
for nutrition monitoring and not for any other purposes. We will explore such questions as part of our 
post-experiment questionnaire, to determine whether the utility of improved dietary monitoring out-
weighs the concerns over the presence of a video camera during eating occasions. A further limitation 
of surveillance video is the stationary nature of the sensor, as food consumed on the go cannot be ac-
counted for. Hence another future direction of our research will be applying deep learning to video and 
accelerometer data obtained from mobile devices such as that described in Sun et al. (2014). 
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