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DETECTING STRUCTURE IN CHAOS:  

A CUSTOMER PROCESS ANALYSIS METHOD 

Research paper 

 

Palvölgyi, Elisabeth Z., Frankfurt School of Finance & Management, Frankfurt, Germany, 

e.palvoelgyi@fs.de 

Abstract 

Detecting typical patterns in customer processes is the precondition for gaining an understanding about 

customer issues and needs in the course of performing their processes. Such insights can be translated into 

customer-centric service offerings that provide added value by enabling customers to reach their process 

objectives more effectively and rapidly, and with less effort. However, customer processes performed in less 

restrictive environments are extremely heterogeneous, which makes them difficult to analyse. Current 

approaches deal with this issue by considering customer processes in large scope and low detail, or vice 

versa. However, both views are required to understand customer processes comprehensively. Therefore, we 

present a novel customer process analysis method capable of detecting the hidden activity-cluster structure 

of customer processes. Consequently, both the detailed level of process activities and the aggregated cluster 

level are available for customer process analysis, which increases the chances of detecting patterns in these 

heterogeneous processes. We apply the method to two datasets and evaluate the results’ validity and utility. 

Moreover, we demonstrate that the method outperforms alternative solution technologies. Finally, we 

provide new insights into customer process theory. 

Keywords: Customer Process, Process Mining, Clustering, Sequence Mining, Service Design. 

 

1 Introduction 

The value of a service emerges when it is used by customers in the course of their own processes of value 

creation – this is one of the key statements of customer-dominant logic of service (Grönroos and Ravald, 

2011; Heinonen et al., 2010). Aligning service processes with customer processes can accelerate customers’ 

success in value creation by enabling them to reach process goals more effectively and rapidly, and with 

less effort (Bettencourt et al., 2013; Grönroos and Ravald, 2011; Payne et al., 2008; Heinonen et al., 2010). 

Knowledge about customers’ activities and requirements in the course of their entire processes can enable 

companies to proactively and comprehensively provide customers with what they need in their next steps 

throughout the process (Behara et al., 2002; Vandermerwe, 2000). Moreover, the analysis of customer 

processes can lead to identification of issues and pitfalls that customers are facing in their processes. Such 

insights can be used to design services that support customers in reaching their process objectives more 

efficiently, for instance by taking over process tasks from customers or even managing the whole process 

for them (Bettencourt et al., 2013; Vandermerwe, 2000). 

Customer processes can be defined as sequences of activities customers perform to reach a certain objective, 

such as buying a car, going on vacation or arranging retirement provisions (Payne et al., 2008; Behara et al., 

2002). The precondition for taking customer processes as a basis for service design is to identify patterns in 

specific customer processes relevant to a certain service company. Several analysis methods consider 

customer processes in a great level of detail, but only look at a small section of the overall process (e.g. Le 
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et al., 2017; Liu et al., 2017; Duan and Zhang, 2014; Chen et al., 2013; Fournier-Viger et al., 2012). Other 

approaches regard the full scope of customer processes but do this on a very high level only (e.g. Sands et 

al., 2016; Voorveld et al., 2016; Prinzie and Van Den Poel, 2011; Salazar et al., 2007). Naturally, such 

limited insights on customer processes restrict the chances of identifying opportunities for designing 

customer-process-centric services.  

Following the design science research (DSR) paradigm, we design a method that enables the identification 

of activity clusters making up customer process networks (CPNs) (Hevner and Chatterjee, 2010; Hevner et 

al. 2004). Using this inner structure, customer processes can be considered in both large scope and detail 

when searching for patterns. Hence, in this study we strive to answer the following research question: How 

can the activity-cluster structure of customer processes be identified?  

The answer to this question provides valuable and directly applicable implications for companies that wish 

to understand how different customer groups move through their customer processes, and what issues they 

might face – the precondition for designing services that meet these customers’ needs in their processes. 

Moreover, we contribute to customer process research by uncovering the hidden substructure of these 

processes and designing a method to analyse customer processes in spite of their great heterogeneity. By 

providing such a method, and hence the chance to analyse and understand customer processes, we also go 

one step further towards aligning service and customer processes, as demanded by the paradigm of 

customer-dominant logic of service (Grönroos and Ravald, 2011; Heinonen et al., 2010).  

First, we present the related literature and explain which business issue our suggested artefact addresses. 

We then explain the conceptual background and the customer process analysis method developed. We test 

the new method by applying it to two datasets and evaluating the validity and utility of the resulting activity 

clusters. Subsequently, we compare the performance of the developed method with that of alternative 

solution technologies. Finally, we summarize the study’s results and implications. 

2 Related Literature and Business Problem Addressed 

Customer processes are discussed in the literature at different levels of detail and scope. Online clickstream 

sequences reflect customers’ individual paths in the online world at the operations level. According to 

activity theory, this is the most detailed level for considering an activity (Hacker, 2001; Kuutti, 1996). Plenty 

of literature considers how clickstream sequences can be analysed to detect patterns (e.g. Le et al., 2017; 

Liu et al., 2017; Duan and Zhang, 2014; Chen et al., 2013; Salehi, 2013; Fournier-Viger et al., 2012; Wei et 

al., 2012; Wang and Wang, 2007; Jenamani et al., 2003; Mobasher et al., 2002; Spiliopoulou and Pohle, 

2001). Knowledge about such sequential patterns can be used to optimize website content and structure 

according to customers’ preferences (Jenamani et al., 2003; Spiliopoulou and Pohle, 2001), or can be fed 

into recommendation systems, proactively providing customers with information they will probably need 

for current or next activities (Li et al., 2017; Salehi, 2013; Wang and Wang, 2007; Mobasher et al., 2002).  

Another stream of literature regards customer processes on a more comprehensive but less detailed level 

when searching for patterns in channel choice or product/service purchase sequences (e.g. Sands et al., 2016; 

Voorveld et al., 2016; Van Rijnsoever et al., 2012; Prinzie and Van Den Poel, 2011; Frambach et al., 2007; 

Paas et al., 2007; Salazar et al., 2007; Kamakura et al., 1991). Such information can be used for optimizing 

multi-channel service offerings or realizing cross-selling opportunities by offering the right service at the 

right time to the right customer. 

Online clickstream sequences reflect customer activities at a detailed level, but such data naturally reflects 

only customer activities performed online. Furthermore, by considering a certain number of website clicks, 

usually just a few minutes of customer activities are captured (e.g. Dunne et al., 2011; Pan and Fesenmaier, 

2006). However, especially customer processes that include the purchase of complex services can take 

weeks, months or even over a year, and usually also include offline activities (e.g. Gough and Nurullah, 

2009; Savolainen 2009; Vroomen et al., 2005). In the channel choice and purchase sequences literature, 
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customer processes are regarded over a longer period, which may even comprise several years (e.g. Paas et 

al., 2007; Kamakura et al., 1991). However, besides information on which channels, or products or services, 

were chosen in which chronological order, no further insights about customers’ activities are given, e.g. 

around searching for and using the service. Hence, customer processes are considered in the literature either 

in a great level of detail but with limited scope, or vice versa. 

The more of a customer process is known, the more opportunities for customer-centric service 

improvements or innovations can be identified. Consequently, customer processes should be analysed in 

large scope and detail. The current literature does not offer methods for doing this, which represents a major 

research gap. To address this business problem, we suggest a method for identifying the inner structure of 

CPNs that can be used for detecting patterns in customer processes by considering them in full scope and at 

a high level of detail. Thus, we focus on processes of individual customers entailing the purchase of a 

complex service. 

3 Conceptual Background 

Several papers present theoretical models of customer processes and state that they can be split into different 

phases, for instance pre-purchase, purchase and post-purchase (Behara et al., 2002; Ives and Learmonth, 

1984; Lunn, 1974; Howard and Sheth, 1969; Nicosia, 1966). Choi et al. (2011) state that these phases occur 

not once, but again and again in a customer process. Pan and Fesenmaier (2006) discover that the 

information search phase of customer processes comprises several different sub-problems which the 

customer has to resolve one after another in order to finalize that phase. What all these approaches have in 

common is the idea of the existence of a substructure within customer processes, comprising different sub-

problems or phases.  

Customer processes are defined as sequences of activities (Payne et al., 2008; Behara et al., 2002). Hence, 

customer processes contain activities and the elements of the above-described substructure, which – 

corresponding to activity theory ‒ describe the same phenomenon at different levels of detail (Hacker, 2001; 

Kuutti, 1996). Accordingly, each of these substructure elements contains several process activities (Pan and 

Fesenmaier, 2006). Thereby, each process activity can be assigned to only one of these elements (e.g. Pan 

and Fesenmaier, 2006; Behara et al., 2002; Ives and Learmonth, 1984). As each substructure element 

represents a certain sub-problem or phase (e.g. Martin and Woodside, 2012; Pan and Fesenmaier, 2006; 

Behara et al., 2002; Lunn, 1974; Howard and Sheth, 1969; Nicosia, 1966), we can assume that activities of 

the same substructure element are related to each other in terms of their contents.  

In less restrictive environments, customers are free to choose which activities they wish to perform in what 

order for completing their processes (Günther and Van Der Aalst, 2007). This “will lead to more diverse 

and less-structured behaviour (and hence to) ‘spaghetti’-models’” (Günther and Van Der Aalst, 2007, p. 

330), when merging the individual customer processes into a process network for further analysis. However, 

given that 1) for each phase/sub-problem of a customer process a certain group of activities is available 

which is suitable for solving that particular phase (Choi et al., 2011; Savolainen, 2009) and 2) customers 

move in processes from phase to phase (Martin and Woodside, 2012; Choi et al., 2011; Pan and Fesenmaier, 

2006) and 3) choose in each phase an individual combination of activities suitable for completing it (Van 

Rijnsoever et al., 2012; Choi et al., 2011; Pan and Fesenmaier, 2006), possibly jumping back and forth 

between activities before moving to the next phase (Savolainen, 2009), we can conclude that activities in 

the same phase succeed each other more often than they succeed activities of other phases. This differs from 

the generic heterogeneity and chaos in “spaghetti” models (Günther and Van Der Aalst, 2007). Hence, we 

expect that CPNs comprise clusters of highly interlinked process activities, each representing a different 

customer process phase/sub-problem.  

Moreover, given that each customer comes up with their own idea of what activities to execute for solving 

a certain process phase/sub-problem (Günther and Van Der Aalst, 2007), the diversity and hence the number 
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of different activities are expected to be high, while the frequency of each individual activity is expected to 

be low. Furthermore, given that customers choose different activity combinations for solving a certain 

process phase/sub-problem and perform these activities in individual chronological order (Van Rijnsoever 

et al., 2012; Choi et al., 2011; Pan and Fesenmaier, 2006; Günther and Van Der Aalst, 2007), it can be 

expected that not only these activities, but also the edges between them, are infrequent. We conclude that 

CPNs, which represent processes performed in non-restrictive environments, comprise clusters containing 

infrequent activities that are connected via infrequent edges. According to the customer process literature, 

the number of these clusters is limited (e.g. Martin and Woodside, 2012; Van Rijnsoever et al., 2012; Choi 

et al., 2011; Nussbaumer et al., 2011; Pan and Fesenmaier, 2006); hence, the number of activities per cluster 

is expected to be high. 

Besides their large number of infrequent activities, CPNs contain several activities that are performed 

frequently. This phenomenon can be due, for example, to regulatory (e.g. in Germany one must visit a notary 

to buy a house) or rational reasons (e.g. for most people it makes sense to inspect a house before buying it; 

Savolainen, 2009). As each customer is free to determine how to approach such a frequent activity and what 

to do after completing it (Günther and Van Der Aalst, 2007), we expect that these frequent activities are 

connected with many different predecessor and successor activities. Consequently, frequent activities come 

with high numbers of edges. There is no common order of consecutive activities, as it would be the case if 

frequent activities had few edges. Overall, we can conclude the following: CPNs comprise clusters of 

highly-interlinked infrequent activities. This cluster structure is overlapped by the numerous edges of 

frequent activities interlinking them with numerous infrequent activities all across the network. Due to their 

many edges, we call these frequent activities “hyper-connectors”. 

Based on the available customer process knowledge discussed above, the following requirements (R) for a 

customer process analysis method can be formulated. The method should be capable of detecting clusters 

of infrequent activities in CPNs in spite of the overlapping impact of hyper-connectors (R1). It should 

generate preferably large clusters (R2) comprising activities with a maximized number of interconnections 

(R3). The method should be able to balance R2 and R3 (R4). Activities assigned to the same cluster should 

be related to each other from a content perspective, representing the solution of a certain sub-problem (R5). 

The resulting clusters’ positions in the overall CPN should reflect a reasonable order of dealing with these 

sub-problems (R6). In the next section, we present the components of the novel customer process analysis 

method and explain how they are meant to realize these requirements. 

4 The Customer Process Analysis Method 

The customer process analysis method is based on an existing clustering algorithm that is enhanced in a way 

that allows the generation of activity clusters by taking into account the specifics of CPNs. Algorithms 

suitable for performing clustering tasks in networks are available in the fields of process mining and social 

network analysis (SNA). 

Process mining is an approach to “unveil previously hidden knowledge” (Günther and Van Der Aalst, 2007, 

p. 328) in process data to understand the structure of real-world processes (Van Der Aalst, 2011). To deal 

with unstructured spaghetti models, which are a major challenge in process mining (Bose et al., 2013), 

several methods based on trace, hierarchical and activity clustering are suggested. Trace and hierarchical 

clustering aim at splitting up the overall process model into more easily understandable sub-models, the 

former by clustering event logs and the latter by aggregating process parts to a more abstract level. The 

precondition for clustering is the identification of similarities in the process data in the form of frequent 

patterns (Koschmider, 2017; Diamantini et al., 2013, 2016; Cho et al., 2014; Bose et al., 2011; Song et al., 

2008) or semantic similarities (Nguyen et al., 2016; Richetti et al., 2014). Additionally process attributes 

(Hompes et al., 2014; Cho et al., 2014; Seret et al., 2014) and existing domain knowledge (Yahya et al., 

2016) are utilized for clustering. However, due to the heterogeneity of customer processes, it is questionable 
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whether sufficient frequent patterns can be identified at activity level. Moreover, besides the names and 

chronological order of the activities, no further information is available for analysing customer processes. 

Furthermore, it cannot be assumed that customer processes contain semantically related elements.  

Clustering activities is another approach suggested for mining unstructured processes. Again, existing 

process knowledge (Baier and Mendling, 2013; Rozsnyai et al., 2011; Li et al., 2010; Günther and Van Der 

Aalst, 2006) or semantic similarities (Smirnov et al., 2012) are taken as a basis for clustering. Also, causal 

relations or frequent successions between activities are considered for clustering (Tax et al., 2016; Verbeek 

et al., 2016; Verbeek and Van Der Aalst, 2014; Van Dongen and Adriansyah, 2009). However, as the 

majority of customer process activities are infrequent, it is difficult to identify such relations in CPNs. 

These approaches are either applied to business processes (e.g. Nguyen et al., 2016; Verbeek et al., 2016) 

or to such parts of customer processes that are influenced by interaction with the given supplier (Diamantini 

et al., 2016; Song et al., 2008). Although these are unstructured real-life processes, they do not reach the 

degree of heterogeneity of customer processes made up of infrequent activity clusters. Two papers deal with 

mining of “activities of daily life”, recorded, for example, by a smart home application (Koschmider, 2017; 

Tax et al., 2016). Due to repetition and the existence of uniform patterns in many people’s daily routines 

(e.g. switching on lights at night, or going to work in the morning), these processes again are less 

heterogeneous than the customer processes discussed in this study. 

To analyse customer processes, we require a clustering approach that works without the need of having 

frequent sequences in the process data. Furthermore, the approach should utilize the only customer process 

activity information available to us: how activities are connected to each other. The following two process 

mining approaches meet these criteria: “fuzzy mining” (Günther and Van Der Aalst, 2007) and “activity 

mining” (Günther et al., 2009).  

Finding clusters of highly interlinked items within a network is also a common application in SNA (Borgatti 

et al., 2013). In this field, networks of persons interlinked by social ties, such as friendship, are investigated 

to find “cohesive sub-groups” – groups of people “who interact with each other to such an extent that they 

could be considered to be a separate entity” (Borgatti et al., 2013, p. 181). SNA has already been applied in 

process mining contexts to detect who is interacting with whom throughout a process (Mans et al., 2008; 

Van der Aalst and Song, 2004). However, to analyse CPNs, the SNA algorithm would be applied to the 

process activities themselves and not the individuals performing them. 

The SNA algorithms “Factions” and “Girvan-Newman” do not allow network items to be assigned to more 

than one cluster (Borgatti et al., 2013; Girvan and Newman, 2002; De Amorim et al., 1992; Glover, 1989, 

1990), which is in line with customer process literature. The “Girvan-Newman” algorithm strives to “find 

the structurally important edges whose removal fragments the network” (Borgatti et al., 2013, p. 195) into 

cohesive sub-groups. However, in “spaghetti-like” CPNs, the existence of such “structurally important 

edges” is questionable. The SNA algorithm “Factions” uses combinatorial optimization techniques to 

identify such sub-groups by assigning all network items randomly to one of the groups, calculating the 

overall fit, moving some items to other groups, recalculating the overall fit and repeating this procedure 

until no further improvement is possible (Borgatti et al., 2013; De Amorim et al., 1992; Glover, 1989, 1990). 

The factor determining how well an activity fits a group is the number of edges connecting the given activity 

with other group members. Hence, in addition to the two process mining approaches mentioned, the 

“Factions” algorithm also seems to be appropriate for identifying activity clusters in CPNs. 

Process mining tools focus on those items within a network which are frequent and hide all non-frequent 

items in order to build process models reflecting the most important aspects of the underlying processes 

(Günther and Van Der Aalst, 2007). The reason for this is that process mining tools were designed for 

detecting and analysing business processes which are represented best by those elements that occur 

repeatedly (Van Der Aalst, 2011; Günther et al., 2009; Günther and Van Der Aalst, 2007). Customer 

processes, by contrast, are performed in less restrictive environments and are extremely heterogeneous. 



Palvölgyi /A Customer Process Analysis Method  

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth, UK, 2018 6 

Thus, the structure of CPNs is characterized by those activities and edges which are non-frequent. In SNA 

the frequency of activities and edges is ignored and solely the structure of the network is analysed (Borgatti 

et al., 2013). Therefore, SNA algorithms seem to be more suitable for identifying infrequent activity clusters 

in CPNs than process mining approaches. Consequently, the new customer process analysis method is based 

on the SNA algorithm “Factions”. In Section 5.6, we validate this rationale by comparing the new method’s 

performance with that of the two identified process mining approaches. 

The extent to which sub-group members are tied together is measured by group density. The density of a 

group in a directed graph is D = e / n (n-1), with 0 ≤ D ≤ 1, where e = number of directed edges, and n = 

number of items belonging to the group (Borgatti et al., 2013). For small groups it is easier to reach high 

densities due to their smaller maximal number of potential edges. Hence, generating activity clusters by 

considering their densities favours the generation of many small clusters, which is in contrast to the customer 

process literature. To mitigate this issue and meet the requirements defined earlier in this section, we require 

a measure that rewards both an increasing density (R3) and a growing number of activities per cluster (R2) 

to the same extent (R4). Hence, this measure should be a strictly monotonically increasing and symmetric 

function of these two values. Calculating the simple factor product of a cluster’s density and the number of 

activities within that cluster fulfils these criteria. We call this new measure “weighted density”. It is meant 

to “reward” large activity groups with a higher value and “punish” small groups accordingly.  

The customer process analysis method comprises a round-based approach to detect infrequent activity 

clusters in CPNs, in spite of the existence of hyper-connectors that overlap the cluster structure with their 

many edges. First, the process activities are sorted by number of edges in ascending order. Then, the 

activities are added individually to the network in the same order. After each round of adding one further 

activity, the “Factions” algorithm is applied to the network and the sum of the generated clusters' weighted 

densities calculated. Following the customer process literature, we do not regard pairs as groups and 

therefore calculate the weighted density sum by considering activity groups containing three or more 

activities only. The round with the maximum weighted density sum is identified. This procedure allows 

infrequent activity clusters to be generated first and identifies the round in which the addition of activities 

with many edges starts to spoil the clusters’ generation, which addresses R1.  

The results of the round-based procedure are (1) those clusters that were generated in the round with the 

maximum weighted density sum and (2) several activities (in fact, the hyper-connectors) that would have 

been added in later rounds and therefore are not yet assigned to any cluster. Again, we do not regard pairs 

as groups; therefore, clusters containing two activities are split up and their activities added to those 

currently unassigned. These leftover activities are assigned to the identified clusters by checking for each 

of the activities in which group they would generate maximum density gain. The assigned activities must 

not be added to their new clusters before the optimal assignment for each activity is identified, otherwise 

the first hyper-connector added to one of the clusters would, with its many edges, pull the remaining 

activities into the same cluster. This would inflate the respective cluster and significantly worsen its density. 

The final result of the described procedures is a set of clusters. Each cluster contains a number of highly 

interlinked activities that are related to each other from a content perspective (R5). Moreover, the order of 

these clusters in the CPN is expected be reasonable in terms of their content (R6). 

Following the DSR paradigm, we performed three design cycles for designing the customer process analysis 

method (Hevner and Chatterjee, 2010; Hevner et al., 2004). The method can be summarized as follows. 

Build up the process network P by adding its process activities according to the number of their edges in 

ascending order individually to the network. After each round, apply the SNA algorithm “Factions” to the 

network data and calculate the sum of weighted densities of clusters containing at least three activities. 

Identify the round with the maximum weighted density sum. Split up those of the resulting clusters that 

contain only two activities and put their activities aside for reassignment.  
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This procedure generates the following outputs: (1) the set of clusters B identified in the round with the 

maximum weighted density sum, excluding clusters containing two activities and (2) the set of free activities 

F not yet assigned to any cluster. The subsequent procedure aims to assign each activity Ai ∈ F to that cluster 

Cj ∈ B where maximum density gain is reached by adding Ai. The density gain of cluster Cj by adding Ai is 

Gij = D2 – D1, where D1 is the initial density of Cj, and D2 is its density after adding Ai. We use the following 

running indices: 0 < i ≤ number of activities Ai ∈ F; and 0 < j ≤ number of clusters Cj ∈ B. 

algorithm ActivityAssignment (P, B, F)  

repeat 

     for each activity Ai ∈ F do  

          calculate density gain Gij(Ai, Cj); 

     for each activity Ai ∈ F do  

          if Gik > 0, with Gik = max {Gij}, where k refers to the cluster with maximal positive density gain, do  

               put Ai into cluster Ck (make random selection if more such clusters exist); 

          else  

               leave Ai in F;  

until F = { } or Gij ≤ 0 for each i and each j; 

return B, F; 

This method is suitable for analysing spaghetti-like CPNs, made up of customer processes that differ 

considerably regarding activities and their order, reflecting unstructured and individual behaviour in a less 

restrictive environment. An indicator for such a diversity of activity sequences in customer processes is a 

strong positive correlation of process activities’ frequency with their number of edges. The method is 

unsuitable for analysing customer processes in restrictive environments, where customers are forced to 

perform steps in a certain order. The method performs well for customer processes including several 

observable activities, like when purchasing complex services. It is less suitable for very short and rather 

emotionally triggered processes.  

5 Empirical Study 

This section evaluates the designed method for detecting high-density activity clusters within CPNs. First, 

we test whether the developed customer process analysis method is indeed capable of identifying high-

density activity clusters in customer processes. We do this by applying the method on a dataset representing 

the customer process “Buying a house/apartment”.  

Then we assess the validity and utility of the results produced by the method (as suggested by Gregor and 

Hevner, 2013). For evaluating the validity of the resulting activity clusters, we consider their densities and 

examine from a content perspective whether the activities within each cluster are similar. Additionally, we 

investigate whether the positioning of the clusters in the network makes sense. To perform this, we require 

the process network on a cluster level, which we generate by replacing the activities in the individual 

processes by their respective clusters and merging the resulting high-level processes into a process network 

by applying process mining techniques (Günther and Van Der Aalst, 2007). In the succeeding section we 

demonstrate the utility of the generated clusters by presenting how they can be utilized to identify different 

customer groups, their specific processes and the issues they face when moving through their processes. For 

this purpose, we apply the sequence mining algorithm CM-SPAM (Fournier-Viger et al., 2014) on the high-

level processes to identify frequent sequences on a cluster level. Then we cluster customers according to the 

type of frequent sequence they have performed and their previous knowledge and experience of the products 

and processes involved, as these are seen as relevant for differing between purchasing behaviours in the 

literature (Jaillet, 2003; Flynn and Goldsmith, 1999; Brucks, 1985).  
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Subsequently we apply the method as a robustness check on a second dataset, reflecting the customer 

process “Making an investment”, in order to demonstrate that it is valuable for analysing customer processes 

in general. Finally, we compare the performance of our designed method with those of the identified 

alternative solution technologies (as suggested by Venable, 2006): the process mining approaches “fuzzy 

mining” (Günther and Van Der Aalst, 2007) and “activity mining” (Günther et al., 2009).  

5.1 Data 

A first set of customer process data was gathered by conducting a customer survey at a German direct bank. 

In an online survey, individual customers who had a mortgage from this bank were asked about their “buying 

a house/apartment” process. First, customers were asked to write each of their process activities in free-text 

fields and/or choose (further) appropriate activities from an activity list entered by previously questioned 

customer groups. Next, customers were asked to order the entered/chosen activities chronologically to 

obtain their individual processes. In total, 321 individual customer processes were collected. By applying 

the constant comparison procedure, 145 activities were derived from the text data entered (Glaser, 1965). 

Two researchers independently mapped the free-text field entries with the 145 activities. Conflicting cases 

were resolved by discussing them and agreeing the most appropriate match. The most frequent 50% of the 

total 145 standard activities represented 95% of activity volume. Hence, we deleted 73 less frequent 

activities with the aim of increasing efficiency by analysing a reduced dataset (Han et al., 2011).  

Additionally, we measured customers’ subjective knowledge and experience concerning the 

products/services involved in the customer process “buying a house/apartment”: the house and the mortgage 

(following Park and Moon, 2003; Flynn and Goldsmith, 1999; Johnson and Russo, 1984; Park and Lessig, 

1981; Bettman and Park, 1980). We also measured participants’ knowledge and experience concerning the 

processes of purchasing those products/services (Flynn and Goldsmith, 1999). Furthermore, we asked 

customers to indicate on a seven-point Likert scale the extent to which they are satisfied with their “buying 

a house/apartment” process (with 7 = very satisfied and 1 = very dissatisfied). 

Via the same procedure, we collected the “Making an investment” processes of 49 persons. We chose this 

process as this study focuses on analysing customer processes entailing the purchase of a complex service. 

Services allowing the customer to make an investment are regarded as such (Nussbaumer et al., 2011; Gough 

and Nurullah, 2009; Vroomen et al., 2005).  

5.2 Primary study results 

When arranging the 72 available customer process activities in the dataset according to the number of edges 

in ascending order (see left of Figure 1), about two-thirds of activities have fewer than the average of 27 

edges per activity, while at the other end of the exponentially shaped curve there are activities with edge 

numbers far beyond average ‒ the “hyper-connectors”. A Spearman’s correlation test revealed a strong 

positive correlation between frequency of activities and number of edges, which is statistically significant, 

rs = 0.893, p = 0.000. This means that in individual processes the same activity is indeed approached from 

different predecessor activities and followed by different successor activities.  

We applied process mining techniques to integrate all individual customer processes into a process network 

containing the 72 activities and the edges between them (Günther and Van Der Aalst, 2007). As expected, 

the resulting CPN was a chaotic “spaghetti-like real-life process” (Swinnen et al., 2012, p. 89). To detect 

cohesive sub-groups of activities within the CPN, we applied the developed customer process analysis 

method and utilized the SNA software UCINET with its plugin NetDraw (Borgatti et al., 2002). 



Palvölgyi /A Customer Process Analysis Method  

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth, UK, 2018 9 

 

Figure 1.   Hyper-connectors spoil the generation of high-density activity clusters. 

As shown in Figure 2, the sum of weighted densities across all generated groups first increases, while adding 

one activity after another to the network, but decreases again when hyper-connectors are included. Their 

numerous edges blur the network structure built in the previous rounds. The reason can be seen on the right 

of Figure 1: initially the number of clusters generated per additional round increases, with each group 

contributing to the increasing density sum. As of Round 49 the number of clusters remains quite stable, 

while the number of activities added to the clusters keeps growing, leading to increasing cluster sizes. When 

adding the hyper-connectors in the last rounds, the number of clusters rapidly decreases. The available 

process activities are allocated to fewer groups, leading to even more activities per group. For larger groups 

it is harder to reach high densities due to their higher maximal number of potential edges. Hence both the 

smaller number of clusters and the larger number of activities per cluster yield lower densities for groups 

generated in the last rounds. Due to their interconnections to numerous activities all across the network, the 

hyper-connectors seemingly have the effect of merging the initially more but smaller groups into fewer but 

larger ones, bringing down the densities of these groups. Considering the clusters’ density sum per round 

makes the effect of adding hyper-connectors to the network even more visible. In contrast to the weighted 

density sum, this measure does not “reward” the occurrence of large groups in the last rounds. Therefore, 

as can be seen in the middle of Figure 1, the density sum rapidly decreases after having reached a maximum 

in Round 48. 

 

Figure 2. Identification of best round by weighted density sum measure. 

As displayed in Figure 2, the maximum value of the weighted density sum of groups with more than two 

activities was 35.57 and was generated in Round 65. As it can be seen on the right of Figure 1, Round 65 is 

the last spot before the number of clusters and their density values start decreasing. The 14 activity clusters 

generated in Round 65 had an overall density of 6.85 (as shown in Table 1). Seven activities had not been 

assigned to any group yet. Applying the above procedure on the results of Round 65 for assigning the 

remaining activities led to 14 final clusters with a density sum of 10.31.  

We performed the same assignment procedure for the groups identified in Round 48 ‒ the round with the 

maximum density sum. Table 1 shows that the final result of Round 48 (after activity assignment) is 

outperformed by that of Round 65 regarding density sum. Hence, measuring the sum of weighted densities 

of groups with more than two activities is indeed a better indicator for identifying the round with the best 

activity groups than considering the groups’ density sum. 



Palvölgyi /A Customer Process Analysis Method  

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth, UK, 2018 10 

Table 1. Results of clustering approaches. 

All in all, the novel customer process analysis method succeeded in identifying 14 activity clusters in the 

CPN by preventing hyper-connectors from spoiling cluster generation (R1). The method identified the round 

where the clusters profited from increasing activity counts (as displayed on the right of Figure 1), but still 

showed high densities (R2, R3, R4). These clusters served as a starting point for assigning additional 

activities to the clusters and hence further increasing the clusters’ sizes and average densities (R2, R3, R4). 

5.3 Validity of results 

The density values of the detected activity clusters indicate to which extent the members of each group are 

interlinked with each other. The average density per cluster is 0.74, which can be regarded as a good result 

(R3), especially when compared with the overall CPN’s density of 0.19 (Borgatti et al., 2013).  

 

Figure 3. Excerpt of the CPN “Buying a house/apartment” on a cluster level, including the contents 

of three selected clusters. 

Each identified cluster contains activities that are related to each other from a content perspective and 

represent a certain sub-problem that has to be handled in the course of the customer process (R5). This has 

been confirmed by subject-matter experts of the direct bank whose customers had been interrogated for this 

study, and is also in line with previous observations reported in the customer process literature (e.g. Pan and 
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Activity Assignment Algorithm 
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Sum 
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Avg. 

Density 

Density 

Sum 

SNA, Round 48 15 3.20 0.52 7.85 15.94 12 5.25 0.68 8.15 

SNA, Round 65 14 4.64 0.49 6.85 35.57 14 4.36 0.74 10.31 

Fuzzy Mining, 

Round 70 
14 3.93 0.36 5.03 14.71 14 4.21 0.57 7.95 

Activity Mining, 

Round 71 
12 5.92 0.36 4.35 34.85 9 7.00 0.68 6.10 
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Fesenmaier, 2006). The contents of three clusters are displayed as examples in Figure 3. Also, the 

arrangement of the clusters in the network does make sense concerning their contents, which also has been 

confirmed by subject-matter experts (R6). For example, clusters containing search activities are placed near 

the starting point of the network, while clusters around signing the mortgage or the purchase contract are 

found at a later stage. All in all, we can state that the designed method detected actually existing sub-

structures in customer processes. 

5.4 Utility of results 

Sequence mining is an approach to detect patterns – that is, frequently occurring sequences – in sequential 

data (Fournier-Viger et al., 2014). Uncovering the cluster structure of CPNs allows processes to be mined 

not only on an activity but also on a cluster level. This offers additional and previously unavailable chances 

to gain further insights into customer processes. In the following we present a case example to demonstrate 

how sequential patterns detected in customer processes on a cluster level can be used for identifying issues 

different customer groups face in the course of their processes. 

We applied the sequence mining algorithm CM-SPAM (Fournier-Viger et al., 2014) on the processes at 

cluster level and identified the following frequent sequences. Some customers start dealing with the topic 

of mortgages before searching for and/or inspecting eligible properties (Sequence A). Other customers 

perform these activities after having searched for and/or visited properties (Sequence B). When performing 

a two-step cluster analysis, an attribute indicating whether the respective customer performed Sequence A 

or B and two further experience-related attributes served as the most relevant predictors for revealing three 

clusters of customers: 34.8% of customers did not deal with the mortgage topic before searching for and/or 

visiting properties (Sequence B) and had high levels of experience and knowledge concerning the relevant 

products/services and processes when buying a house. Therefore we call them the Experienced. Seemingly 

the Experienced can assess their financial abilities without gathering further information about mortgages. 

Consequently they reach their process objective faster and are more satisfied with the overall process than 

other groups. The second cluster is made up of 29.4% of customers. According to a Kruskal-Wallis test, 

they are significantly less experienced and have significantly less knowledge than the Experienced (Kruskal 

and Wallis, 1952). They have difficulties in assessing financial options and therefore inform themselves 

about mortgages before searching for/visiting properties (Sequence A). The third group has significantly 

less experience and knowledge than the second cluster, therefore we call them the Greenhorns. They 

immediately start searching for and/or visiting properties, without gathering information about mortgages 

in advance (Sequence B). Furthermore, they are less satisfied with the process than other customers.  

Seemingly the Greenhorns have so little knowledge and experience available that they fail to come up with 

the idea of checking information about mortgages first, even though this might have been helpful for them. 

Hence, offering such information via the bank’s channels (e.g. the website) will not serve the Greenhorns. 

Instead, they have to be provided with support in such a way that they receive it automatically when moving 

through the process. For example, the bank could cooperate with parties the customer is in contact with at 

an early stage, such as property developers or real estate agents, and empower them to provide the customer 

with relevant information. Another option is the implementation of an integrated financial services and real 

estate online portal, providing Greenhorns with both at once, real estate offerings and matching mortgages. 

These results show that identification of activity clusters in CPNs is useful for detecting patterns in customer 

processes on a cluster level, which can reveal further insights about different customer types and their issues 

and needs. Such insights can be utilized for identifying opportunities for customer-centric service design. 

5.5 Secondary study results 

We applied the customer process analysis method on a second dataset, reflecting the customer process 

“Making an investment”, and succeeded in identifying 8 clusters, containing an average of 3.13 activities 
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each, with a density sum of 4.42. As the average density sum of 0.44 per cluster is higher than the overall 

network density of 0.11, and as the grouping of activities into different clusters again makes sense from a 

content perspective, we can state that the developed method also succeeded in identifying cohesive activity 

groups in this network, and hence can be considered generically applicable for the analysis of customer 

processes performed in less restrictive environments. 

5.6 Comparison with other solution technologies 

Two process mining approaches, “fuzzy mining” (Günther and Van Der Aalst, 2007) and “activity mining” 

(Günther et al., 2009), have been identified as alternative solution technologies in Section 4 of this study. 

The former is implemented as the Fuzzy Miner plugin and the latter as the Stream Scope plugin in the ProM 

framework (Van Dongen et al., 2005). In the following we report the results of comparing the performance 

of the developed method with those of the alternative solution technologies. 

We applied the Fuzzy Miner on the data reflecting the customer process “Buying a house/apartment” in the 

round-based manner reported. The highest weighted density sum achieved by this approach was 14.71 in 

Round 70. When applying the Fuzzy Miner there was no decline of density sum in the last third of the 72 

rounds. This is because the Fuzzy Miner does not force each activity into a group, as is done by the SNA 

Factions algorithm. Instead the most frequent activities are left outside. As the frequency of activities goes 

hand in hand with the number of edges, those activities are in fact the hyper-connectors. Consequently they 

do not “spoil” the generated activity clusters. But the round-based approach can still be regarded as 

beneficial, as the maximum density occurs before the last round. The activity-assignment procedure led to 

the generation of 14 clusters with an overall density sum of 7.95 (displayed in Table 1). 

As a next step we tested the ability of the Stream Scope ProM plugin to generate high-density activity groups 

(Günther et al., 2009; Van Dongen et al., 2005). The activity mining algorithm in that tool generates clusters 

by identifying highly correlated activities. Activities are seen as highly correlated if they “frequently occur 

closely together” (Günther et al., 2009, p. 130). By considering not only one but a certain number of previous 

activities when searching for correlations in processes, the algorithm can identify correlations in highly 

unstructured and heterogeneous process networks (Günther et al., 2009). We applied this tool in the same 

round-based approach on our network data. With a weighted density sum of 34.85, the best results were 

found in Round 71. Again the hyper-connectors added in the last rounds did not have such a big impact on 

the quality of the resulting activity groups. The reason is that the activity mining algorithm primarily 

searches for pairs of highly correlated activities, before merging the identified pairs into larger clusters. 

Therefore the hyper-connectors have little chance to spoil activity-cluster detection. The round-based 

approach can still be considered beneficial, as the maximum density does not occur in the last but the 

penultimate round. Then we applied the activity-assignment procedure on the clusters identified in Round 

71, which led to the generation of 9 groups with a density sum of 6.1. Thus none of the alternative solution 

technologies succeeded in outperforming the results generated by our suggested round-based SNA approach 

for identifying high-density activity clusters in CPNs. 

6 Summary and Implications 

Following the DSR paradigm, we designed a method for detecting clusters of highly interlinked activities 

in CPNs by extending an existing SNA algorithm (Hevner and Chatterjee, 2010; Hevner et al., 2004). We 

applied the new method on two datasets and have shown that the resulting clusters make sense from both a 

measurement and a content perspective. This confirmed that the method is capable of analysing customer 

processes performed in less restrictive environments. Finally we demonstrated that the performance of the 

novel method outperforms other solution technologies from the field of process mining (Venable, 2006). 

By designing this method, we contributed to closing the research gap explained in the literature review in 

this paper. In contrast to approaches in the channel/product choice sequence literature (e.g. Van Rijnsoever 
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et al., 2012; Prinzie and Van Den Poel, 2011; Frambach et al., 2007), process activities are not cut off but 

integrated into a more generic view on a data-driven and hence customer-behaviour-driven basis when 

building activity clusters. Hence, contrary to approaches reported in the clickstream literature (e.g. Duan 

and Zhang, 2014; Chen et al., 2013; Salehi, 2013; Fournier-Viger et al., 2012), the designed method allows 

the analysis of customer processes at the detailed level of process activities and comprehensively on a cluster 

level. This allows to understand the activity-cluster structure of customer processes and increases the 

chances of revealing patterns in them.  

In a case example, we showed that these patterns are helpful for identifying issues different customer groups 

face in the course of their processes. These insights can be translated into opportunities for customer-centric 

service design. But the process structure itself can also be considered for this purpose. For example, websites 

or mobile apps meant to support customers in performing a specific process type can be structured according 

to activity clusters and hence offer customers an intuitively usable service (Schmidt-Rauch and Schwabe, 

2014; Dohmen et al., 2009). Furthermore, analogous to business process optimization, the CPN structure 

can be improved: services could make certain customer activities or activity clusters obsolete, for instance 

by automatizing them or sourcing them from customers, or by changing the cluster order (Dumas et al., 

2013). All in all, this method for customer process analysis offers the possibility to gain further insights 

about what customers do and what they might need in the course of their processes. Such knowledge can be 

utilized to better align service processes with customer processes to enable customers to reach their process 

goals better, faster and with less effort (Grönroos and Ravald, 2011; Heinonen et al., 2010). Thus, by 

introducing the novel customer process analysis method, we contribute to realizing an alignment of 

customer and business processes as demanded by the paradigm of customer-dominant logic of service 

(Grönroos and Ravald, 2011; Heinonen et al., 2010). 

This paper provides new insights into customer process theory. First, it confirms that customer processes, 

which comprise the purchase of a complex service and are performed in non-restrictive environments, are 

extremely heterogeneous, making pattern detection difficult. This non-homogeneity is reflected by the broad 

range of activity combinations performed by customers in the course of their processes. However, there are 

also activities which occur in almost every process. Each of these high-frequency activities, which we call 

hyper-connectors, is approached from and succeeded by many different activities, which again shows that 

customers move through processes in a unique way. With their many edges, hyper-connectors overlap the 

underlying cluster structure and prevent the identification of cohesive activity groups when applying SNA 

algorithms. The suggested round-based approach mitigates this issue by identifying hyper-connectors that 

must be excluded from the network to be able to detect activity clusters.  

Furthermore, we discovered that not only information search (Pan and Fesenmaier, 2006), but the complete 

customer process comprises a series of sub-problems that must be resolved to reach the process objective. 

This is also supported by previous observations that the search phase is carried out not once but repeatedly 

in the course of a customer process (Choi et al., 2011). This makes sense, as there might be several sub-

problems requiring repeated search activities to resolve; for instance, in the house-buying process the sub-

problems “Finding an appropriate property”, “Finding an appropriate mortgage offer” and “Familiarizing 

oneself with the topic ‘mortgages’”. Each sub-problem is represented by a cluster of highly interlinked 

activities. This means that a certain number of activities is available for resolving each sub-problem and 

each customer chooses one or more of these activities to handle the respective sub-problem. Interestingly, 

there are also sub-problems comprising activities for solving two issues, which means customers have to 

work in parallel on two interdependent topics, making the process even more cumbersome. By applying the 

designed method on a second dataset representing another customer process, we demonstrated that the 

insights gained on customer processes are in general valid for these types of processes. 

Designing an IT artefact that is capable of performing the procedures of the customer process analysis 

method developed will be the next step of this research. Furthermore, the design of an IT artefact which 

additionally allows the user to visualize and further analyse CPNs would be helpful. 
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