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Abstract: 

A growing field, data science (and, by extension, analytics) integrates concepts across a range of domains, such as 
computer science, information systems, and statistics. While the number of data science programs continues to 
increase, few discussions have examined how we should define this emerging educational field. With this in mind, 
during the 23rd Americas Conference on Information Systems (AMCIS’17), a panel discussion explored emerging 
questions regarding data science and analytics education. This paper reports on that panel discussion, which focused 
on questions such as what a data science degree is and what a data science program’s learning objectives are. The 
panel also debated if there should be different types of data science-related programs (such as an applied data 
science program or a business analytics program) and, if so, should there be a common core across the different 
variations of programs. Information system educators who can gain a better understanding of current trends in data 
science/analytics education and other information system researchers who are interested in how data 
science/analytics might impact the broader field of information systems and management education should find 
interest in this report. 
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1 Introduction 

The data science field focuses on studying the computational principles, methods, and systems for 
extracting and structuring knowledge from data and applying and using those principles. Due to the 
increasing demand for data scientists and a data-literate workforce, colleges and universities have begun 
to develop and offer a growing number of data science programs (O’Neil, 2014). However, some 
researchers have noted that the education and training of data scientists currently lacks a commonly 
accepted set of learning objectives (Demchenko, Belloum, & Wiktorski, 2017). In other words, we lack 
commonly accepted norms about the learning outcomes for a data science program. In fact, many have 
expressed hope that we will soon more clearly understand what to expect in a data science program. For 
example, Majumder and Cheng (2017) note that “teaching courses in a data science program will face 
higher requirements as the definition of data science is refined”. Hence, we need to discuss what 
constitutes a data science degree.  

This paper reports on the results of a panel discussion on these emerging topics that took place during the 
23rd Americas Conference on Information Systems (AMCIS’17) in Boston, Massachusetts. Specifically, it 
proceeds as follows: in Section 2, we provide some background information on the topic. In Section 3, we 
review the organization of the panel and, in Section 4, discuss the possible future demand for data 
science programs. In Section 5, we summarize the discussion with respect to the different types (or 
“flavors”) of data science programs and, in Section 6, summarize the discussion with respect to the roles 
in a data science team and how they might relate to the different types of data science programs. Finally, 
in Section 7, we conclude the paper. 

2 Background 

While researchers have conducted some work on designing a data science curriculum (Ramamurthy, 
2016; Asomoah, Doran & Schiller, 2016; Saltz & Heckman, 2016; Anderson, Bowring, McCauley, 
Pothering, & Starr, 2014), these previous efforts have not explored the difference between a data science 
degree, an applied data science degree, and an analytics degree, nor have they made any effort to take a 
holistic look about what should or should not be included in any of these programs. Others have studied 
data analytical programs, such as Strader and Bryant (2017), but not compared those programs to data 
science programs.  

However, in the past year, researchers have started to at least broach the topic of what a data science 
program should include. For example, some have focused on the level of mathematics/statistics that a 
data science degree should require (Hardin & Norton, 2017) and argued that students who do not study 
math run the peril of black box thinking (e.g., with graduates who might use machine-learning algorithms 
but not understand the implications of doing so). In a similar fashion, Majumder and Cheng (2017) focus 
on the importance of information visualization in a data science program. Others still, such as Doan 
(2017), argue that we need to increase our focus on data wrangling.  

Finally, the data science roles that a data science project requires and the skills that those roles require have 
also begun to gain increased attention (Lyon & Mattern, 2017; Saltz & Grady, 2017). These roles typically 
include statisticians, mathematicians, data engineers, data analysts, and data scientists. However, we do not 
know whether a data science program should address all of these roles or if each role requires a different 
academic program. We also do not know whether a single person might span multiple roles.  

3 Organization of the Panel 

The data science education panel focused on fostering a debate about the emerging field of data 
science/analytics education. The panel comprised experts who had extensive knowledge of both data 
science academic programs and and what organizations in practice desire and demand in their newly 
trained data scientists. Hence, the panelists could discuss the topic from both a practitioner and academic 
perspective.  

The panel targeted information system educators who would benefit from better understanding current 
trends in data science/analytics education. Other individuals interested in data science or learning what it 
entails could also have found this panel of interest in that attendees could learn to appreciate how the 
trends in data science/analytics might impact the broader field of information systems and management 
education. 
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Specifically, the debate focused on questions such as what the key learning objectives for data science 
programs are and should data science/analytics education come in different “flavors” that lea to different 
degrees. Note that, for each of these questions, the panel did not make formal presentations; rather, each 
panelist took turns sharing their thoughts on each topic. In other words, the panel explored these 
questions via a debate, and, while the panelists provided the initial points of view, members in the 
audience also joined the discussion as equal participants. 

4 The Demand for Data Science Programs 

The panelists and attendees agreed that the demand for these types of programs has been real, which 
the large turnout for the panel certainly validated. They also noted that the wide range of well-paying jobs 
that recent data science/analytics graduates find after graduation has triggered much demand from 
students to obtain degrees in the field.  

However, the panel did not agree about how the field would evolve. For example, some thought that the 
demand for data science and analytical degrees will decrease but that the demand for a more data-literate 
workforce will become pervasive. In other words, as one panelist noted, how the need is satisfied might 
change, but the need itself will not go away. In addition, a different panel member cautioned that companies 
still struggle to get value from their data and so the field has room for growth, though the panel member 
noted the possibility that organizations could become disillusioned with data science and scale back their 
data-driven investments. In the end, the panel seemed to generally feel that demand for data science 
courses would continue to increase, but some thought that a plateau in the number of students who want to 
earn a degree in data science might emerge. In contrast, others felt that data science would emerge as a 
stable new domain with a steady stream of students who remain interested in data science programs. 

5 The Different Flavors of Data Science Education 

The panel spent much time discussing the different types of data science (or data analytics) programs. 
Panelists noted that multiple types of data science programs already exist. One panelist (Sharda) even 
joked that perhaps “50 shades of data science programs” (across statistics, math, business schools, 
computer science, operation research and many other departments) exist. Granville (2014) notes six to 
nine categories of data scientists. Hence, researchers have already answered the question as to whether 
multiple flavors of data science education should exist in the affirmative. However, the panel noted that 
the field lacks a consistent vocabulary to describe these different programs. Given the current situation, 
where we do not have a common vocabulary, each person (students, employers, faculty members) on 
their own needs to figure out how the different programs fit into their needs and desires, which leads to the 
potential of a mismatch between interests and sills. For example, a student might have been taught in one 
type of data science program but an organization might think it hired a person with a different set of skills. 

5.1 Defining the Different Types Data Science Programs  

As we note above in exploring the different types of programs, programs differ in terms of the level of 
programming proficiency and the amount of statistics knowledge expected from program graduates, which 
impacts a student’s ability to wrangle data or build new machine-learning algorithms. On the other hand, 
programs that focus less on programming typically have a higher focus on the ability to understand the 
client domain and how one might leverage data for actionable insight. 

While an almost infinite set of variations with respect to the types of data science programs may exist, at a 
high level, a panelist suggested that the different data science programs might be analogous to the 
difference between MIS and CS programs in terms of technical depth and the focus on business analysis. 
In a similar vein, a different panelist agreed that one could trace much of the difference in programs to the 
department that sponsors the program. Many business schools, for example, offer a more business-
focused degree, while computer science departments offer a more technical program. However, different 
universities do not consistently use the names of the programs, such as data science or data analytics. 

During our discussion, we defined and described three different flavors of data science programs. These 
three types of programs varied from a technical focus at one end of the spectrum to a business 
analysis/client focus at the other end. These three programs, which we refer to as data analytics, applied 
data science, and foundational data science, all provide an understanding of data storage and access, 
data wrangling and data mining but at a different level of technical depth (see Figure 1 for a summary). 
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Figure 1. Exploring Three Data Science Programs 

At a high level, all programs have similar objectives, such as ensuring that graduates can generate insight 
from data via visualization and machine learning, can obtain actionable insight that an organization will 
find useful, and can understand the potential bias that might impact an analysis and how to wrangle/clean 
the data. However, each of the programs has a different focus/depth. In this section, we briefly describe 
each program. 

5.1.1 Data/Business Analytics 

Data (or business) analytics programs, which business schools often teach, focuses on ensuring that 
students know how to use data science and data analytics concepts to obtain a competitive advantage by 
enabling them to best understand the business context of how they might leverage data and present 
insights to key decision makers. These programs strongly emphasize “soft skills”. They should teach 
students to use high-level tools such as Tableau, SAS, and IBM SPSS Modeler to generate data insights. 
Essentially, a program in data analytics enables a student to use pre-existing tools and develop basic 
scripts (often in a language such as R and Python). Some panelists noted that the use of R for developing 
basic scripts represents a growing trend in business analytics programs, but others cautioned that 
programming does not represent a key aspect of this program type. However, most agreed that these 
programs would not develop students capable of filling programming positions. This program type has two 
key advantages: it is open to a broad range of non-technical students, and it teaches students how to 
apply data science concepts in a business context. Such programs are also likely to become specialized 
in particular domains such as health analytics, sports analytics, marketing analytics, location analytics, 
and so on. However, these programs’ ability to teach students to translate business problems into 
potential analytics projects and, conversely, the results of analytics projects into insights for decision 
making represent their most critical success factor. Thus, these programs need to teach visualization and 
communication skills more than the other types of data science programs. 

5.1.2 Applied Data Science 

Applied data science programs have a more technical focus as compared to a data analytics program 
and enable students to use advanced data science techniques to generate insights from data. Students in 
this type of program typically use programming languages such as R and Python to wrangle data and can 
create advanced scripts to do, for example, machine learning using the extensive set of available libraries 
in R and Python. An applied data science program provides students with the technical depth to develop 
proficiency in languages such as R and Python so that they can effectively perform tasks such as data 
wrangling and more advanced machine learning. This type of program also typically exposes students to 
big data techniques and technologies, such as Hadoop, but it does not produce big data developers. In 
the end, this type of program does not focus on teaching students to develop new machine-learning 
algorithms but focuses on applying the full range of data science concepts to deliver actionable data 
insights. These programs typically focus on data engineering such that students can bring data from 
multiple sources together through various APIs, optimize the data storage, and perhaps also focus on 
real-time applications of analytics through productizing the applications. Due to the growth of data science 
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offerings through cloud-based platforms, individuals with skills from these programs also need to be 
conversant with cloud-based applications. In many applications, they also need to interact with domain 
experts, so they need soft skills as well, although less so than individuals who undertake data (or 
business) analytics programs. 

5.1.3 Foundational Data Science 

Foundational data science programs focus on teaching advanced programming, mathematical, and 
statistical knowledge so that graduates can develop new and enhanced machine-learning algorithms or 
models. Graduates from these programs should know how to use advanced programming, operations 
research, and/or statistics to generate new machine-learning algorithms. Graduates from these programs 
should also understand and use the technical stack required to analyze very large data sets and be able 
to enhance these big data technologies. While these students will typically have less exposure to the 
business context of data science, they should be able to provide tools that other data scientists and data 
analysts can leverage in their analysis.  

5.2 Key Learning Objectives  

As we note above, all the programs have similar high-level learning objectives. The panel generally 
agreed that all data science programs should prepare students to collect, organize, and manage data and 
to identify patterns in the data using a combination of visualization, statistical analysis, and data-mining 
techniques. In fact, even though the panelists discussed a broad range of programs, they agreed that, at a 
high level, all programs have similar objectives, which includes the ability to generate insight from data via 
visualization and machine learning, to produce actionable insight that organizations find useful, and to 
understand potential bias that might impact the analysis and how to wrangle/clean the data.  

However, the question about the most important skills that students should acquire in a program saw 
much more debate mostly (again) due to due to the different flavors of data science. Some programs, for 
example, try to ensure a high level of technical competence in areas such as the establishing new 
statistical models, implementing new machine-learning algorithms, and optimizing existing machine-
learning techniques. Other programs focus on teaching students to understand business processes and 
possible data sources and to effectively communicate with people working in other fields.  

In any case, the panel clearly agreed that one program could not cover the full range of potential learning 
outcomes. In other words, one program cannot and should not cover all the skills that all possible roles in 
a data science team require. Since the programs have a different focus/depth across a range of skills, 
they will have different learning outcomes even though they may have similar high-level learning 
objectives. For example, while the panel agreed that all data science programs need some level of 
programming, the level varied from high-level scripting to significant programming capabilities. In the end, 
the panel agreed that the depth of the learning objectives for a data science program depended highly on 
the type of the data science program.  

Table 1 shows the learning outcomes that one can typically find in the different data science/analytics 
programs and the level of depth/focus for each type of program’s learning outcomes. In the rest of this 
section, we briefly describe each of these learning outcomes. 

• Assess an organization’s data analytics needs: explain how to use data assets to develop a 
competitive advantage.  

• Collect, clean, organize and manage data: how to collect, clean, and prepare data that one 
might leverage in a data science analytical technique or visualization (includes evaluating the 
data in terms of source quality and its volume, frequency, and flow). 

• Identify patterns in data: identify and classify relevant variables for data science tasks using 
various machine-learning techniques. Be able to choose and apply the appropriate tools and 
methodologies to solve data science tasks and assess the models used to solve data science 
tasks. 

• Develop new machine-learning algorithms: create new algorithms or improve existing 
algorithms such that other data scientists can leverage them. 

• Create actionable insight: ensure that organizations find the analysis results useful and that 
they can lead to changes in organizational strategy and plans. More generally, integrate data 
science capabilities into the formation of a situation analysis. Identify and appraise the 
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leadership and management skills required to direct a team of data science professionals 
toward meeting organizational goals. 

• Communicate the findings: write and orally communicate technical materials at an 
appropriate level of technical/mathematical level of detail. Specifically, help non-technical 
professionals visualize, explore, and act on data science findings.  

• Integrate ethics and privacy information: identify and analyze social, legal, and ethical 
issues that might arise during a data science/analytics project. Specifically, be able to interpret 
the activities and choices of the team in an ethical framework and determine an appropriate 
action based on standards of professional conduct. 

Table 1. Data Science/Analytics Learning Outcomes 

 Data analytics 
Applied data 

science 
Foundational data 

science 

Assess an organization’s data analytics needs    

Collect, clean, organize and manage data    

Identify patterns in data    

Develop new machine-learning algorithms    

Create actionable insights     

Communicate the findings     

Integrate ethics and privacy information     

Key:  deep focus,    some depth,   not a program focus. 

5.3 Comparing Technique and Tool Exposure 

In addition to analyzing learning objectives, one can also explore the level of focus a program has on the 
various data science techniques and tools that one might leverage in a data science project. In this 
section, we briefly describe some of the key techniques and associated tools. Table 2 shows the level of 
focus for each of these key techniques for each type of program. 

• Business analytics: iteratively exploring an organization's data with an emphasis on statistical 
analysis to enable data-driven decision making. Often done using Excel spreadsheets. 

• Data management: the tasks and processes relating to acquiring, validating, storing, and 
protecting data so that it can be accessed in a reliable and timely manner for future analyses. 
Often involves using large databases and database languages such as SQL and noSQL. 

• Data integration: combining data residing in different sources, such as multiple distributed 
databases, and providing a unified view of that data. Often done using tools such as 
Informatica PowerCenter or custom coding solutions. 

• Programming: enable the creation of custom data cleaning and data analytics. The two most 
common programming languages for data science/analytics are R and Python. 

• Machine learning: via creating analytical models, machine-learning algorithms focus on 
generalizing beyond the provided training data to predict the outcomes of additional data 
samples. Models used include supervised (e.g., support vector machines, neural networks, 
and logistic regression) and unsupervised (e.g., k-means clustering, association rules mining) 
learning algorithms. 

• Data mining: using machine learning, statistics, and visualization to explore patterns in the 
investigated dataset. 

• Big data tools: a collection of data sets so large and complex that one cannot easily process it 
using traditional applications/tools; hence, new tools and technologies, such as Hadoop (HDFS 
and MapReduce) and Spark, help one analyze these datasets. 

• Visual analytics: analytical reasoning facilitated by interactive visual interfaces with which one 
can identify trends, patterns, and relationships in the data by using visual analytics software 
tools, such as Tableau, that make it easier for non-technical users to quickly gain insight via 
visually analyzing the data. 
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• Client management: understand the domain and be able to work with the client from inception 
to completion. Techniques include storytelling and analytical results presentation. 

Table 2. Summary of Program Focus on Different Techniques and Tools 

 Data analytics 
Applied data 

science 
Foundational data 

science 

Business analytics    

Data management     

Data integration     

Programming (e.g., R and Python)     

Machine learning    

Data mining     

Big data tools (e.g., Hadoop)     

Visual analytics (e.g., Tableau)     

Client management (soft skills)    

Key:  deep focus,    some depth,   not a program focus. 

6 Roles and Programs 

Finally, a different thread of the discussion focused on describing these programs based on how they 
support the different types of data science roles, such as data engineer and data scientist. Hence, 
understanding the roles that a data science project requires and mapping them to the different flavors of 
data science programs can help one when discussing what a data science degree involves. 

6.1 Roles on a Data Science Team 

Researchers have described roles in a data science team across many contexts. For example, Saltz and 
Grady (2017) review roles as described by standards organizations such as the role descriptions from the 
EDISON project, an European Union-funded effort to increase the number of competent and qualified data 
scientists across Europe (Demchenko et al., 2016), and also how industry currently uses them, such as 
from Gartner (Linden et al, 2016), a consulting firm that specializes in strategic advice to business officers 
such as chief information officers.  

Based on how previous research has analyzed these roles, a set of typical roles in a data science team 
might include the following. 

• Data scientist: finds and interprets rich data sources, merges data sources, creates 
visualizations, and uses machine learning to understand data. Knows about the end-to-end 
process and can present and communicate data insights and findings to a range of team 
members. 

• Data science researcher: builds mathematical models and advanced machine-learning 
algorithms. Can apply the scientific discovery research/process, including hypothesis and 
hypothesis testing, to obtain actionable knowledge related to a scientific problem and/or 
business process or to reveal hidden relations between multiple processes.  

• Data science architect: designs and maintains the architecture of data science applications 
and facilities. Creates relevant data models and processes workflows. 

• Data engineer: makes the appropriate data accessible and available for data science efforts. 
Designs, develops, and codes data applications for capturing and analyzing data. 

• Data/business analyst: analyzes a large variety of data, often using visual tools, to extract 
information about system, service, or organization performance and present the analysis in a 
usable/actionable form. 

Table 3 summarizes how these roles could map to the different types of data science programs. While not 
all panelists agreed on the actual mapping of roles to the different programs, they agreed that a data 
science team involves different roles and that different programs focus, sometime implicitly, on these 
different roles. 
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Table 3. Roles and Types of Data Science Programs 

 Data analytics Applied data science Foundational data science 

Data scientist ↓ ↑ ↑ 

Data science researcher ↓ – ↑ 

Data science architect ↓ – ↑ 

Data engineer ↓ ↑ ↑ 

Data / business analyst ↑ ↑ ↓ 

Key:  ↑ Strong match, – general match, ↓ weak match. 

7 Conclusion 

In summary, in exploring the different variations of data science programs, the panel identified three types 
of programs: data analytics, applied data science, and foundational data science. Program leaders in 
domains related to data science may find this report useful in that it provides a framework to describe, and 
perhaps shape, their programs. Other information system educators and information system researchers 
could also leverage the discussion since it provides some context for data science education and the roles 
graduates of these programs can fill. 

One can understand the different types of data science programs based on their learning outcomes. While 
the different types of programs have similar high-level learning objectives, they vary in how deeply they 
focus on them. In general, data analytic programs focus more on business understanding and less on 
technical skills. Foundational data science programs, on the other hand, focus much more on the 
technical skills required to develop new machine-learning algorithms. Applied data science programs try to 
balance these two alternatives and, thus, provide the technical skills to collect, clean, and wrangle data 
and to use advanced machine-learning techniques but not to develop new data science algorithms.  

One can also understand the different types of programs based on which data science team roles the 
programs could support. For example, employers might focus on hiring data analysts from data analytics 
or applied data science programs and hiring data scientists from applied and foundational data science 
programs. However, universities currently do not typically leverage these roles in describing their 
programs, and many programs with similar program names target different roles.  

Note that the panelists briefly discussed two other topics towards the end of the session. Panelists noted 
the first topic, ethics, to be very important. As the data science field becomes more mature, ethics 
becomes more important, and the range of ethical situations in data science is much broader than in 
computer science. However, the panelists generally felt that many programs do not adequately address 
this topic in their curriculum, which Table 1 reflects. The panelists also discussed the importance of 
introducing the concept of data science (or analytics) to the broader student population. For example, one 
panelist suggested that all business school students should have exposure to it (Excel spreadsheets, 
Tableau visual analysis). The discussion touched on the applicability of a university’s introduction to data 
science course to the broader student community. One school of thought was that one course could 
support the needs of a data science program and the general student population. However, others noted 
that perhaps a difference course would be more appropriate (similar to the situation with many topics, 
such as computer science and mathematics). However, the panel did agree that the broader student 
population should have exposure to data science; some even went as far as to suggest that all students in 
a university should have to take a basic data science course. Also, for educational institutions with limited 
technical resources, cloud-based analytics platforms provide an attractive alternative to onsite hosting.  

While the panel did not have time to discuss the topics that a more broad-based course should teach, the 
spirit of the discussion was that the course should cover basic data analytics and not require advanced 
programming.  
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