
27TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2018 LUND, SWEDEN)

An Improved Associative Classification Algorithm based on

Incremental Rules

Mohamed Salem Almnnaee alsharji@wasl.ae
 WASL

Dubai, UAE

Fadi Thabtah fadi.fayez@manukau.ac.nz
Manukau Institute of Technology

Auckland, New Zealand

Joan Lu j.lu@hud.ac.uk
University of Huddersfield

Huddersfield, UK

Abstract

In Associative classification (AC), the step of rule generation is necessarily exhaustive because

of the inherited search problems from the association rule. Besides which, the entire rules set

must be induced prior constructing the classifier. This article proposes a new AC algorithm

called Dynamic Covering Associative Classification (DCAC) that learns each rule from a

training dataset, removes its classified instances, and then learns the next rule from the

remaining unclassified data rather than the original training dataset. This ensures that the

exhaustive steps of rule evaluation and candidate generation will no longer be needed, thereby

maintaining a real time rule generation process. The proposed algorithm constantly amends the

support and confidence for each rule rather restricting itself with the support and confidence

computed from the original dataset. Experiments on 20 datasets from different domains showed

that the proposed algorithm generates higher quality and more accurate classifiers than other

AC rule induction approaches.

Keywords: Associative Classification, Data Mining, Machine Learning, Rules.

1. Introduction

Classification and association rules have been integrated to form a new research topic named

associative classification (AC) [15]. AC primarily utilises association rule discovery [5] to train

an input dataset in order to discover class association rules (CARs) and then adds on steps

involving constructing the classifier, rule pruning and predicting test data. In the last decade,

AC has been utilised in business applications, i.e. Website Phishing Detection [3], Fault

Prediction [17], Recommendation Systems [16], and Text Mining [18] since AC approach

derived competitive classifiers to other conventional approaches such as Greedy, Covering,

Decision Trees and Probabilistic among others.

The majority of the existing AC algorithms induce the rules from the training dataset and

then construct a classifier by evaluating the induced rules on the training dataset. Two main

parameters named support and confidence (Definitions 6 and 8) are connected with each rule.

The process of discovering and evaluating the rules is the concern of this article. In this context,

the majority of current AC algorithms discover the rules using association rule mining methods

in one step and then evaluate the extracted rules against the training dataset one by one in a

separate step called classifier building. In evaluating each rule, starting from the highest ranked

rule downwards, each training example will be covered only by a single rule. When a training

example is covered by a rule it will be discarded and that rule will be inserted into the classifier.

The rule evaluation process continues until all rules are tested or the training dataset becomes

empty and only when this happens the classifier is formed. The classifier will contain rules that

ALMNNAEE ET AL. AN IMPROVED ASSOCIATIVE CLASSIFICATION ALGORITHM...

had covered training examples and all other candidate rules are removed as they are either

redundant or useless.

This article investigates major shortcomings associated with AC algorithms during the

processes of rule discovery and building the classifier. Specifically, we look into building the

classifier since currently, whenever a rule is inserted into the classifier, all its training data are

discarded. However, these data are used to generate other possible rules hence these rules’

confidence and support values must be updated based on the remaining data rather than the

original dataset. All current AC algorithms maintain the support and confidence parameters

computed initially for each rule despite the data removal. For instance, when training examples

are discarded after any rule such as R1 is inserted into the classifier, other non-evaluated rules,

i.e. R2 - Rn, that utilise the removed data examples should be re-ranked and possibly pruned

earlier. In other words, some of the affected candidate rules will become higher ranked and

others will become lower ranked and thus a different classifier can be built. The changes in the

rule rank is due to the fact that the support and confidence values of the affected candidate rules

have changed because of R1’s data removal. Hence, the next rule to be inserted into the classifier

will be practically learnt from the remaining training data excluding R1’s data. This live update

procedure can be embedded within the rule generation phase and the outcome is a more realistic

classifier since

a) its rules are derived from a continuously updated training dataset, and

b) each rule is linked with its true frequency (support), strength (confidence) and class

We propose a new prospective learning within AC approach that integrates rule discovery

and classifier building phases into a single incremental algorithm we named Dynamic Induction

Associative Classification (DCAC). Our algorithm scans the training dataset and records 1-

ruleitems (item plus class) of size one and their occurrences in a data structure. Then, DCAC

seeks for the item plus class (1-ruleitem) with the highest confidence and appends it to the rule

body and continues adding items until the rule fulfils the confidence requirement. Once this

happens, the rule is derived, and all training data linked with it are deleted. This means, the

remaining candidate 1-ruleitems support and confidence values are amended since they are now

computed from the remaining training data (original training dataset –removed data examples).

DCAC repeats the same steps until the original training dataset becomes empty or no more 1-

ruleitem passes the minimum support threshold. The outcome is a classifier that ensures no data

examples are overlapping among its rules and hence it usually contains fewer rules, solving a

major problem in AC which is the exponential growth of rules (massive sized classifiers).

 This article is structured as follows: Section 2 critically analyses the literature review.

Section 3 discusses the proposed algorithm and its related phases along with highlighting the

distinct differences between the proposed algorithm and other rule based classification ones

(AC and rule induction). Section 4 is devoted to the data and the experimental results analysis

and finally conclusions are provided in Section 5.

2. Literature Review

Usually, an AC algorithm must discover the complete rules set and then initiates the rule

evaluation process, which can be problematic with reference to processing time and memory

use. This is since the algorithm initially finds frequent ruleitems of size one (1-ruleitems) after

the first data scan then merges the disjoint frequent 1-ruleitems to find candidate 2-ruleitems.

The algorithm repeats the same process to find candidate 3-ruleitems from frequent 2-ruleitems

and so forth. At each iteration the algorithm must go back and search the dataset to figure out

whether a ruleitem is frequent by computing its support and compare it with the minsupp

threshold. This exhaustive step has been inherited from association rule and studied extensively

in AC. Hence, after the development of the first AC algorithm, i.e. CBA, almost all of the entire

successors have focused on two primary issues to improve:

a) Enhancing the process of discovering frequent ruleitems

ISD2018 SWEDEN

b) The exponential growth of rules

This problem occurs because the AC algorithm tests all possible correlations among the

attribute value in the training dataset and the class value, hence very big numbers of correlations

can be discovered. The problem becomes harder when the input dataset is highly dimensional

[6,25]. This may lead to uncontrollable large classifiers that may limit the applicability of this

learning approach in applications.

One of the first developed AC algorithms was CBA [15]. This algorithm utilised Apriori

association rule mining method to discover and extract class association rules (CARs) from

classification datasets. CBA was the algorithm that introduced the database coverage pruning

method to choose high predictive rules for the classifier. This method in similar to the way

greedy classification algorithms extract the rules. A number of successive AC algorithms adopt

CBA rule learning, rule ranking and classification procedures including, i.e. CBA (2) (Liu et

al., 2001), and ACCF [12]. One of the first major improvements of CBA algorithm in regard to

training phase was proposed by [13] in an algorithm called CMAR. This AC algorithm employs

the efficient method of FP-Growth in association rule mining to find the rules. CMAR

constructs the rules in a data structure that takes the shape of a tree known as a Compact-tree.

This data structure saves the rules in a ranked manner according to the rule’s support. CMAR

prunes the candidate rules by discarding any with large number of attributes values and keeps

rules with smaller attribute values. Few AC algorithms have utilised CMAR approach in mining

CARs including Lazy AC [6].

Unlike the abovementioned AC approaches (CBA, CMAR) that use the horizontal mining

approach, [21] proposed a new vertical mining [28] based AC approach called MMAC. This

approach depends on the information collected from the training dataset (items and their

locations) that are saved in a data structure called the TID-List. By holding the TID-List of all

items, one can locate the item’s support, confidence without having to revisit the original

training dataset. This significantly improves costs associated with the training phase. MMAC

leans the rules by intersecting items’ TID-Lists and improves upon the rules ranking process

by adding additional tie breaking criteria. Recently, an improvement on the classification

procedure of MMAC was proposed in [1] where multiple rules are used to decide on the class

value of test data. This has enhanced accuracy of the classifiers.

An AC called MAC [4] was developed to enhance the rules pruning and classification steps

of CBA. During evaluating the candidate rules on the training dataset, MAC tests each of them

on the training dataset to decide the most significant ones. Unlike CBA which requires equality

between the candidate rule’s class and the training example class so that the rule can be inserted

into the classifier, MAC considers only the similarity between the rule’s body and the training

example attributes values and omits the class similarity. This increases the data coverage per

rule and reduces overfitting. The same evaluation process is repeated for each candidate rule

until all training examples are completely covered. Lastly, MAC inserts all evaluated rules that

had training data coverage into the classifier. MAC was applied successfully on generic

classification datasets and domain specific datasets (website phishing classification).

Recently, a new parallel and distributed AC framework for big data was developed [20]

called MapReduce Multiclass Classification based Association Rule (MR:MCAR) . This

framework is the first distributed AC for big data with two distinct implementations (Hadoop

and Weka). The novelty of MR: MCAR is the knowledge reasoning method which is based on

MapReduce, where the algorithm keeps switching between horizontal data and vertical data

formats until all knowledge is derived. The algorithm utilises an efficient search method for

knowledge based on ColumnID and RowID (vertical mining) and embraces this method in all

phases including knowledge reasoning, rules ranking, rules pruning and class prediction.

Several experiments have been conducted to evaluate MR: MCAR effectiveness and efficiency.

The results clearly indicated that MRMCAR is an efficient algorithm for big data and it

generates high quality classifiers when compared with trees and rule induction algorithms.

ALMNNAEE ET AL. AN IMPROVED ASSOCIATIVE CLASSIFICATION ALGORITHM...

3. Algorithm Development

The proposed algorithm (Figure 1) consists of two main phases: Inducing the rules, and

classifying test data. The algorithm in phase (1) scans the training dataset to find the rules based

on two main thresholds (minsupp and minconf). In phase (2), the discovered rules are utilised

to allocate class labels to test data. Below are the relevant definitions of DCAC algorithm.

Given an input training dataset T, which has n distinct attributes A1, A2, … , An one of which

is called the class, i.e. l, that contains a list of values. T size is denoted |T|.

Definition 1: An attribute value is an attribute plus its values name denoted (Ai, ai).

Definition 2: A training example in T is a row combining a list of attribute values (Aj1, aj1), …,

(Ajv, ajv), plus a class denoted by cj.

Definition 3: A ruleitem r has the format <body, c>, where body is a set of disjoint attribute

values and c is a class value.

Definition 4: The frequency threshold (minSupp) is a predefined threshold given by the end

user.

Definition 5: The body frequency (body_Freq) of a ruleitem r in T is the number of examples

in T that match r’s body.

Definition 6: The frequency of a ruleitem r in T (ruleitem_freq) is the number of data examples

in T that match r.

Definition 7: A ruleitem r passes the minSupp threshold if, r’s |body_Freq|/ |T| ≥ freq. Such a

ruleitem is said to be a frequent ruleitem.

Definition 8: A ruleitem r confidence is defined as |ruleitem_freq|/ | body_Freq|.

Definition 9: A rule in our classifier is represented as: lbody  , where left hand side (body)

is a set of disjoint attribute values and the right hand side (l)is a class value. The format of the

rules is:
121 ... laaa n 

3.1 Inducing the Rules

In the process of discovering the rules, unlike the majority of the existing AC algorithms that

require two steps, this newly developed algorithm implements a single step using vertical

mining approach based on a special data structure named TidList to hold 1- ruleitems and their

appearances in the training data (Line #’s). Hence after the initial training data scan, DCAC

creates a TidList that contains ruleitems of size one in which each ruleitem is represented as

<ColumnID, LineID> that denote the first column and row numbers that the ruleitem occurs in

the training dataset. This data format has been recently employed in [20] due to its simplicity

in mining the rules. The fact that the TidList is used to locate ruleitems frequency is a definite

advantage especially in computing and updating the support and confidence that are the main

criteria used to generate the rules.

 According to Figure 1, the process of rule induction in DCAC involves generating the best

rule using the confidence and support parameters. Once the highest confidence rule is identified,

it will be inserted into the classifier, and its classified training data are discarded, and the

frequency of all items appearing in the removed instances are decremented. This decrement

process results in changing the support and confidence of several potential rules. This means

some of potential rules will have higher rank and others have lower rank because the training

dataset was lessened (Line 6). The process of discovering the rules continues on the same

manner until the training dataset has no more data or no more rules with acceptable confidence

and support. When this occurs, all generated rules become the classifier that is efficiently

reduced in the size.

ISD2018 SWEDEN

There are a few distinguishing features in DCAC when compared with most existing AC

algorithms. Firstly, the proposed algorithm eliminates two major steps in AC which are classifier

building (sometimes called rule evaluation) and frequent item discovery. The frequent item

discovery step usually necessitates merging frequent items of size k to generate candidate items

of size k + 1 repeatedly and this step is a burden since it requires massive computations as well

as computing resources [2,19,22,26]. On the other hand, such classifier building steps require

the complete rules being derived in advance before any of them can be evaluated. In addition,

this step necessitates passing over all candidate rules and for each training case which is indeed

a time consuming approach. We offer in DCAC either no rule evaluation separate step nor

frequent item discovery step making our method efficient.

 Theoretically, our learning mechanism produces, and in parallel, tests each rule. This makes

building the classifier an implicit process within the rule induction step. Further, it guarantees

that no rule can share training examples and thus minimises rule redundancy, eventually

reducing the size of the classifier. The process of updating the candidate rules, confidence and

support values whenever a rule is inserted into the classifier is novel, and indeed results in live

rule induction. It also certifies a real time rule ranking based on the remaining data left in the

training dataset rather the static support and confidence computed initially when the mining

process starts. This can be seen as an implicit pruning in which weak candidate rules are

identified without having to look them up in the training dataset that efficiently improves the

mining process. We believe that a more realistic classifier is created since rule generation is

dynamic rather static as in existing AC methods.

Input: Training data set T, minsupp and minconf thresholds

Output: A classifier that contains rules

Phase (1) Building the classifier procedure

1. For each attribute value (Ai, a) plus a class in T do

2. Calculate ruleitems support and confidence, i.e. p(item | class), and discard any 1-

ruleitem that has not passed minsupp

3. Start building a rule ri (Items, Class) by appending the item with the largest confidence

to the body of ri

4. Repeat steps 1-3 until rj passed the minconf threshold

5. Insert rj into the classifier

6. Remove rj’s data examples from Ti that are identical to rj’s body (set of items)

7. Amend the support and confidence values of all effected candidate ruleitems to reflect

step 6

8. Repeat steps 1-7 until T becomes empty or no more ruleitems hold enough support

9. Generate the classifier.

10. end

Phase (2) predict the class of test data (Figure 2)

Fig. 1. DCAC algorithm steps

ALMNNAEE ET AL. AN IMPROVED ASSOCIATIVE CLASSIFICATION ALGORITHM...

3.2 Test Data Classification Step

Normally, existing AC algorithms sort rules in the classifier using different criteria mainly

rule’s confidence, support, length, and information gain, etc. However, DCAC eliminated

completely the rule sorting since the rules have now been favoured by the order in which they

were generated. In other words, the best rule is the one that has been derived first, then the

second one, then the third one and so forth. This approach offers a natural sorting mechanism

without having to design a sorting method as in current AC methods. DCAC follows greedy

algorithms such as RIPPER [8] and PRISM [7] in placing rules into the classifier yet it differs

from these algorithms in the way the rule is found.

Table 1. Differences between DCAC and other AC and classic covering methods

Common rule induction and AC approaches DCAC

Classic AC algorithms like CBA, CMAR, CPAR,

MMAC, MCAR, etc, operates in four phases: frequent

ruleitems discovery, rule generation, classifier building

(pruning), and classification.

DCAC operates in only two steps: rule generation and

classification.

In AC algorithms, all rules must be generated before

each is evaluated. This means in order to form the

classifier, the complete candidate rules must be induced

first and then many of which are deleted after rules

evaluation step

In DCAC, each rule is generated and evaluated in

parallel manner so when rules are induced they

represent the classifier. There is no rule evaluation step.

The support and confidence values which determine

the rule’s significance are static per rule and are

computed from the original training dataset

The support and confidence values which determine

the rule’s significance are dynamic per rule and are

computed from the different versions of the training

dataset as the algorithm producing the rules.

There must be rule ranking in AC to distinguish among

rules. Typically, AC algorithms use rule’s confidence,

support, length, class distribution as ranking parameter

No rule ranking since the rank is natural and based on

the order of rule generation.

Classic AC algorithm employ candidate generation

step so there are repetitive counting and joining of

frequent ruleitems at iteration i to come up with

candidate ruleitems at iteration i+1

In DCAC, no candidate generation at all. Only

ruleitems of size 1 are needed throughout the algorithm

lifecycle.

Classic covering methods like PRISM and its

successors employ expected accuracy measure to

generate the rules. Thus they only generate perfect yet

low data coverage rules

DCAC employs minimum support and minimum

confidence to differentiate among rules and allow the

production of rules with small errors yet high data

coverage

Other more advanced rule induction methods such as

CN2, FOIL, AQ, etc produce the first rule in separate

and conquer approach, removes data instances, then

learn the second rule from the remaining data instances

in repetitive manner.

In DCAC, once a rule is generated a special data

structure is invoked on the fly to amend the frequency

of the remaining potential rules without the need of a

repetitive scan. Thus, the runtime performance is

indeed improved.

Classic covering methods use extensive pruning such

as backward and forward pruning. Further, no item or

rules search space minimisation methods are

employed.

A dynamic pruning during the training phase based on

both support and confidence are employed in DCAC.

Hence, both the items and rules search spaces are

substantially minimised.

ISD2018 SWEDEN

 The last and most vital step in the life cycle of any classification algorithm is test data

classification. In this step, the AC algorithm normally fires one or more rules to assign the class

label to a test data. DCAC algorithm utilises the first rule that matches the test data in the

classification step as shown in Figure 2. When a test data (tsi) is about to be classified, our

algorithm goes over the classifier rules and identifies the first rule that its body (attribute

values) is contained within the test data. Then it assigns the class of that rule to the test data. In

cases where no rules in the classifier matches the test data then the default class is assigned.

By applying this procedure, we eliminate any biased decision of favouring one rule over

another since rules are sorted based on the order they are derived. Consequently, the class

allocation decision of test data becomes more realistic and end-user will be confident of the

outcome. The primary differences between the proposed algorithm and other rule based

classification methods (rule induction and AC) are given in Table 1.

4. Analysis and Discussion

We have chosen datasets from University of California Irvine (UCI) repository [14] with

different types and sizes for fair comparison (see Table 2). All numerical attributes of the

chosen datasets have been discretised and missing values were replaced using ReplaceFilter in

Weka [24]. Stratified ten folds cross validation method has been used for testing all the

considered classification algorithms. This method is widely used in machine learning and data

mining communities to produce fair average error rates of the classifiers. In this testing method

and before mining, the dataset gets partitioned into ten parts and the algorithm is trained on

nine parts and tested on the remaining part. This process is repeated ten runs in which each run

generates an error rate and then the error rates derived from the ten runs are averaged to produce

an overall error rate against the dataset.

A number of highly competitive classification algorithms that generate rule based classifiers

implemented in Weka have been utilised to conduct the experiments. In particular, CBA,

PRISM, and PART [10] are the algorithms chosen. We tried to be as fair as possible by selecting

different high performed well-known algorithms in the literature. The selection of these

algorithms arose because they produce rules similar to the proposed algorithm, and they adopt

different rule induction mechanisms. Lastly, all experiments have been rum on a computer

machine Core i5 with a 3.1 GHz processor and 4.0 GB RAM.

The minsupp and minconf thresholds for DCAC and CBA have been set in all experiments

to 1% and 50% following other scholars in AC literature [9,11,15,21,23,27]. On the other hand,

the minconf has low impact and was set to 50%. The evaluation measures used to evaluate the

pros and cons of DCAC are accuracy, number of rules and training time in ms.

In Table 2, the classification accuracy per dataset has been generated for all the considered

algorithms to further evaluate the predictive power of the proposed algorithm. The figures

clearly show a consistent domination for DCAC algorithm when compared to the remaining

Input: test data (Te), Classifier (C)

 1 For each test data in T Do

 2 For each rule r in C Do

 3 If te = r

 4 t’s class = r’s class

 5 else

 6 else t’s class = default class

 7 end if

 8 end

 9 end

 10 compute the total number of errors of Ts

Fig. 2. Test data procedure of DCAC algorithm

ALMNNAEE ET AL. AN IMPROVED ASSOCIATIVE CLASSIFICATION ALGORITHM...

algorithms. In particular, DCAC won-lost-tie record against PART, and PRISM are 9-8-3, and

17-3-0 respectively. It seems that CBA crashes when the numbers of attributes increase so no

results for CBA on twelve out of the twenty datasets can be generated. For the eight datasets

that CBA produced results, it outperformed the proposed algorithm on only three of them. The

exhaustive search of CBA which is a typical AC algorithm that uses Apriori candidate

generation for rule discovery caused a combinatorial explosion especially when the datasets has

a dimensionality greater than twelve variables.

The fact that whenever a rule is inserted into the classifier and its covered data are discarded

is a definite advantage of DCAC. This is since the classifier constructed contains rules that have

no data overlapping and hence ensures that

a) Each training example is covered by only a single rule and is used only once during

rule induction phase by that rule. Therefore, an inherited problem from the association

Table 2. The considered algorithms accuracy generated from the 20 UCI datasets

dataset
of

variables
of cases PART DCAC PRISM CBA

Arrhythmia 280 452
57.31 60.9 38.5

No

results

Balance-scale 5 625 77.28 84.8 63.68 86.08

Cleve 12 690 85.8 82.79 78.97 81.19

Credit-g 21 1000
69.3 70.99 63.8

No

results

Cylinder-

bands
40 540

59.26 74.57 55.2

No

results

Dermatology 35 366
94.81 91.61 84.44

No

results

Pima_diabetes 9 768 73.44 72.67 61.08 70.97

Hayes-roth-

test
5 28

50 86.72 42.86 82.17

Hayes-roth-

train
5 132

74.25 78.84 68.95 72.73

 Hepatitis 20 155
80.65 79.73 77.43

No

results

Hypothyroid 30 3772
92.74 92.91 91.23

No

results

Ionosphere 35 351
87.18 86.51 86.05

No

results

Liver-

disorders
7 345

62.32 61.83 55.66 63.5

Lung-cancer 57 32
75 74.02 58.38

No

results

 Lymph 19 148
80.41 78.79 75.69

No

results

Mushroom 23 8124
100 99.21 100

No

results

Sick 30 3772
97.78 97.56 98.05

No

results

Tae 6 151 47.02 57.89 54.98 53.65

Tic-tac-toe 10 958 94.26 91.68 96.46 100

 Waveform 41 5000
74.8 78.55 60.58

No

results

ISD2018 SWEDEN

rule that allows a training example to be used multiple times in inducing rules has been

resolved

b) Rules frequencies which are the primary measure for the rule strength (confidence and

support) are constantly updated to achieve point (a)’s aim. This safeguards the rule

induction phase since insignificant rules are removed despite some of them may have

a high rank at the first scan.

Dealing with the rules overlapping problem and the development of rules linked with constantly

changing confidence and support values have contributed to the decrease of the one-error rate

in the classifiers derived by DCAC. Specifically, the DCAC algorithm outperformed the

considered algorithm on average and particularly with a higher average accuracy than PART

and PRISM by 4.12% and 9.47% respectively. As a matter of fact, our algorithm ensures each

rule is derived from the remaining instances in the training data after removing instances

associated with the so far generated rules. This, indeed, only allows rules that have a constant

statistical fit to participate in the classifier. These rules are the ones utilised later on during the

class prediction step.

The classifier size and time taken to find the rules in milliseconds (ms) per dataset are given

in Figure 3. PRISM generates on average larger classifiers than the rest of the considered

algorithms, which is due to the fact that PRISM has no pruning. DCAC on average induce less

number of rules in the classifier than PART, and PRISM. The proposed algorithm consistently

generated smaller classifiers. The rule reduction in DCAC classifier is attributed to two main

reasons:

1) Each rule covers large number of training instances because of the removal of training

data overlapping among rules

2) The new learning strategy employed by DCAC that allows a rule to cover more training

instances

The mechanism of rule learning in DCAC is contributed to a decrease in the final classifier

since when each is inserted into the classifier, DCAC reduces the search space of remaining

items by only storing those that are linked with acceptable “current” support and “current”

confidence values. Existing AC algorithms “must” generate all rules at once then perform the

rule pruning whereas our algorithm induce and evaluate each rule at in parallel manner until the

dataset gets empty or no item with sufficient data is present. In other words, the removing of

the overlapping among rules in the training instances when each rule is generated, has also a

positive impact on the classifiers size. In particular, DCAC algorithm ensures that all candidate

items frequencies are amended whenever a rule gets produced, which decrease the available

numbers of candidate items for the next possible rules.

Finally, the runtime in ms for the considered algorithms on the datasets have been recorded

in Figure 4. The figures clearly point out that PRISM is the slowest algorithm to construct

classifiers. This has been attributed to that PRISM keeps generating rules as long as they fulfil

the expected accuracy. In addition, PART employs additional pruning methods to trim trees

before converting them into rule sets and thus it is slower than DCAC. Finally, we applied the

CBA algorithm and it generated classifiers from 8 out of the 20 datasets due to the large space

of items. The storing large numbers of candidate items on the main memory caused the

algorithm to crash in the Weka platform. The number of rules results on the 8 datasets showed

that CBA normally generated large classifiers; all of them are larger than those of CBA except

on the tic-tac-toe dataset.

ALMNNAEE ET AL. AN IMPROVED ASSOCIATIVE CLASSIFICATION ALGORITHM...

5. Conclusions and Future work

Rule discovery and constructing classifier steps contribute to major deficiencies in Associative

Classification (AC). These include uncontrollable massive classifiers besides a slow and

resource hungry mining process. In this article, we developed a new AC algorithm called

Dynamic Covering Associative Classification (DCAC) that integrates these two steps in a

single step by continuously inducing rules one by one from the training dataset. Whenever a

rule is derived, and its classified training examples are discarded, DCAC builds the next rule

from the remaining unclassified training instances. Hence all support and confidence values for

the potential rules are amended to guarantee the production of rules that are naturally sorted

based on the order that they have been generated. Also, this removes any possible training

Fig. 4. The considered algorithms training time in ms

0
5

10
15
20
25
30
35
40

A
rr

h
yt

h
m

ia

B
al

an
ce

-s
ca

le

C
le

ve

C
re

d
it

-g

C
yl

in
d

er
-b

an
d

s

D
er

m
at

o
lo

gy

P
im

a_
d

ia
b

e
te

s

H
ay

es
-r

o
th

-t
es

t

H
ay

es
-r

o
th

-t
ra

in

H
ep

at
it

is

H
yp

o
th

yr
o

id

Io
n

o
sp

h
e

re

Li
ve

r-
d

is
o

rd
er

s

Lu
n

g-
ca

n
ce

r

Ly
m

p
h

M
u

sh
ro

o
m

Si
ck

Ta
e

Ti
c-

ta
c-

to
e

time in ms

PRISM PART DCAC

Fig. 3. The considered algorithms classifier size on the UCI datasets

0

100

200

300

400

500

600

700

classifier size

PRISM PART DCAC

ISD2018 SWEDEN

examples overlapping among the classifier’s rules. These advantages contributed to improving

the classification accuracy as well as reducing the classifier size of DCAC when compared to

other algorithms. Decision makers can now enjoy a concise highly predictive set of rules in

planning. DCAC has been implemented in the Weka environment under “classify” tab page and

package “Rules”.

Experimental results using 20 datasets with various different sizes and attributes types have

been conducted utilising a number of rule based classification and AC algorithms. The results

revealed that DCAC is competitive with respect to one error rate and training time when

compared to CBA, PRISM and PART and algorithms. Furthermore, DCAC consistently

derived a lesser number of rules than these algorithms due to the new prospective learning

employed in the rule generation phase. The fact that PART generated more rules than DCAC

and less accurate classifiers demonstrates some potential advantages of the proposed algorithm.

Normally AC algorithms generate far more rules than rule induction (PRISM) and tree (PART)

approaches so having DCAC extracting a smaller classifier is one of the major contributions to

AC research.

One possible limitation of DCAC algorithm is that its applicability has not been evaluated on

big data applications with unstructured variables. In future research, we intend to extend DCAC

to handle applications with big dimensionality possibly under the programming framework of

Spark.

References

1. Abdelhamid N., Thabtah F., Multi-label rules for phishing classification. Applied

Computing and Informatics 11 (1), 29-46. Elsevier.

2. Abdelhamid N., Thabtah F., Associative Classification Approaches: Review and

Comparison. Journal of Information and Knowledge Management (JIKM). Vol. 13, No. 3

(2014) 1450027. World Scientific.

3. Abdelhamid N., Thabtah F., Ayesh A. Phishing detection based associative classification

data mining. Expert systems with Applications Journal, 41 (2014) 5948–5959. Elsevier.

4. Abdelhamid N., Ayesh A., Thabtah F., Ahmadi S., Hadi W. MAC: A multiclass associative

classification algorithm. Journal of Information and Knowledge Management (JIKM). 11

(2), pp. 1250011-1 - 1250011-10. WorldScinet.

5. Agrawal, R., and Srikant, R. Fast algorithms for mining association rule. Proceedings of

the 20th International Conference on Very Large Data Bases- VLDP,pp. 487-499, 1994.

6. Baralis E., Chiusano S., Graza P. A Lazy Approach to Associative classification. IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. vo. 20, num 2.

ISSN: 1041-4347.

7. Cendrowska, J. PRISM: An algorithm for inducing modular rules. International Journal

of Man-Machine Studies, Vol.27, No.4, 349-370.

8. Cohen W. Fast effective rule induction. In machine learning: Proceedings of the 12th

International conference, pp. 115-123. Lake Tahoe, California. Morgan Kaufmann.

9. Costa G., Ortale R., Ritacco E. X-Class: Associative Classification of XML Documents

by Structure. ACM Trans. Inf. Syst. 31(1): 3 (2013).

10. Frank, E., and, Witten, I. Generating accurate rule sets without global optimisation.

Proceedings of the Fifteenth International Conference on Machine Learning, (pp.144–

151). Madison, Wisconsin.

11. Han J., Pei J. , Yin Y. Mining frequent patterns without candidate generation, Proceedings

of the 2000 ACM SIGMOD international conference on Management of data, p.1-12, May

15-18, 2000, Dallas, Texas, USA.

12. Li X., Qin D, and Yu C. ACCF: Associative Classification Based on Closed Frequent

Itemsets. Proceedings of the Fifth International Conference on Fuzzy Systems and

Knowledge Discovery - FSKD, pp. 380-384, 2008.

13. Li W., Han J., and Pei. J. CMAR: Accurate and efficient classification based on multiple

class-association rules. In ICDM’01, pp. 369–376, San Jose, CA, Nov.2001.

ALMNNAEE ET AL. AN IMPROVED ASSOCIATIVE CLASSIFICATION ALGORITHM...

14. Lichman, M. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine,

CA: University of California, School of Information and Computer Science.

15. Liu B., Hsu W., and Ma Y. Integrating classification and association rule mining. In

KDD’98, pp. 80–86,New York, NY, Aug. 1998.

16. Lucas J. P., Lirmm A. L., Moreno M. N., Teisseire M. A Fuzzy Associative Classification

Approach For Recommender Systems. Int. J. Unc. Fuzz. Knowl. Based Syst. 20, 579

(2012). DOI: 10.1142/S0218488512500274.

17. Ma B., Zhang H., Chen G., Zhao Y. Baesens B. Investigating Associative Classification

for Software Fault Prediction: An Experimental Perspective. International Journal of

Software Engineering and Knowledge Engineering, 24, 61 (2014). DOI:

10.1142/S021819401450003X. World Scientific.

18. Mohammad R. M., Thabtah F. and McCluskey L. Intelligent Rule based Phishing

Websites Classification, IET Information Security, vol. 8, no. 3, pp. 153-160, July 2013-A

19. Qin, XJ, Zhang, Y, Li, X and Wang, Y. Associative classifier for uncertain data. In: , Web-

Age Information Management. 11th International Conference on Web-Age Information

Management (WAIM 2010), Jiuzhaigou, China, (692-703). 15-17 July 2010.

20. Thabtah F., Hammoud S., Abdeljaber H. Parallel Associative Classification Data Mining

Frameworks Based MapReduce. Journal of Parallel Processing Letter. Parallel Process.

Lett. 25, 1550002 .World Scientific.

21. Thabtah F., Cowling P., and Peng Y. Multiple Label Classification Rules Approach.

Journal of Knowledge and Information System, Volume 9:109-129. Springer.

22. Thabtah F., Gharaibeh O., Al-zubaidy R. Arabic Text Mining for Rule based

Classification. Journal of Information and Knowledge Management (JIKM). Volume: 11,

Issue: 1(2012) pp. 1-10. WorldScinet.

Proceedings of the Principles of Data Mining and Knowledge Discovery - PKDD, pp. 605-

612, 2007.

23. Wang X., Yue K., Niu W., and Shi Z. an approach for adaptive associative classification.

Expert Systems with Applications: An International Journal, Volume 38 Issue 9, pp.

11873-11883, 2011.

24. Witten I. H. and Frank E. Data Mining: Practical Machine Learning Tools and Techniques.

25. Wua C-H., Wanga J-Y. Associative classification with a new condenseness measure.

Journal of the Chinese Institute of Engineers, Vol 38 (4), pages 458-468. Tylor Francis.

26. Yin, X., and Han, J. CPAR: Classification based on predictive association rule.

Proceedings of the –the SIAM International Conference on Data Mining -SDM, pp. 369-

376, 2003.

27. Yoon Y., Lee G. Efficient implementation of associative classifiers for document

classification. Inf. Process. Manage. 43(2): 393-405 (2007).

28. Zaki M., Hsiao CJ CHARM: an efficient algorithm for closed itemset mining. Proceedings

of the 2002SIAMinternational conference on data mining (SDM’02), pp 457–473, 2002.

