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Abstract 

In Associative classification (AC), the step of rule generation is necessarily exhaustive because 

of the inherited search problems from the association rule. Besides which, the entire rules set 

must be induced prior constructing the classifier. This article proposes a new AC algorithm 

called Dynamic Covering Associative Classification (DCAC) that learns each rule from a 

training dataset, removes its classified instances, and then learns the next rule from the 

remaining unclassified data rather than the original training dataset. This ensures that the 

exhaustive steps of rule evaluation and candidate generation will no longer be needed, thereby 

maintaining a real time rule generation process. The proposed algorithm constantly amends the 

support and confidence for each rule rather restricting itself with the support and confidence 

computed from the original dataset. Experiments on 20 datasets from different domains showed 

that the proposed algorithm generates higher quality and more accurate classifiers than other 

AC rule induction approaches. 
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1. Introduction  

Classification and association rules have been integrated to form a new research topic named 

associative classification (AC) [15]. AC primarily utilises association rule discovery [5] to train 

an input dataset in order to discover class association rules (CARs) and then adds on steps 

involving constructing the classifier, rule pruning and predicting test data. In the last decade, 

AC has been utilised in business applications, i.e. Website Phishing Detection [3], Fault 

Prediction [17], Recommendation Systems [16], and Text Mining [18] since AC approach 

derived competitive classifiers to other conventional approaches such as Greedy, Covering, 

Decision Trees and Probabilistic among others.  

The majority of the existing AC algorithms induce the rules from the training dataset and 

then construct a classifier by evaluating the induced rules on the training dataset. Two main 

parameters named support and confidence (Definitions 6 and 8) are connected with each rule. 

The process of discovering and evaluating the rules is the concern of this article. In this context, 

the majority of current AC algorithms discover the rules using association rule mining methods 

in one step and then evaluate the extracted rules against the training dataset one by one in a 

separate step called classifier building. In evaluating each rule, starting from the highest ranked 

rule downwards, each training example will be covered only by a single rule. When a training 

example is covered by a rule it will be discarded and that rule will be inserted into the classifier. 

The rule evaluation process continues until all rules are tested or the training dataset becomes 

empty and only when this happens the classifier is formed. The classifier will contain rules that 
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had covered training examples and all other candidate rules are removed as they are either 

redundant or useless.  

This article investigates major shortcomings associated with AC algorithms during the 

processes of rule discovery and building the classifier.  Specifically, we look into building the 

classifier since currently, whenever a rule is inserted into the classifier, all its training data are 

discarded. However, these data are used to generate other possible rules hence these rules’ 

confidence and support values must be updated based on the remaining data rather than the 

original dataset. All current AC algorithms maintain the support and confidence parameters 

computed initially for each rule despite the data removal. For instance, when training examples 

are discarded after any rule such as R1 is inserted into the classifier, other non-evaluated rules, 

i.e. R2 - Rn, that utilise the removed data examples should be re-ranked and possibly pruned 

earlier. In other words, some of the affected candidate rules will become higher ranked and 

others will become lower ranked and thus a different classifier can be built. The changes in the 

rule rank is due to the fact that the support and confidence values of the affected candidate rules 

have changed because of R1’s data removal. Hence, the next rule to be inserted into the classifier 

will be practically learnt from the remaining training data excluding R1’s data. This live update 

procedure can be embedded within the rule generation phase and the outcome is a more realistic 

classifier since  

a) its rules are derived from a continuously updated training dataset, and  

b) each rule is linked with its true frequency (support), strength (confidence) and class  

We propose a new prospective learning within AC approach that integrates rule discovery 

and classifier building phases into a single incremental algorithm we named Dynamic Induction 

Associative Classification (DCAC). Our algorithm scans the training dataset and records 1-

ruleitems (item plus class) of size one and their occurrences in a data structure. Then, DCAC 

seeks for the item plus class (1-ruleitem) with the highest confidence and appends it to the rule 

body and continues adding items until the rule fulfils the confidence requirement. Once this 

happens, the rule is derived, and all training data linked with it are deleted. This means, the 

remaining candidate 1-ruleitems support and confidence values are amended since they are now 

computed from the remaining training data (original training dataset –removed data examples). 

DCAC repeats the same steps until the original training dataset becomes empty or no more 1-

ruleitem passes the minimum support threshold. The outcome is a classifier that ensures no data 

examples are overlapping among its rules and hence it usually contains fewer rules, solving a 

major problem in AC which is the exponential growth of rules (massive sized classifiers).  

 This article is structured as follows: Section 2 critically analyses the literature review. 

Section 3 discusses the proposed algorithm and its related phases along with highlighting the 

distinct differences between the proposed algorithm and other rule based classification ones 

(AC and rule induction). Section 4 is devoted to the data and the experimental results analysis 

and finally conclusions are provided in Section 5. 

2. Literature Review 

Usually, an AC algorithm must discover the complete rules set and then initiates the rule 

evaluation process, which can be problematic with reference to processing time and memory 

use. This is since the algorithm initially finds frequent ruleitems of size one (1-ruleitems) after 

the first data scan then merges the disjoint frequent 1-ruleitems to find candidate 2-ruleitems. 

The algorithm repeats the same process to find candidate 3-ruleitems from frequent 2-ruleitems 

and so forth. At each iteration the algorithm must go back and search the dataset to figure out 

whether a ruleitem is frequent by computing its support and compare it with the minsupp 

threshold. This exhaustive step has been inherited from association rule and studied extensively 

in AC. Hence, after the development of the first AC algorithm, i.e. CBA, almost all of the entire 

successors have focused on two primary issues to improve: 

a) Enhancing the process of discovering frequent ruleitems  
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b) The exponential growth of rules 

This problem occurs because the AC algorithm tests all possible correlations among the 

attribute value in the training dataset and the class value, hence very big numbers of correlations 

can be discovered. The problem becomes harder when the input dataset is highly dimensional 

[6,25]. This may lead to uncontrollable large classifiers that may limit the applicability of this 

learning approach in applications. 

One of the first developed AC algorithms was CBA [15]. This algorithm utilised Apriori 

association rule mining method to discover and extract class association rules (CARs) from 

classification datasets. CBA was the algorithm that introduced the database coverage pruning 

method to choose high predictive rules for the classifier. This method in similar to the way 

greedy classification algorithms extract the rules. A number of successive AC algorithms adopt 

CBA rule learning, rule ranking and classification procedures including, i.e. CBA (2) (Liu et 

al., 2001), and ACCF [12]. One of the first major improvements of CBA algorithm in regard to 

training phase was proposed by [13] in an algorithm called CMAR. This AC algorithm employs 

the efficient method of FP-Growth in association rule mining to find the rules. CMAR 

constructs the rules in a data structure that takes the shape of a tree known as a Compact-tree. 

This data structure saves the rules in a ranked manner according to the rule’s support. CMAR 

prunes the candidate rules by discarding any with large number of attributes values and keeps 

rules with smaller attribute values. Few AC algorithms have utilised CMAR approach in mining 

CARs including Lazy AC [6]. 

Unlike the abovementioned AC approaches (CBA, CMAR) that use the horizontal mining 

approach, [21] proposed a new vertical mining [28] based AC approach called MMAC. This 

approach depends on the information collected from the training dataset (items and their 

locations) that are saved in a data structure called the TID-List. By holding the TID-List of all 

items, one can locate the item’s support, confidence without having to revisit the original 

training dataset. This significantly improves costs associated with the training phase. MMAC 

leans the rules by intersecting items’ TID-Lists and improves upon the rules ranking process 

by adding additional tie breaking criteria. Recently, an improvement on the classification 

procedure of MMAC was proposed in [1] where multiple rules are used to decide on the class 

value of test data. This has enhanced accuracy of the classifiers. 

An AC called MAC [4] was developed to enhance the rules pruning and classification steps 

of CBA. During evaluating the candidate rules on the training dataset, MAC tests each of them 

on the training dataset to decide the most significant ones. Unlike CBA which requires equality 

between the candidate rule’s class and the training example class so that the rule can be inserted 

into the classifier, MAC considers only the similarity between the rule’s body and the training 

example attributes values and omits the class similarity. This increases the data coverage per 

rule and reduces overfitting. The same evaluation process is repeated for each candidate rule 

until all training examples are completely covered. Lastly, MAC inserts all evaluated rules that 

had training data coverage into the classifier. MAC was applied successfully on generic 

classification datasets and domain specific datasets (website phishing classification). 

Recently, a new parallel and distributed AC framework for big data was developed [20] 

called MapReduce Multiclass Classification based Association Rule (MR:MCAR) . This 

framework is the first distributed AC for big data with two distinct implementations (Hadoop 

and Weka). The novelty of MR: MCAR is the knowledge reasoning method which is based on 

MapReduce, where the algorithm keeps switching between horizontal data and vertical data 

formats until all knowledge is derived. The algorithm utilises an efficient search method for 

knowledge based on ColumnID and RowID (vertical mining) and embraces this method in all 

phases including knowledge reasoning, rules ranking, rules pruning and class prediction. 

Several experiments have been conducted to evaluate MR: MCAR effectiveness and efficiency. 

The results clearly indicated that MRMCAR is an efficient algorithm for big data and it 

generates high quality classifiers when compared with trees and rule induction algorithms. 
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3. Algorithm Development 

The proposed algorithm (Figure 1) consists of two main phases: Inducing the rules, and 

classifying test data. The algorithm in phase (1) scans the training dataset to find the rules based 

on two main thresholds (minsupp and minconf). In phase (2), the discovered rules are utilised 

to allocate class labels to test data. Below are the relevant definitions of DCAC algorithm. 

Given an input training dataset T, which has n distinct attributes A1, A2, … , An one of which 

is called the class, i.e. l, that contains a list of values.  T size is denoted |T|.  

Definition 1: An attribute value is an attribute plus its values name denoted (Ai, ai).  

Definition 2: A training example in T is a row combining a list of attribute values (Aj1, aj1), …, 

(Ajv, ajv), plus a class denoted by cj.  

Definition 3: A ruleitem r has the format <body, c>, where body is a set of disjoint attribute 

values and c is a class value.  

Definition 4: The frequency threshold (minSupp) is  a predefined threshold given by the end 

user.  

Definition 5: The body frequency (body_Freq) of a ruleitem r in T is the number of examples 

in T that match r’s body. 

Definition 6: The frequency of a ruleitem r in T (ruleitem_freq) is the number of data examples 

in T that match r. 

Definition 7: A ruleitem r passes the minSupp threshold if, r’s |body_Freq|/ |T| ≥ freq. Such a 

ruleitem is said to be a frequent ruleitem. 

Definition 8: A ruleitem r confidence is defined as |ruleitem_freq|/ | body_Freq|.  

Definition 9: A rule in our classifier is represented as: lbody  , where left hand side (body) 

is a set of disjoint attribute values and the right hand side ( l )is a class value. The format of the 

rules is: 
121 ... laaa n   

 

3.1 Inducing the Rules 

In the process of discovering the rules, unlike the majority of the existing AC algorithms that 

require two steps, this newly developed algorithm implements a single step using vertical 

mining approach based on a special data structure named TidList to hold 1- ruleitems and their 

appearances in the training data (Line #’s). Hence after the initial training data scan, DCAC 

creates a TidList that contains ruleitems of size one in which each ruleitem is represented as 

<ColumnID, LineID> that denote the first column and row numbers that the ruleitem occurs in 

the training dataset. This data format has been recently employed in [20] due to its simplicity 

in mining the rules. The fact that the TidList is used to locate ruleitems frequency is a definite 

advantage especially in computing and updating the support and confidence that are the main 

criteria used to generate the rules.   

       According to Figure 1, the process of rule induction in DCAC involves generating the best 

rule using the confidence and support parameters. Once the highest confidence rule is identified, 

it will be inserted into the classifier, and its classified training data are discarded, and the 

frequency of all items appearing in the removed instances are decremented. This decrement 

process results in changing the support and confidence of several potential rules. This means 

some of potential rules will have higher rank and others have lower rank because the training 

dataset was lessened (Line 6). The process of discovering the rules continues on the same 

manner until the training dataset has no more data or no more rules with acceptable confidence 

and support. When this occurs, all generated rules become the classifier that is efficiently 

reduced in the size.  
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There are a few distinguishing features in DCAC when compared with most existing AC 

algorithms. Firstly, the proposed algorithm eliminates two major steps in AC which are classifier 

building (sometimes called rule evaluation) and frequent item discovery. The frequent item 

discovery step usually necessitates merging frequent items of size k to generate candidate items 

of size k  + 1 repeatedly and this step is  a burden since it requires massive computations as well 

as computing resources [2,19,22,26]. On the other hand, such classifier building steps require 

the complete rules being derived in advance before any of them can be evaluated. In addition, 

this step necessitates passing over all candidate rules and for each training case which is indeed 

a time consuming approach. We offer in DCAC either no rule evaluation separate step nor 

frequent item discovery step making our method efficient. 

 Theoretically, our learning mechanism produces, and in parallel, tests each rule. This makes 

building the classifier an implicit process within the rule induction step. Further, it guarantees 

that no rule can share training examples and thus minimises rule redundancy, eventually 

reducing the size of the classifier. The process of updating the candidate rules, confidence and 

support values whenever a rule is inserted into the classifier is novel, and indeed results in live 

rule induction. It also certifies a real time rule ranking based on the remaining data left in the 

training dataset rather the static support and confidence computed initially when the mining 

process starts. This can be seen as an implicit pruning in which weak candidate rules are 

identified without having to look them up in the training dataset that efficiently improves the 

mining process. We believe that a more realistic classifier is created since rule generation is 

dynamic rather static as in existing AC methods. 

 

 

Input: Training data set T, minsupp and minconf thresholds  

Output: A classifier that contains rules 

 

Phase (1) Building the classifier procedure   

 

1. For each attribute value (Ai, a) plus a class in T  do 

2. Calculate ruleitems support and confidence, i.e. p(item | class), and discard any 1- 

ruleitem that has not passed minsupp 

3. Start building a rule ri (Items, Class) by appending the item with the largest confidence 

to the body of ri 

4. Repeat steps 1-3 until rj passed the minconf threshold   

5. Insert rj into the classifier 

6. Remove rj’s data examples from Ti that are identical to rj’s body (set of items) 

7. Amend the support and confidence values of all effected candidate ruleitems to reflect 

step 6 

8. Repeat steps 1-7 until T becomes empty or no more ruleitems hold enough support 

9. Generate the classifier.  

10. end  

 

Phase (2) predict the class of test data (Figure 2) 

 

Fig. 1. DCAC algorithm steps 
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3.2 Test Data Classification Step 

Normally, existing AC algorithms sort rules in the classifier using different criteria mainly 

rule’s confidence, support, length, and information gain, etc. However, DCAC eliminated 

completely the rule sorting since the rules have now been favoured by the order in which they 

were generated. In other words, the best rule is the one that has been derived first, then the 

second one, then the third one and so forth. This approach offers a natural sorting mechanism 

without having to design a sorting method as in current AC methods. DCAC follows greedy 

algorithms such as RIPPER [8] and PRISM [7] in placing rules into the classifier yet it differs 

from these algorithms in the way the rule is found. 

Table 1. Differences between DCAC and other AC and classic covering methods  

Common rule induction and AC approaches  DCAC 

Classic AC algorithms like CBA, CMAR, CPAR, 

MMAC, MCAR, etc, operates in four phases: frequent 

ruleitems discovery, rule generation, classifier building 

(pruning), and classification. 

DCAC operates in only two steps: rule generation and 

classification.  

In AC algorithms, all rules must be generated before 

each is evaluated. This means in order to form the 

classifier, the complete candidate rules must be induced 

first and then many of which are deleted after rules 

evaluation step 

In DCAC, each rule is generated and evaluated in 

parallel manner so when rules are induced they 

represent the classifier. There is no rule evaluation step. 

The support and confidence values which determine 

the rule’s significance are static per rule and are 

computed from the original training dataset 

The support and confidence values which determine 

the rule’s significance are dynamic per rule and are 

computed from the different versions of the training 

dataset as the algorithm producing the rules. 

There must be rule ranking in AC to distinguish among 

rules. Typically, AC algorithms use rule’s confidence, 

support, length, class distribution as ranking parameter  

No rule ranking since the rank is natural and based on 

the order of rule generation.  

Classic AC algorithm employ candidate generation 

step so there are repetitive counting and joining of 

frequent ruleitems at iteration i to come up with 

candidate ruleitems at iteration i+1   

In DCAC, no candidate generation at all. Only 

ruleitems of size 1 are needed throughout the algorithm 

lifecycle.  

Classic covering methods like PRISM and its 

successors employ expected accuracy measure to 

generate the rules. Thus they only generate perfect yet 

low data coverage rules   

DCAC employs minimum support and minimum 

confidence to differentiate among rules and allow the 

production of rules with small errors yet high data 

coverage  

Other more advanced rule induction methods such as 

CN2, FOIL, AQ, etc produce the first rule in separate 

and conquer approach, removes data instances, then 

learn the second rule from the remaining data instances 

in repetitive manner.   

In DCAC, once a rule is generated a special data 

structure is invoked on the fly to amend the frequency 

of the remaining potential rules without the need of a 

repetitive scan. Thus, the runtime performance is 

indeed improved. 

Classic covering methods use extensive pruning such 

as backward and forward pruning. Further, no item or 

rules search space minimisation methods are 

employed.  

A dynamic pruning during the training phase based on 

both support and confidence are employed in DCAC.  

Hence, both the items and rules search spaces are 

substantially minimised. 
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 The last and most vital step in the life cycle of any classification algorithm is test data 

classification. In this step, the AC algorithm normally fires one or more rules to assign the class 

label to a test data. DCAC algorithm utilises the first rule that matches the test data in the 

classification step as shown in Figure 2. When a test data (tsi) is about to be classified, our 

algorithm goes over the classifier rules and identifies the first rule that its body (attribute 

values) is contained within the test data. Then it assigns the class of that rule to the test data. In 

cases where no rules in the classifier matches the test data then the default class is assigned. 

By applying this procedure, we eliminate any biased decision of favouring one rule over 

another since rules are sorted based on the order they are derived. Consequently, the class 

allocation decision of test data becomes more realistic and end-user will be confident of the 

outcome.  The primary differences between the proposed algorithm and other rule based 

classification methods (rule induction and AC) are given in Table 1.  

 

4.  Analysis and Discussion  

We have chosen datasets from University of California Irvine (UCI) repository [14] with 

different types and sizes for fair comparison (see Table 2). All numerical attributes of the 

chosen datasets have been discretised and missing values were replaced using ReplaceFilter in 

Weka [24]. Stratified ten folds cross validation method has been used for testing all the 

considered classification algorithms. This method is widely used in machine learning and data 

mining communities to produce fair average error rates of the classifiers. In this testing method 

and before mining, the dataset gets partitioned into ten parts and the algorithm is trained on 

nine parts and tested on the remaining part. This process is repeated ten runs in which each run 

generates an error rate and then the error rates derived from the ten runs are averaged to produce 

an overall error rate against the dataset. 

A number of highly competitive classification algorithms that generate rule based classifiers 

implemented in Weka have been utilised to conduct the experiments. In particular, CBA, 

PRISM, and PART [10] are the algorithms chosen. We tried to be as fair as possible by selecting 

different high performed well-known algorithms in the literature. The selection of these 

algorithms arose because they produce rules similar to the proposed algorithm, and they adopt 

different rule induction mechanisms. Lastly, all experiments have been rum on a computer 

machine Core i5 with a 3.1 GHz processor and 4.0 GB RAM. 

The minsupp and minconf thresholds for DCAC and CBA have been set in all experiments 

to 1% and 50% following other scholars in AC literature [9,11,15,21,23,27]. On the other hand, 

the minconf has low impact and was set to 50%. The evaluation measures used to evaluate the 

pros and cons of DCAC are accuracy, number of rules and training time in ms. 

In Table 2, the classification accuracy per dataset has been generated for all the considered 

algorithms to further evaluate the predictive power of the proposed algorithm. The figures 

clearly show a consistent domination for DCAC algorithm when compared to the remaining 

Input: test data (Te), Classifier (C) 

 1 For each test data in T Do 

 2 For each rule r in C Do 

 3          If te = r  

 4              t’s class = r’s class  

 5          else  

 6      else t’s class = default class 

 7    end if   

 8 end  

 9 end 

 10 compute the total number of errors of Ts 

 

Fig. 2. Test data procedure of DCAC algorithm 
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algorithms. In particular, DCAC won-lost-tie record against PART, and PRISM are 9-8-3, and 

17-3-0 respectively. It seems that CBA crashes when the numbers of attributes increase so no 

results for CBA on twelve out of the twenty datasets can be generated. For the eight datasets 

that CBA produced results, it outperformed the proposed algorithm on only three of them. The 

exhaustive search of CBA which is a typical AC algorithm that uses Apriori candidate 

generation for rule discovery caused a combinatorial explosion especially when the datasets has 

a dimensionality greater than twelve variables.  

The fact that whenever a rule is inserted into the classifier and its covered data are discarded 

is a definite advantage of DCAC. This is since the classifier constructed contains rules that have 

no data overlapping and hence ensures that 

a) Each training example is covered by only a single rule and is used only once during 

rule induction phase by that rule.  Therefore, an inherited problem from the association 

Table 2. The considered algorithms accuracy generated from the 20 UCI datasets  

dataset 
# of 

variables 
# of cases PART DCAC  PRISM CBA 

Arrhythmia 280 452 
57.31 60.9 38.5 

No 

results 

Balance-scale 5 625 77.28 84.8 63.68 86.08 

Cleve 12 690 85.8 82.79 78.97 81.19 

Credit-g 21 1000 
69.3 70.99 63.8 

No 

results 

Cylinder-

bands 
40 540 

59.26 74.57 55.2 

No 

results 

Dermatology 35 366 
94.81 91.61 84.44 

No 

results 

Pima_diabetes 9 768 73.44 72.67 61.08 70.97 

Hayes-roth-

test 
5 28 

50 86.72 42.86 82.17 

Hayes-roth-

train 
5 132 

74.25 78.84 68.95 72.73 

 Hepatitis 20 155 
80.65 79.73 77.43 

No 

results 

Hypothyroid 30 3772 
92.74 92.91 91.23 

No 

results 

Ionosphere 35 351 
87.18 86.51 86.05 

No 

results 

Liver-

disorders 
7 345 

62.32 61.83 55.66 63.5 

Lung-cancer 57 32 
75 74.02 58.38 

No 

results 

 Lymph 19 148 
80.41 78.79 75.69 

No 

results 

Mushroom 23 8124 
100 99.21 100 

No 

results 

Sick 30 3772 
97.78 97.56 98.05 

No 

results 

Tae 6 151 47.02 57.89 54.98 53.65 

Tic-tac-toe 10 958 94.26 91.68 96.46 100 

 Waveform 41 5000 
74.8 78.55 60.58 

No 

results 
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rule that allows a training example to be used multiple times in inducing rules has been 

resolved  

b) Rules frequencies which are the primary measure for the rule strength (confidence and 

support) are constantly updated to achieve point (a)’s aim. This safeguards the rule 

induction phase since insignificant rules are removed despite some of them may have 

a high rank at the first scan. 

Dealing with the rules overlapping problem and the development of rules linked with constantly 

changing confidence and support values have contributed to the decrease of the one-error rate 

in the classifiers derived by DCAC. Specifically, the DCAC algorithm outperformed the 

considered algorithm on average and particularly with a higher average accuracy than PART 

and PRISM by 4.12% and 9.47% respectively. As a matter of fact, our algorithm ensures each 

rule is derived from the remaining instances in the training data after removing instances 

associated with the so far generated rules. This, indeed, only allows rules that have a  constant 

statistical fit to participate in the classifier. These rules are the ones utilised later on during the 

class prediction step. 

The classifier size and time taken to find the rules in milliseconds (ms) per dataset are given 

in Figure 3. PRISM generates on average larger classifiers than the rest of the considered 

algorithms, which is due to the fact that PRISM has no pruning. DCAC on average induce less 

number of rules in the classifier than PART, and PRISM. The proposed algorithm consistently 

generated smaller classifiers. The rule reduction in DCAC classifier is attributed to two main 

reasons: 

1) Each rule covers large number of training instances because of the removal of training 

data overlapping among rules 

2) The new learning strategy employed by DCAC that allows a rule to cover more training 

instances 

The mechanism of rule learning in DCAC is contributed to a decrease in the final classifier 

since when each is inserted into the classifier, DCAC reduces the search space of remaining 

items by only storing those that are linked with acceptable “current” support and “current” 

confidence values. Existing AC algorithms “must” generate all rules at once then perform the 

rule pruning whereas our algorithm induce and evaluate each rule at in parallel manner until the 

dataset gets empty or no item with sufficient data is present. In other words, the removing of 

the overlapping among rules in the training instances when each rule is generated, has also a 

positive impact on the classifiers size. In particular, DCAC algorithm ensures that all candidate 

items frequencies are amended whenever a rule gets produced, which decrease the available 

numbers of candidate items for the next possible rules. 

Finally, the runtime in ms for the considered algorithms on the datasets have been recorded 

in Figure 4. The figures clearly point out that PRISM is the slowest algorithm to construct 

classifiers. This has been attributed to that PRISM keeps generating rules as long as they fulfil 

the expected accuracy.  In addition, PART employs additional pruning methods to trim trees 

before converting them into rule sets and thus it is slower than DCAC. Finally, we applied the 

CBA algorithm and it generated classifiers from 8 out of the 20 datasets due to the large space 

of items. The storing large numbers of candidate items on the main memory caused the 

algorithm to crash in the Weka platform. The number of rules results on the 8 datasets showed 

that CBA normally generated large classifiers; all of them are larger than those of CBA except 

on the tic-tac-toe dataset. 



ALMNNAEE ET AL.  AN IMPROVED ASSOCIATIVE CLASSIFICATION ALGORITHM...  

  

 

 

5. Conclusions and Future work 

Rule discovery and constructing  classifier steps contribute to major deficiencies in Associative 

Classification (AC). These include uncontrollable massive classifiers besides a slow and 

resource hungry mining process. In this article, we developed a new AC algorithm called 

Dynamic Covering Associative Classification (DCAC) that integrates these two steps in a 

single step by continuously inducing rules one by one from the training dataset. Whenever a 

rule is derived, and its classified training examples are discarded, DCAC builds the next rule 

from the remaining unclassified training instances. Hence all support and confidence values for 

the potential rules are amended to guarantee the production of rules that are naturally sorted 

based on the order that they have been generated. Also, this removes any possible training 

 

 

Fig. 4. The considered algorithms training time in ms 
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examples overlapping among the classifier’s rules. These advantages contributed to improving 

the classification accuracy as well as reducing the classifier size of DCAC when compared to 

other algorithms. Decision makers can now enjoy a concise highly predictive set of rules in 

planning. DCAC has been implemented in the Weka environment under “classify” tab page and 

package “Rules”.  

Experimental results using 20 datasets with various different sizes and attributes types have 

been conducted utilising a number of rule based classification and AC algorithms. The results 

revealed that DCAC is competitive with respect to one error rate and training time when 

compared to CBA, PRISM and PART and algorithms. Furthermore, DCAC consistently 

derived a lesser number of rules than these algorithms due to the new prospective learning 

employed in the rule generation phase. The fact that PART generated more rules than DCAC 

and less accurate classifiers demonstrates some potential advantages of the proposed algorithm. 

Normally AC algorithms generate far more rules than rule induction (PRISM) and tree (PART) 

approaches so having DCAC extracting a smaller classifier is one of the major contributions to 

AC research.  

One possible limitation of DCAC algorithm is that its applicability has not been evaluated on 

big data applications with unstructured variables. In future research, we intend to extend DCAC 

to handle applications with big dimensionality possibly under the programming framework of 

Spark. 
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