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Partial least squares (PLS) is one of the most popular analytical techniques employed in the information systems 
field. In recent years, researchers have begun to revisit commonly used rules-of-thumb about the minimum sample 
sizes required to obtain reliable estimates for the parameters of interest in structural research models. Of particular 
importance in this regard is the a priori assessment of statistical power, which provides valuable information to be 
used in the design and planning of research studies. Though the importance of conducting such analyses has been 
recognized for quite some time, a review of the empirical research employing PLS indicates that they are not 
regularly conducted or reported. One likely reason is the lack of software support for these analyses in popular PLS 
packages. In this tutorial, we address this issue by providing, in tutorial form, the steps and code necessary to easily 
conduct such analyses. We also provide guidance on the reporting results.  
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I. INTRODUCTION 

For a quantitative researcher, being able to provide a solid statistical foundation for research findings is of central 
importance. Among many issues related to research planning and design, statistical power considerations, which 
influence the minimum sample size that should be obtained to provide a desired likelihood of finding an effect when 
that effect indeed exists in the population—a central goal of empirical research—are an important, if somewhat 
overlooked, issue (Baroudi & Orlikowski, 1989). In particular, analyses based on partial least squares (PLS) are very 
common in the field. Given the commonly held belief that PLS is an appropriate statistical choice for small samples, 
and that sample size is a central factor in the determination of statistical power, the conduct of a priori power 
analyses when PLS will be employed would seem to be particularly relevant to planning research. Though the need 
for this has been evident for some time with repeated calls to attention to this issue (Marcoulides, Chin, & Saunders, 
2009; Marcoulides & Saunders, 2006), it is the case that few studies employing PLS report—or conduct—power 
calculations, even though methodologists strongly recommend them (Baroudi & Orlikowski, 1989; Chin, 1998; 
Marcoulides et al., 2009; Marcoulides & Saunders, 2006). As Kaplan (1995, p. 117) notes: “Assessing power, 
therefore, must now become a routine part of establishing the statistical validity of an estimated model”.   

In order to ascertain the degree to which statistical power issues are regularly considered in research employing 
PLS as the statistical technique of choice, we reviewed all studies identified by Ringle, Sarstedt, and Straub (2012), 
which cover empirical research using PLS published in the 1992-2011 period in MIS Quarterly. Out of the 65 studies 
identified therein, only a small proportion (11, or 17 percent) contained any mention of statistical power. Moreover—
as we discuss later in Section 3—all of these studies present some shortcomings in the way in which authors 
performed and/or reported power calculations. Therefore, we conclude that the state of practice in power 
assessment in studies employing PLS could be improved. 

With this tutorial, we provide guidance on why considering statistical power is important, and on how statistical power 
can be assessed when using PLS. We begin by briefly introducing the statistical power concept in Section 2, in which 
we place particular emphasis on the negative consequences of both underpowered and overpowered research 
designs. Next, in Section 3, we review the different approaches to power calculations that have been so far suggested 
or employed—even if in a limited capacity—in studies using PLS, and note limitations present in each one of them. We 
then introduce in Section 4, in tutorial form, the calculation of statistical power using the open source statistical 
environment R, and provide researchers with sample code for conducting a power analysis. In Section 5, we conclude 
with recommendations for the conduct and report of power analyses in studies employing PLS. 

II. STATISTICAL POWER AND RESEARCH PLANNING 

Statistical power is associated with frequentist inference, most typically null-hypothesis significance testing (NHST). 
In NHST, researchers obtain a measure of the probability of obtaining a particular estimate, or a more extreme one, 
if the null hypothesis of no effect is true in the population, which is given by the p value used in statistical analyses. 
Statistical power refers to the probability of correctly rejecting a null hypothesis when that hypothesis is not true in 
the population. A related concept is significance level, which is the probability of rejecting a null hypothesis when 
that hypothesis is indeed true in the population. In both these cases, probability is defined as the limit of relative 
frequency in a large number of replications. 

These two concepts are closely linked to type I and type II statistical errors, which refer to false positive and false 
negative findings, respectively (see Table 1 for summary). Consider, for example, two variables: A and B. If these 
two variables were correlated in the population of interest, but we were to conclude that our analysis does not 
provide statistically significant support for the correlation, we would be committing a type II error. The likelihood of 
this kind of error is directly dependent on the power of our research design and analysis. 

Table 1: Type I and Type II Errors 

  Population 

  Null hypothesis is true Alternative hypothesis is true 

Sample 

Accept null 
hypothesis 

Correct 
decision 

False negative 
Type II error 

Reject null 
hypothesis 

False positive 
Type I error 

Correct 
decision 



 

 

Volume 36 Article 3 
35 

 
Most, if not all, IS studies using PLS employ the technique on survey data to test if a hypothesized relationship is 
non-zero in a population. This kind of research design has two important parameters that affect statistical power, 
and which are under the control of researchers: sample size, and which and how many indicators are used in the 
study. Generally, a larger sample size increases the accuracy of a single point-estimate and so decreases its 
standard error. When the estimates are more accurate and there is less uncertainty about their accuracy (i.e., 
smaller standard errors), we can be more confident that, if our estimate is positive, the population value is also 
positive. The number of indicators and their quality affects power, too: in structural equation models, the accuracy of 
the estimates of the relationships between the latent variables depends not only on the sample size, but also on the 
quality of the measurement model. Increasing the number of indicators and their quality will also increase the 
accuracy of the estimates and decrease their standard errors. 

These are not merely theoretical considerations, but have practical relevance for researchers. Consider, for 
example, a case where a researcher conducts a power analysis and concludes that the study design has only .50 
power to detect an underlying relationship given the assumptions that the researcher has made about the effect in 
the population. In this case, the researcher faces a choice: 1) to either pursue the study as planned knowing that 
there is a 50% chance to not find an effect even if the theory was correct, and consequently likely not being able to 
publish the study, or 2) to plan for more and better indicators and a larger sample size to increase power and make 
the odds more favorable. 

Problems with Underpowered Studies 

The most evident issue with underpowered studies is their inability to consistently detect the presence of an effect 
when that effect actually exists in the population. In addition to the deleterious impact on cumulative research and 
knowledge advancement, this issue also hinders the possibility that the findings will ever be published, given the 
general bias against publishing non-significant results in the organizational and social sciences. On this count alone, 
it is important for researchers to ensure that their studies have sufficient statistical power to detect the effects of 
interest. 

There is a second problem with underpowered studies that, however more nuanced, is not less important. As it is 
well known, the smaller the sample size used to obtain an estimate, the larger the variability in the estimates being 
obtained for a parameter of interest. Consider, for example, the case of the correlation between two variables. In this 
example, assume that the true population value of the correlation is 0.30. A researcher who collects data on these 
variables will be interested in comparing the sample estimate of the correlation against the null hypothesis that the 
two variables are uncorrelated. In other words, a researcher would be interested in assessing the probability of 
observing an equally high correlation just by chance. To illustrate this, we have plotted the sampling distribution of 
the correlation of two uncorrelated random variables under three different sample sizes in Figure 1 and shaded the 
area in which the sample correlation falls 95% of the time.  
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Figure 1. Probability Distributions for Observed r 
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The figure shows that, with the smallest sample size, even fairly large sample correlations are possible even if the 
variables were unrelated in the population. The exact distribution function of correlation is complex and, therefore, 
instead of assessing the magnitude of the correlation directly, we use the relationship of the correlation to its 
standard error as a test statistic. This statistic is known to be distributed as a t with degrees of freedom equal to N – 
2 (Cohen, Cohen, West, & Aiken, 2003, p. 49): 

 

With this t-statistic we can calculate exact values that the correlation must exceed to conclude that there is less than 
5 percent chance to obtain a similarly high value just by chance. With a sample size of twenty, rejecting the null 
hypothesis at a 5 percent level of significance would only occur if the sample estimate of the correlation was 0.4438 
or larger; that is, at least 47.9 percent larger than the true population value of the statistic. For a sample of fifty, the 
critical value is 0.2787, and, for a sample of one hundred, 0.1984.  

The point of the example is that small samples require much larger critical values before the estimates are 
considered significantly different from zero and, thus, rejecting the null hypothesis of no correlation. This, coupled 
with the existence of a publication bias toward significant results—also known as the “file drawer problem” generally 
discussed in the literature on meta-analysis—indicates that underpowered studies that do get published are likely 
overstating the true effect in the population. This is an issue that has been discussed in the medical literature, where 
the overstatement of a treatment effect has major practical implications (Ioannidis, 2008; Yarkoni, 2009), but it has 
also started to make its way into the social and organizational sciences (e.g., Hollenbeck, DeRue, & Mannor, 2006). 
The issue is even more complex for multiple regression models because the additional complexity involving multiple 
predictors is likely to result when small samples are used in patterns of findings that are very idiosyncratic to the 
particular sample under analysis (Maxwell, 2004). Given the prevalent belief in the IS field that PLS is best suited for 
analyses with small samples, these issues should be of major concern to researchers in the field. 

Problems with Overpowered Studies 

The most evident problem arising from the conduct of overpowered studies is the unnecessary consumption of the 
time and resources involved in obtaining an overly large sample. While the issue may not be major when employing 
readily available populations, such as university students, for conducting research, it takes on more importance 
when other groups are targeted. At the extreme, if the conduct of the research involves some discomfort to the 
respondents (either physical or psychological), the ethics of subjecting more individuals than strictly necessary to the 
research must be considered. What degree of statistical power—and hence sample size—should be deemed 
acceptable requires the balancing the practical implications of committing type I and type II errors and what do those 
imply for the findings of the research. The commonly used guideline in the organizational and social sciences of a 
significance level of five percent and statistical power of eighty percent should therefore be considered on a case-by-
case basis. However, absent a priori power calculations, researchers may be collecting much more data than is 
necessary to conduct their study when very large samples are obtained. 

III. STATISTICAL POWER AND PLS 

Estimating the power level of a study is a key characteristic of rigorously applying SEM (Gefen, Rigdon, & Straub, 
2011), and at least one recent paper giving guidelines on using PLS (Peng & Lai, 2012) explicitly states that a power 
analysis should be performed. Unfortunately, in contrast to many CBSEM packages that include Monte Carlo 
simulation features that can be used for power analyses, none of the widely used PLS applications provide anything 
similar. Due to lack of software support, most assessments of power are based on rules of thumb that have not been 
validated or on applying power analysis procedures that were designed for multiple regression and thus assume that 
all variables are measured without error. We now return to the 11 identified studies from the review by Ringle et al. 
(2012) that do discuss statistical power to some degree, and explain how these studies addressed the issue, and 
why these power analyses were either inappropriate or incorrectly implemented. These studies can be divided into 
three categories: those arguing for sufficient power based on sample size heuristics, those using analyses and 
recommendations for regression analysis, and those using Monte Carlo simulations. 

Many of these studies discuss power, but do not report how power was assessed. Enns, Huff, and Higgins (2003), 
when discussing a non-significant finding, note that power analyses suggested the sample size was sufficient. As 
before, however, they provide no details about how they made this determination. Lewis, Agarwal, and 
Sambamurthy (2003), on the other hand, caution readers when interpreting their non-significant findings because 
their sample size was only a fraction of that which, by their estimate, would be necessary for adequate power, 
though they provide no supporting details about power calculations. Venkatesh and Morris (2000) cite the high 
power of a test as additional support for their hypothesis of no significant effects; however, how they do not discuss 
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how they carried out those power calculations in any detail. Particularly problematic is a statement from Wells, 
Valacich, and Hess (2011, p. 388): "In that all effects were significant at the alpha protection level of .05, statistical 
power and Type II errors are not issues". Rather, as we discuss earlier, significant results arising from underpowered 
studies may present estimates of effects that are severely biased when compared to their population counterparts. 
In fact, statistical power is an important factor in conducting research, regardless of whether the results turn out to 
be significant when data are collected because power calculations should be performed beforehand. Work by Jiang 
and Benbasat (2007) represents an exception in that their power analysis does not have any obvious issues. 
However, they only consider statistical power for the between-group comparisons in their research, conducted with 
ANOVA procedures, but not for their PLS analyses. 

Determination of Power Based on Sample Size 

Two studies use sample size as a justification for sufficient power, but neither provides a clear reference to any 
guideline on sample size. Ang and Straub (1998) simply state that a sample size of at least two hundred would be 
enough to ensure sufficient statistical power, and that the sample actually obtained—two hundred and twenty five 
cases—indicated high statistical power. He does not provide details about how he determined this sample size, what 
effect sizes he evaluated, and which particular effect he analyzed. Similarly, Siponen and Vance (2010) use sample 
size as a justification without reporting any analyses to support their conclusions. They justify their approach by 
citing Marcoulides and Saunders (2006) that nevertheless does not provide any explicit sample size 
recommendations, but rather suggests that Monte Carlo simulations should be used to estimate power. 

In general, using any rule-of-thumb for sample size planning or assessing statistical power is problematic. Consider 
the commonly used guideline the “rule of ten” introduced by Chin and Newsted (1999). In the commonly accepted 
interpretation of this guideline, researchers should consider either the composite with the largest number of 
formative indicators or the composite with the largest number of incoming paths from other composites in the model, 
and multiply the largest number of these paths by ten. In the past, researchers have used this rule to justify the 
estimation of models with very small samples, which would not otherwise be considered acceptable in terms of 
statistical power and stability of the estimates (e.g., magnitude of the resulting standard errors). This state of affairs 
led to the editorial comments by Marcoulides and Saunders (2006), who admonish researchers to “Please make 
sure that your sample size is large enough to support your conclusions and do not allow perceived fancy modeling 
techniques to overwhelm common sense” (p. viii). More recently Marcoulides, Chin, and Saunders (2009, p. 174)  
explicitly state that the “rule of ten” was not meant to be a guideline that should be followed: they emphasize that 
Chin and Newsted (1999) actually conclude that, “for a more accurate assessment, one needs to specify the effect 
size for each regression analysis and look up the power tables” (p. 327). However one wishes to interpret the 
meaning behind these statements, it is clear that the “rule of ten” has no basis on statistical estimation, nor is a 
sound basis for assessing statistical power. Furthermore, it does not take into account other characteristics of the 
research design, such as the reliability of the items attached to each involved composite or their number, which also 
affect the likelihood of detecting an effect. In this respect, we support the repeated calls to abandon the use of this 
rule-of-thumb unconditionally across all situations (Marcoulides et al., 2009; Marcoulides & Saunders, 2006). Gefen, 
Rigdon, and Straub (2011, pp. A3-A4), however, seem to cautiously recommend the “rule of ten”, although with the 
caveat that it is not supported by any research. 

Power Analysis Using Recommendations or Methods for Regression Analysis 

Power analysis using guidelines and methods developed for regression analysis was the second most common 
option among the 11 studies. Klein and Rai (2009) assessed the power of their statistical tests by following the 
procedures outlined by Cohen (1988) for multiple regression analyses, but it appears the authors assessed power 
using the actual estimates obtained (e.g., a post hoc or retrospective power calculation), which is a rather 
problematic practice (Zumbo & Hubley, 1998). Liang, Saraf, Hu, and Xue (2007) also employ power tables by Cohen 
(1988) on the assumption that those would be applicable to PLS because PLS is a form of multiple regression. 
However, as we note later, the power tables do not take into account many of the specific characteristics of the PLS 
algorithm, nor the appropriate level at which statistical inferences are made by researchers. The only study that used 
a specialized power analysis software was that by Furneaux and Wade (2011), in which the authors used G*Power. 
However, the authors only consider the power of their test for the presence of common method variance, but not for 
the main model of interest. 

The most common of these approaches adopted from the literature on regression analysis is to use power tables for 
multiple regression such as those provided by Cohen (1988) in his seminal work on power analysis. In this 
approach, researchers should ascertain the portion of the PLS model with the most regression paths, assume an 
effect size of interest (using, for example, Cohen’s f2 and associated guidelines as to what magnitudes of the 
statistic can be considered small, medium, or large effects), then look up the appropriate sample size for the desired 
power level in the tables provided. Though this approach is certainly an improvement over the rule of thumb we 
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previously discuss, it nonetheless suffers from two important weaknesses that render it less accurate than when first 
considered. 

First, the commonly used measure of effect size f2 is a function of the variance explained in the dependent variable 
of interest (Cohen, 1992); that is (where values of 0.02, 0.15, and 0.35 are generally considered to be small, 
medium, and large effects): 

. 

The proportion of variance explained in a variable by its predictors in a regression model is a function of the strength 
of the correlation between the predictors and the dependent variable and the strength of the correlation of the 
predictors among themselves. The relationship between the number of predictors and the magnitude of the overall 
effect so defined is, however, only an approximation because the power tables make no allowance for predictors of 
different magnitudes. Consider the following example: a regression with three predictors, assuming a large effect 
size and desired power of 0.80, would require a sample size of thirty four (Cohen, 1992, Table 2). Note that a large 
effect size (e.g., an f2 of 0.35) is tantamount to 25.93 percent of explained variance in the dependent variable. For 
simplicity, assume the predictors are uncorrelated among themselves. In this scenario, the contribution of each 
predictor to the explained variance is the square of its correlation with the dependent variable.  

Therefore, an explained variance of 25.93 percent can be obtained with one predictor correlated at 0.40 with the 
dependent variable and two predictors correlated at 0.223, or with three predictors that correlate at 0.294 with the 
dependent variable, or many other combinations. In the first case, the sample size that corresponds to a given level 
of statistical power to detect a correlation of 0.40 (for the first predictor) cannot logically be the same that is needed 
to detect a correlation of 0.223 (for the other two predictors). Though Cohen (1988) notes that the unique variance 
explained by any single predictor should be considered when estimating statistical power, it is nonetheless the case 
that the power tables provided only consider two inputs when establishing the sample size necessary to achieve a 
particular level of statistical power: the number of predictors, and the magnitude of the overall effect size. Moreover, 
when it comes to significance of estimates, researchers are typically more concerned with the statistical significance 
of each individual predictor than with that of the explained variance overall. In fact, we are not aware of any study in 
the field that has examined the significance of the overall variance explained in a dependent variable. Therefore, 
sample size calculations that focus only on this statistic (the test statistic considered in the power tables is the 
overall F test for the entire regression model, which is typically not interpreted in research studies) and not on the 
individual magnitude of the relationships between the predictors and the dependent variable—which is at the level 
which statistical significance will later be assessed—can only be considered approximations.  

The second issue with using tables from multiple regression models or any other tool that is designed for assessing 
power of multiple regression is that they assume perfect reliability in the variables involved, whereas it is the case in 
PLS that the composites used to represent the constructs of interest, being themselves weighted sums of indicators 
containing measurement error to varying degrees, are not perfectly reliable. Because of this, structural estimates 
from PLS analyses are biased to some degree when compared to their population counterparts, which further 
complicates sample size calculations. In addition, because the PLS algorithm takes advantage of sampling variability 
in the iterative calculation of the weights assigned to each indicator (Aguirre-Urreta, Marakas, & Ellis, 2013; Rönkkö 
& Evermann, 2013; Rönkkö, 2014), and this affects the obtained results, any sample size calculations for PLS need 
to take into account these idiosyncrasies of the algorithm, and power tables constructed for multiple regression 
models with perfect reliability do not fully capture them. Both these factors lead to considerably overestimating 
statistical power, which we show in Section 4. 

Power Analysis with Monte Carlo Simulations 

A third alternative, and the one on which we focus for the rest of this paper, is conducting proactive Monte Carlo 
studies as a way of determining the appropriate sample size given a target population model and various 
assumptions as to the distribution of the variables and the balance between type I and type II errors (Wolf, 
Harrington, Clark, & Miller, 2013). In this approach, which Marcoulides and Saunders (2006) also recommend, 
researchers first specify a target population model about which statistical inferences will be made, and then draw 
repeated data samples from that model—attending to any desired distributional characteristics of the involved 
variables—and analyze each of those samples with the desired analysis model and statistical technique. The 
proportion of times over all those replications that a particular parameter is found to be significant is an estimate of 
the statistical power of the sample size used to draw the replications. The simulation can be repeated with varying 
population values for the parameters of interest and different sample sizes to draw a picture of what to expect in 
terms of statistical power and estimate precision for a particular research scenario. 
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In their editorial comments, following earlier work by Muthén and Muthén (2002) on the use of Monte Carlo 
simulations for statistical power analyses and sample size determination, Marcoulides and Saunders (2006) 
introduce this approach as a valid alternative for determining an appropriate sample size, note the existence of 
several software tools that can be used to carry out such analyses, and present an example using Mplus (Muthén & 
Muthén, 1998). Most importantly, Marcoulides and Saunders (Marcoulides et al., 2009; Marcoulides & Saunders 
2006) note that sample size determination for PLS analyses should consider various factors, such as distributional 
assumptions, psychometric characteristics of the indicators, or the magnitude of the relationships of interest, which 
paints a much more complex—but accurate—picture of the issue than previously used alternatives in this regard. 
However, Marcoulides and Saunders’ (2006) recommendation is problematic in that they recommend using CBSEM 
analyses to estimate the statistical power for PLS. This approach is not entirely correct because the two families of 
techniques are different in how data are analyzed. In Section 4, we show that estimating the Monte Carlo samples 
with PLS and CBSEM will indeed lead to different results and conclusions. 

Of the reviewed studies, only Majchrzak, Beath, Lim, and Chin (2005) performed simulations to determine statistical 
power, and they correctly used PLS to estimate the replicated model. Their simulation showed that their sample size 
of 17 provided sufficient statistical power. Considering that Cohen’s (1992) power tables, which assume perfect 
measurement of the variables, state that the sample size required to obtain power of .80 for large effect size is 
always at least 30, stating that just over half of that would be sufficient under a scenario where measurement error is 
assumed to exist sounds unconvincing. Indeed, there seems to be an issue with their calculations: Majchrzak et al. 
(2005, p. 660) report that they “used bootstrapping with a sample size of 500”. The idea of bootstrapping is to draw 
samples of the same size as the original sample, and, in this way, estimate the sampling variability of a statistic. If 
we increase the size of the bootstrap sample, the variance of the bootstrap estimates clearly decreases and the 
results are no longer a good approximation of how a statistic would behave when estimated from repeated samples 
of the original size. This is best explained with an example: consider a population with two uncorrelated and normally 
distributed variables. If we draw a large number of samples of 17 from this population and calculate a correlation 
between the two variables from each sample, the standard deviation of these estimates is about 0.25. If we further 
draw many bootstrap samples of 500 observations each from each of these samples of 17 and calculate the 
correlation from the bootstrap samples, the standard deviation of these correlations is, on average, about 0.04. 
Using this number as an estimate for the real sample variability of the correlation (which is 0.25) is clearly 
inappropriate, as would be using these in a significance test: if these bootstrap samples were used as part of a 
significance test, the analysis would result in a false positive rate of 75 percent, which might be mistakenly taken as 
a power estimate. (Appendix B provides R code for this short analysis). Further, the specific values assigned to each 
parameter in the simulation model by Majchrzak et al. (2005) were the actual estimates and not a priori specified 
ones, which makes this a post hoc power analysis, which is problematic in what can be inferred from the results 
(Zumbo & Hubley, 1998). 

Monte Carlo simulations are currently the state-of-the-art in power analysis (Wolf et al., 2013). However, the current 
literature is problematic for PLS users. On the one hand, the literature suggests that CBSEM simulations can be 
used as approximations for the power of PLS. However, PLS is often used in cases where researchers argue that 
CBSEM would not be appropriate, and, if a researcher were to argue that CBSEM would not work well for a 
particular problem, it would be difficult to argue that it would work for a power analysis for the same problem. 
Moreover, some researchers (Reinartz, Haenlein, & Henseler, 2009) argue that PLS has more statistical power than 
CBSEM and, if this is indeed the case, then CBSEM power estimates would be biased approximations of the power 
of PLS. Finally, the idea that CBSEM simulations would be appropriate for estimating power of PLS analysis was 
introduced to the literature in an editorial that did not provide any supporting evidence, which makes it difficult to 
verify this claim. Then, on the other hand, the only study that correctly uses PLS to estimate the statistical power of 
PLS clearly uses some inappropriate statistics and makes a surprising claim that a sample as small as 17 provides 
sufficient power. This is problematic because it may lead researchers to question the usefulness of the Monte Carlo 
analysis altogether, while the real problem is in the inappropriate use of bootstrapping. 

Summary of Current Practices 

Taken together, our review indicates that statistical power considerations do not figure prominently in the literature 
employing PLS as the statistical technique of choice. Furthermore, in the handful of studies that discuss statistical 
power, the techniques employed were only either approximations to the procedure that we present next, or 
insufficient detail was provided to understand how the calculations themselves were performed, which effect sizes 
were considered, and which approach was employed. As we discuss in Section 4, the a priori calculation of 
statistical power for a variety of effect and sample sizes in a way that reflects the technique that will actually be used 
to analyze the data—PLS in this case—is an important element of research planning and design, and provides 
valuable information that helps assess the findings obtained later. We believe one important reason underlying this 
state of affairs is the lack of readily available procedures for calculating statistical power in a way that considers the 
characteristics of the PLS technique. Indeed, none of the commonly used PLS software packages (e.g., PLS-Graph 
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or SmartPLS) provide any support for power calculations, and researchers are left to their own devices about how to 
perform them. In this work, we remedy that situation by providing researchers with such an approach in a way that 
can be easily adapted to suit any research design. 

IV. ANNOTATED TUTORIAL USING R 

Introduction to R 

We now illustrate how proactive Monte Carlo simulations can be used for power analysis with PLS. Our example 
uses matrixpls (Rönkkö, 2014), a new R package implementing the PLS algorithm, which is designed specifically for 
Monte Carlo studies using the powerful simsem (Pornprasertmanit, Miller, & Schoemann, 2013) package as a 
simulation framework. Following the example requires no prior knowledge of R and can be implemented in a “copy-
paste” manner, although knowledge of R can be useful when seeking to modify and adapt the code included here for 
other research designs. 

Step 1: Model Definition 

The first step in a proactive Monte Carlo simulation is to completely specify the population model about which the 
researcher is interested in assessing statistical power. This requires that every parameter in the model be given a 
specific value. Sensitivity analyses can be conducted by making changes to the model and rerunning the simulation 
to see how those changes affect the results. In this tutorial, we  use a four-construct model as our running example. 
In this example, we use the free Ωnyx software (von Oertzen, Brandmaier, & Tsang, 2015) as a graphical tool to 
construct our model. Although Ωnyx has fairly basic SEM estimation and simulation capabilities already built-in, its 
usefulness for our example comes from its ability to dynamically generate model syntax in OpenMX, Lavaan, Mplus, 
or RAM, or export the covariance matrix of all the observed and latent variables. Figure 2 shows our population 
model drawn in Ωnyx with the generated Lavaan model syntax on the right. Note that all relationships in the model 
have been assigned a specific value. When planning a new study, researchers should derive these based on past 
research, theoretical expectations as to relative magnitudes of effects, and experience with the research field. The 
particular constructs included in the model and the posited relationships among them should be derived from the 
theory and hypotheses underlying the research design. As we note above, several models can be specified with 
different values assigned for each of these parameters. 

 

Figure 2. Defining the Population Model with Ωnyx 
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Researchers should then decide on the number of indicators that they will use to measure each construct. For 
simplicity, all four constructs in our running example are reflectively specified, though formative specifications are 
also possible. In our example, construct A is measured with three indicators, B measured with four indicators, C 
measured with five indicators, and D measured with three indicators. All these are essentially congeneric, which 
entails each item loading on a single construct, with potentially different loadings across items; measurement errors 
are assumed to be uncorrelated. Both of these conditions, however, can be relaxed if needed. All variables in the 
model, latent or manifest, have zero means and unit variance. Using a model where all variables are standardized is 
recommended because the PLS results are always standardized and comparing estimates to the population values 
is therefore simplified. 

As a result, the loadings for each item need to be specified as well. In our example, we have set all item loadings for 
construct A at 0.70, half of those for construct B at 0.70 and half at 0.80, three loadings for items measuring 
construct C at 0.60 and the remaining two at 0.80, and all three loadings for construct D at 0.80. Because all items 
are here specified as having unit variance, the error variances are set at the square root of one minus the square of 
the respective loading. Note that specifying all latent and observed variables with unit variance essentially entails a 
model with standardized parameters, which is comparable to the way most research results are reported. 

After the population model has been fully specified, the next step is to draw repeated samples from the population 
so that those samples reflect the population model just defined and any distributional considerations that 
researchers are interested in analyzing. The case of data drawn from a multivariate normal distribution is more 
straightforward and so we discuss it first. In addition, this scenario lays down some of the groundwork that will be 
required later. After this first example, we discuss one way in which non-normal data can be generated for analysis. 

We now export the generated model from Ωnyx to R. The code can be either copy-pasted, one part at a time to the 
R window, or combined as one text file that is then run with R (the recommended approach because it makes it 
easier for researchers to save their work for later review and to modify the code). The model syntax is shown below 
and we assign it to an object named “model”. 

model<-“ 

! regressions  

A =~ 0.7*x1 

A =~ 0.7*x2 

A =~ 0.7*x3 

B =~ 0.7*x4 

B =~ 0.7*x5 

B =~ 0.8*x6 

B =~ 0.8*x7 

C =~ 0.6*x8 

C =~ 0.6*x9 

C =~ 0.6*x10 

C =~ 0.8*x11 

C =~ 0.8*x12 

D =~ 0.8*x13 

D =~ 0.8*x14 

D =~ 0.8*x15 

D ~ 0.3*A 

C ~ 0.1*B 

C ~ 0.5*A 

D ~ 0.3*C 

! residuals, variances and covariances 

A ~~ 1.0*A 

B ~~ 1.0*B 

C ~~ 0.71*C 

D ~~ 0.725*D 

B ~~ 0.3*A 

x1 ~~ 0.51*x1 

x2 ~~ 0.51*x2 

x3 ~~ 0.51*x3 

x4 ~~ 0.51*x4 

x5 ~~ 0.51*x5 

x6 ~~ 0.36*x6 

x7 ~~ 0.36*x7 
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x8 ~~ 0.64*x8 

x9 ~~ 0.64*x9 

x10 ~~ 0.64*x10 

x11 ~~ 0.36*x11 

x12 ~~ 0.36*x12 

x13 ~~ 0.36*x13 

x14 ~~ 0.36*x14 

x15 ~~ 0.36*x15” 

 
The model syntax is similar to the Mplus model syntax and is explained in an paper that also contains multiple 
examples (Rosseel, 2012). The =~ denotes factor loadings of observed variables on the latent variables, and ~ 
denotes regression relationships between latent variables. Both are technically regression coefficients, but the factor 
loadings are marked differently because they also define latent variables (a formative latent variable would be 
defined similarly but not including an observed variable on the right side of the =~ relation and then specifying 
regression paths from the indicators toward the latent variable). The ~~ symbol is used for residual variances and 
covariances of endogenous variables and variances and covariances of exogenous variables. In our example, we 
specify the variances of A and B and the covariance between A and B. Because C and D are endogenous variables, 
the ~~ symbol defines their residual variances (i.e., latent variable level error terms). 

Step 2: Monte Carlo simulation 

The next step is to use the model in a Monte Carlo simulation. We start by loading the matrixpls package and use 
the matrixpls.sim function to perform a Monte Carlo study. This function has three mandatory parameters. The first 
parameter is the number of Monte Carlo replications, for which we recommend a value of at least 500 (note that 
matrixpls makes use of multiple cores in computers equipped with them, and thus the number of replications can be 
increased markedly if so desired). The next parameter is the population model. If the tested model is not defined in a 
separate parameter, the population model will also be used as the estimated model; a separate tested model would 
be indicated when researchers are interested in analyzing, for example, the consequences of employing an analysis 
model that is misspecified when compared to the population one. The final mandatory parameter is the sample size. 
The result will be assigned into an object named “output”. 

The two additional parameters that are highly recommended are multicore (see above), which enables parallel 
processing and takes advantage of contemporary multicore processors, and completeRep, which discards and re-
runs failed (i.e., non-converged) estimation results so that the final number of replications is always guaranteed to be 
exactly the number specified. 

library(matrixpls) 

 

output <- matrixpls.sim(1000, model, n=100, multicore = TRUE, completeRep = TRUE)  

 

More-complex setups are also possible. For example, generating non-normal data can be done by specifying the 
skewness and kurtosis values for each indicator variable, as shown below1: 

distributions <- mapply(bindDist, 

                        skewness = c(0.50, 0.50, 0.50, 0.50, 0.50,  

                                     0.50, 0.50, 0.50, 0.75, 0.75, 

                                     0.75, 0.75, 0.75, 0.75, 0.75),  

                        kurtosis = c(1, 1, 1, 1, 1, 

                                     1, 1, 1, 1.50, 1.50, 

                                     1.50, 1.50, 1.50, 1.50, 1.50)) 

 

output <- matrixpls.sim(1000, model, n=100, indDist = distributions,  

                        multicore = TRUE, completeRep = TRUE) 

 

Both these examples generate 1000 samples of data from the population model and estimate the model parameters 
with each sample using the PLS algorithm with the default settings, which are to use mode A outer weighting 
scheme (typically used for reflective indicators) for the outer estimation and path scheme, which is the default for 

                                                      
1 The full capabilities of the simsem package, which is used for data generation and analysis by matrixpls, are documented on the simsem 
website at http://simsem.org, which includes multiple ready-to-run examples. 

http://simsem.org/
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also many other PLS applications, for inner weighting. Standard errors are estimated with 500 bootstrap replications 
and 95 percent confidence intervals are estimated using the normal approximation. In total, this setup estimates 
501,000 PLS models, which takes about 15 minutes on a contemporary multi-core processor computer. 

Step 3: Interpretation of the Results 

After the Monte Carlo replications have been completed, the next step is to interpret the results. These are printed 
out by applying the summary function on the output object 

summary(output) 

 
This produces the following output 
 
========= Fit Indices Cutoffs ============ 

           Alpha 

Fit Indices   0.1  0.05  0.01 0.001 Mean   SD 

       srmr 0.089 0.092 0.123 0.154 0.08 0.01 

========= Parameter Estimates and Standard Errors ============ 

Called from: summaryParam(object, digits = digits) 

Browse(1)>  

       Estimate.Average Estimate.SD Average.SE Power..Not.equal.0. Average.Param Average.Bias Coverage 

C~A               0.398       0.089      0.085               0.973           0.5       -0.102    0.789 

D~A               0.253       0.099      0.100               0.705           0.3       -0.047    0.933 

C~B               0.139       0.091      0.110               0.300           0.1        0.039    0.927 

D~C               0.283       0.098      0.099               0.779           0.3       -0.017    0.945 

A=~x1             0.814       0.097      0.100               1.000           0.7        0.114    0.735 

A=~x2             0.801       0.100      0.101               1.000           0.7        0.101    0.802 

A=~x3             0.805       0.101      0.101               0.999           0.7        0.105    0.770 

B=~x4             0.759       0.161      0.199               0.919           0.7        0.059    0.906 

B=~x5             0.760       0.166      0.201               0.936           0.7        0.060    0.920 

B=~x6             0.824       0.148      0.193               0.949           0.8        0.024    0.951 

B=~x7             0.825       0.150      0.193               0.951           0.8        0.025    0.952 

C=~x8             0.684       0.106      0.109               0.998           0.6        0.084    0.865 

C=~x9             0.696       0.102      0.108               0.999           0.6        0.096    0.836 

C=~x10            0.690       0.109      0.109               0.999           0.6        0.090    0.834 

C=~x11            0.834       0.090      0.089               1.000           0.8        0.034    0.917 

C=~x12            0.834       0.091      0.089               1.000           0.8        0.034    0.906 

D=~x13            0.866       0.087      0.088               1.000           0.8        0.066    0.862 

D=~x14            0.869       0.087      0.088               1.000           0.8        0.069    0.859 

D=~x15            0.871       0.087      0.088               1.000           0.8        0.071    0.845 

================== Replications ===================== 

Number of replications = 1000  

Number of converged replications = 1000  

Number of nonconverged replications:  

   1. Nonconvergent Results = 0  

   2. Nonconvergent results from multiple imputation = 0  

   3. At least one SE were negative or NA = 0  

   4. At least one variance estimates were negative = 0  

   5. At least one correlation estimates were greater than 1 or less than -1 = 0 
 
The first section of the output contains the distributions of various model fit indices that were calculated during the 
estimation. With default settings, simsem prints out only a small selection of most commonly used SEM fit indices of 
which only standardized root mean squared residual (SRMR) is available from matrixpls (Rönkkö, 2013). Because 
there is limited evidence of the usefulness of these indices in the PLS context (Evermann & Tate, 2010 Rönkkö & 
Evermann, 2013), and because they fall outside the scope of our topic of power analysis, we do not discuss them 
any further. 

The second section contains information about the parameter estimates. The estimates are labeled with the same 
Lavaan syntax (Rosseel, 2012) that was used to define the population model. The first column “Estimate.Average” 
shows the mean of all estimates and the “Estimate.SD” shows the standard deviation of the estimates and indicates 
their variability around the mean. “Average.SE” is the average estimate of standard error. Because the standard 
error is the estimate of the standard deviation, these values should be close to the actual standard errors to be 
unbiased.  

The fourth column “Power..Not.equal.0” is that which is most relevant for our purposes. This column contains the 
results of the power analysis. The significance tests that are used in the power analysis are based on comparing the 
ratio of the parameter estimate to its standard error with the t-distribution. Although this practice has been 
challenged lately (Rönkkö & Evermann, 2013), the field currently lacks better alternatives. The statistic in the column 
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tells us the relative frequency that the p-value from this test is below .05, which provides an estimate of statistical 
power.  

The final three columns provide information that can also be useful. “Average.Param” is the population value of the 
parameter and “Average.Bias” is the bias of the estimates, which is the difference between the mean estimate and 
the population value (the term “average” is used here because simsem supports also multigroup analyses). 
“Coverage” is the coverage value of the confidence intervals, which tells how frequently the population value of the 
parameter falls within the estimated confidence limits. Confidence intervals are sometimes suggested as a potential 
alternative to null-hypothesis significance testing (e.g., Henseler, Ringle, & Sinkovics, 2009), but our results—
similarly to earlier results by Lu, Kwan, Thomas, and Cedzynski (2011)—show that, at least for the confidence 
intervals calculated using a normal approximation, the coverage is often not very close to the nominal 95 percent 
value. Nevertheless, a recent study by Henseler and colleagues (2014; see also McIntosh, Edwards, & Antonakis, 
2014) provides initial evidence of the usefulness of more-complex bias-corrected and accelerated confidence 
intervals. Although these confidence intervals were not used in our tutorial, they can be obtained by adding the 

option citype = “bca” to the simulation command. 

From the perspective of research design and planning, these results are valuable for two reasons. First, they provide 
researchers with information about what to expect when conducting their study. In particular, these results indicate 
the average estimates for each main parameter of interest and their standard errors, which provide a measure of the 
expected variability of the estimates and the range of findings that are likely from a population model such as the 
one specified by the researcher. For example, for a population model such as the one specified in Figure 2 and a 
sample size of one hundred as used here, the expected average path value for the A -> C path would be 0.398, 
whereas approximately sixty eight percent of the estimates would fall between 0.309 and 0.487 (that is, within one 
standard deviation from the mean).  

Second, and specifically with regards to statistical power, the results provide an estimate of power to detect the 
specified effects at the chosen sample size. In this case, a sample size of one hundred, as used in the simulation, 
would have a power of 0.973 to detect the A -> C path, but a power of only 0.300 to detect the B -> C path, well 
below commonly accepted standards. As we note before, findings from underporwered studies, when significant, 
should be cautiously considered. These models can then be rerun with different combinations of effect and sample 
sizes in order to ascertain the likelihood of detecting underlying effects, which aids in both planning the research and 
interpreting the obtained results. 

Comparison between Approaches 

The simulation approach presented here can be easily adapted for use with CBSEM as well because it builds 
directly on simulation tools that were developed for CBSEM. This can be done by replacing the function from 
matrixpls.sim to just sim to run the same model with Lavaan (Rosseel, 2012). Additionally, two models need to be 
specified, the first model being the estimated model and the second the population model where all parameters are 
freed. This is similar to how Monte Carlo simulations are specified when using Mplus. Appendix A provides an 
example of how this kind of analysis is specified. 

After running the same analysis by estimating the same model with CBSEM, we can compare the results between 
estimating power directly by using PLS in a Monte Carlo simulation, approximating this simulation with CBSEM 
simulation, and using power tables from the work of Cohen. Table 2 presents the power estimates for this analysis 
for PLS and CBSEM showing that the power estimates using PLS are substantially higher than the power estimates 
for CBSEM, and that neither of two approaches reaches the targeted power level of 0.80 but for one path, though 
PLS comes close for two other paths. However, this comparison is incomplete unless we also compare these results 
with power tables. Because these tables do not consider individual coefficients, but rather the overall explained 
variance, they must be applied on a per construct, rather than on a per path, basis. The population R2 values for C 
and D are 0.29 and 0.27, translating to f2 values of 0.41 and 0.37. These values suggest that it would be most 
appropriate to compare these results for the power tables of large effect (0.35) for a regression with two explanatory 
variables. In this scenario, the tables state that 30 observations would be sufficient to reach the target power level of 
0.80. 
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Table 2: Comparison of Power Analysis Approaches 

 Analysis 

Parameter PLS simulation CBSEM simulation 

A -> C (0.5) 0.973 0.965 

B -> C (0.1) 0.300 0.135 

A -> D (0.3) 0.705 0.543 

C -> D (0.3) 0.779 0.504 

Summary and Application 

This tutorial proposes a straightforward approach to determining sample size and calculating statistical power for 
research employing PLS as the analytical technique of choice—one which does not rest on rules-of-thumb or on 
approaches developed for different statistical techniques. Furthermore, the steps necessary to perform these 
calculations are largely automated and do not require extensive additional work beyond what a researcher would 
need to perform to carry out the research in the first place.  

The first step is for researchers to specify their research model of interest in the appropriate syntax. This can be 
accomplished either manually, following the conventions by Rosseel (2012), or by using a graphical tool, such as 
Ωnyx, which we employed here. Both alternatives would result in an identical outcome, and it is thus largely a matter 
of personal preference. The most important part of this step is specifying reference values for each parameter in the 
model. While the structure of the research model itself (which constructs are included, the relationships between 
those constructs, the number of indicators used to measure each construct, etc.) should have already been 
developed as part of the research project itself—and thus presents no additional effort beyond the need to translate 
the research model into the appropriate syntax—researchers also need to specify what they consider to be likely 
values for each parameter in the research model. These values are central to the determination of sample size 
because the expected power resulting from the Monte Carlo simulations is dependent on the particular values 
specified in the research model. It is always possible to create several different models with the same structure but 
with different values for certain parameters in order to ascertain the sensitivity of the results to particular values. 

The second step involves choosing a desired distribution for the simulation and its subsequent execution. In the two 
examples above, we show how to employ a multivariate normal distribution—which is the default option in the 
package and thus requires no additional configuration—or the specification of a non-normal distribution for the 
observed variables by entering values for their skewness and kurtosis. It is also possible to employ a mixed 
approach by noting that a normally distributed variable has both kurtosis and skewness equal to zero. In this step, it 
is also possible to specify both the desired number of replications, where a higher number leads to more stable 
results, and the expected sample size. As before, the analyses can be run with a variety of sample sizes in a likely 
range in order to better ascertain the sensitivity of the results to this parameter. The statistical power reported for 
each parameter in the model can only be interpreted by reference to the particular value assigned to that parameter 
in the simulation and the chosen sample size. 

V. RECOMMENDATIONS AND CONCLUSION 

The procedure we outline above can be readily modified to conduct power analyses for any PLS model, for any 
number of constructs, indicators, sample size, inner and outer weighting schemes, or distributional assumptions. 
These procedures are computing intensive, and, thus, can take some time to complete. In the example we discuss 
here, obtaining one thousand converged replications, with five hundred bootstrap resamples each entails generating 
and analyzing more than half a million runs. That said, we believe the benefits of performing these calculations, both 
in terms of research planning and sample size determination, and in aiding to the interpretation and support of 
research findings, clearly outweigh a few minutes of processing time. 

We therefore strongly recommend that researchers both conduct and report the results of power analyses as we 
discuss here. The following elements should be reported for each separate power analysis, which can be included in 
an appendix so as not to clutter the reporting of the main research: 

1. The population model used to generate the data should be structurally identical to the model used later in 
the analysis (i.e., same constructs and relationships among them, same number of items, same 
assumptions as to loadings of indicators on each construct, and same cross-loadings and correlated 
measurement errors if any). The values used for each parameter in the simulation should be reported. 

2. The individual sample size employed (in the example reviewed here, one hundred). 
3. The number of converged replications on which the results are based, and the number of bootstrap 

replications obtained for each individual dataset. 
4. Distributions used to generate the sample data. 
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5. Statistical power achieved for every parameter of interest. 

Including the elements above would also facilitate the replication of the analysis by other researchers if so desired. 
The following sample write-up conveys all this information for the example used here (for the normal case), which 
also shows that the reporting of power analyses need not be onerous: 

Statistical power analyses were conducted in order to determine the sample size necessary in order to 
achieve a desired level of power to detect an existing effect. The population model used for the power 
analysis was structurally identical to the one shown in Figure 2. Standardized loadings for the items 
measuring A were 0.7, for half of those measuring B, 0.70, and for the other half, 0.8. The first three items 
measuring C loaded at 0.6, whereas the remaining two had standardized loadings set at 0.8. All items 
measuring D loaded at 0.8. We drew all variables, latent and manifest, from a multivariate normal 
distribution with zero mean and unit variance. All items loaded solely on their intended construct, with no 
correlated errors assumed. The path from A to C was set at 0.50, that from B to C at 0.10, that from A to D 
at 0.30, and that from C to D at 0.30. The individual sample size was one hundred, and the results are 
based on one thousand converged replications, with five hundred bootstrap resamples each. These results 
indicate a power of 0.973 for the path between A and C, 0.300 for the path between B and C, 0.704 for the 
path between A and D, and 0.779 for the path between C and D. 

The same procedure we outline here for the assessment of statistical power could be used, for example, to test false 
positive rates. In this scenario, researchers would be interested in assessing the extent to which a PLS analysis of a 
particular model and distribution could be expected to result in estimates that are significantly different from zero 
when they are indeed zero in the population. Such analysis might alleviate the concerns of possible false positives 
due to violation of the assumptions of the t-test (Rönkkö & Evermann, 2013). This is but one of many different 
analyses that researchers can conduct by being able to easily specify and execute simulations using the packages 
and code provided here. Additional scenarios could include the presence of cross-loadings, correlated measurement 
errors, and others. 

In this paper, we argue for the importance of conducting a priori power analyses when employing PLS as the 
statistical technique of choice. The value of doing so rests not only on the ability to provide strongly grounded 
evidence for the appropriateness of the research design underlying an empirical study, but also in the information it 
provides researchers to aid in the planning and data collection stages. In order to facilitate the conduct of these 
analyses in the future, we provide here a tutorial on the usage of the matrixpls package for this purpose. In 
conjunction with the Ωnyx application—which greatly simplifies the specification of the population models, though 
those could be also done by hand using the Lavaan syntax—this allows researchers to quickly and easily specify 
and test a variety of population models that reflect the range of conditions or scenarios of interest in a research area. 
We also provide guidance in interpreting and reporting the results from these analyses. Through all these, we 
contribute to the improvement of research practice in our field by facilitating the more nuanced use of one of the 
most popular statistical techniques. 
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APPENDIX A: FULL CODE FOR THE EXAMPLE 
library(matrixpls) 

 

model<-"! regressions  

A=~0.7*x1 

A=~0.7*x2 

A=~0.7*x3 

B=~0.7*x4 

B=~0.7*x5 

B=~0.8*x6 

B=~0.8*x7 

C=~0.6*x8 

C=~0.6*x9 

C=~0.6*x10 

C=~0.8*x11 

C=~0.8*x12 

D=~0.8*x13 

D=~0.8*x14 

D=~0.8*x15 

http://cran.r-project.org/package=simsem
http://cran.r-project.org/web/packages/matrixpls/index.html
http://cran.r-project.org/web/packages/matrixpls/index.html
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D ~ 0.3*A 

C ~ 0.1*B 

C ~ 0.5*A 

D ~ 0.3*C 

! residuals, variances and covariances 

A ~~ 1.0*A 

B ~~ 1.0*B 

C ~~ 0.71*C 

D ~~ 0.725*D 

B ~~ 0.3*A 

x1 ~~ 0.51*x1 

x2 ~~ 0.51*x2 

x3 ~~ 0.51*x3 

x4 ~~ 0.51*x4 

x5 ~~ 0.51*x5 

x6 ~~ 0.36*x6 

x7 ~~ 0.36*x7 

x8 ~~ 0.64*x8 

x9 ~~ 0.64*x9 

x10 ~~ 0.64*x10 

x11 ~~ 0.36*x11 

x12 ~~ 0.36*x12 

x13 ~~ 0.36*x13 

x14 ~~ 0.36*x14 

x15 ~~ 0.36*x15" 

 

# Normal data 

 

output <- matrixpls.sim(1000, model, n=100, # Basic parameters 

                        multicore = TRUE,   # Additional parameters 

                        completeRep = TRUE)   

 

summary(output) 

 

# Non-normal data 

 

distributions <- mapply(bindDist, 

                        skewness = c(0.50, 0.50, 0.50, 0.50, 0.50,  

                                     0.50, 0.50, 0.50, 0.75, 0.75, 

                                     0.75, 0.75, 0.75, 0.75, 0.75),  

                        kurtosis = c(1, 1, 1, 1, 1, 

                                     1, 1, 1, 1.50, 1.50, 

                                     1.50, 1.50, 1.50, 1.50, 1.50)) 

 

nonNorm <- matrixpls.sim(1000, model, n=100,      # Basic parameters  

                         indDist = distributions, # Indicator distr 

                         multicore = TRUE,        # Additional params 

                         completeRep = TRUE)   

 

summary(nonNorm) 

 

# CBSEM, normal data 

 

cbsem <- sim(nRep = 1000, 

             model = gsub("(0-9.)+\\*","",model), # Free all params 

             generate = model, n=100, # Basic parameters 

             lavaanfun = "sem", # Do a SEM analysis 

             multicore = TRUE,  # Additional parameters  

             completeRep = TRUE)  
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summary(cbsem) 

 

APPENDIX B: FULL CODE FOR BOOTSTRAPPING CORRELATION 

library(parallel) 

 

observations <- 17 

boot.observations <- 500 

boot.reps <- 1000 

 

options(mc.cores = detectCores()) 

 

tstats <- mclapply(1:1000, function(rep){ 

  data <- cbind(rnorm(17), rnorm(17)) 

  boot.reps <- sapply(1:1000, function(x){ 

    boot.sample <- data(sample(1:observations, boot.observations, replace = TRUE),) 

    cor(boot.sample(,1), boot.sample(,2)) 

    }, simplify = TRUE) 

  cor(data(,1), data(,2))/sd(boot.reps) 

  }) 

 

tstats <- unlist(tstats) 

sum(abs(tstats)>1.96) 
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