
Communications of the Association for Information Systems

Volume 24 Article 43

6-1-2009

Controls in Flexible Software Development
Michael L. Harris
Indiana University – Southeast, harris60@ius.edu

Alan R. Hevner
University of South Florida

Rosann Webb Collins
University of South Florida

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Harris, Michael L.; Hevner, Alan R.; and Collins, Rosann Webb (2009) "Controls in Flexible Software Development," Communications
of the Association for Information Systems: Vol. 24 , Article 43.
DOI: 10.17705/1CAIS.02443
Available at: https://aisel.aisnet.org/cais/vol24/iss1/43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301377368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol24%2Fiss1%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol24?utm_source=aisel.aisnet.org%2Fcais%2Fvol24%2Fiss1%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol24/iss1/43?utm_source=aisel.aisnet.org%2Fcais%2Fvol24%2Fiss1%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol24%2Fiss1%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol24/iss1/43?utm_source=aisel.aisnet.org%2Fcais%2Fvol24%2Fiss1%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Volume 24 Article 43

Controls in Flexible Software Development

Michael L. Harris

Indiana University – Southeast, New Albany, IN, harris60@ius.edu

Alan R. Hevner

University of South Florida, Tampa, FL

Rosann Webb Collins

University of South Florida, Tampa, FL

Control and flexibility may appear an unlikely pair. However, we propose that effective flexible software development
processes must still provide clear control mechanisms to manage the progress and quality of the resulting software
products. This paper presents a conceptual study to understand the types of control found in flexible software
development processes, termed controlled-flexible approaches. Control theory is used as a lens to study the control
mechanisms found in plan-driven and flexible processes. We extend current thinking to include emergent outcome
controls and clan controls for team coordination in our taxonomy of control mechanisms. Several popular flexible
processes are analyzed for control mechanisms. We conclude with a brief discussion of future research directions.

Keywords: software development, control methods, flexible methods, agile processes, emergent outcomes

Volume 24, Article 43, pp. 757-776, June 2009

mailto:harris60@ius.edu

Controls in Flexible Software Development

Controls in Flexible Software Development

758
Volume 24 Article 43

I. INTRODUCTION

Flexible
1
 software development processes include subtle, yet essential, control mechanisms to manage the progress

and quality of the resulting software products. To better understand the controls found in flexible processes, we use
control theory as a lens to examine the central tension between control and flexibility in managing software
development. It is generally understood that a key managerial responsibility is to exert controls that guide
employees‟ behaviors to ensure compliance with organizational goals. The challenge for software development
managers today is how to appropriately employ controls when dynamic environments require more flexibility. In
addition, the need for explicit and formal controls is increased when development is distributed and/or developers
come from multiple organizations. This control versus flexibility tension is evident in the software industry‟s long
running debate over the relative merits of plan-driven development approaches versus flexible approaches [Boehm
and Turner 2004].

So, how should software teams balance flexibility and control of their work processes? In the early days of software
development, programmers tended to use an unconstrained, ad hoc approach for the construction of software
systems. The outcomes were often unpredictable and unrepeatable. Faced with poor results from ad hoc
development, teams turned to planned approaches. The waterfall method, the archetype for planned approaches,
establishes several stages for the development process. A team must complete a stage and gain stakeholder
agreement to stage completion before it progresses to the next stage.

One of the first stages in the waterfall process is the development of a detailed work plan that becomes an output
control [Ouchi 1977] for the balance of the software development process. Like all output controls, the plan
represents a detailed specification of the deliverables throughout the entire project. Due to the central role of the
plan in managing this class of development methods, they have been termed plan-driven approaches [Boehm and
Turner 2004]. Plan-driven approaches have been welcomed for the structure they bring to the development process.
In a recent study [Neil and Laplante 2003], organizations reported that the waterfall approach was the most popular
development method.

However, critics of plan-driven approaches have pointed out that it is not only difficult, but sometimes impossible to
fully specify software before development begins [McConnell 1996]. When knowledge is tacit or when the
technology is new, the team may need to test software process alternatives before they can select the best
approach. Furthermore, in quickly changing environments the team may find that user or market needs change
during the course of development.

This has led to a search for intermediate alternatives – processes that are more flexible than a plan-driven method
yet are more controlled than an ad hoc approach. We term these approaches controlled-flexible. The list of these
choices seems to grow daily. Boehm and Turner [2004] list ten flexible processes, but this is far from a complete list.
Methods in practice may be even more varied as organizations implement their own interpretations of various
flexible approaches.

The agile manifesto [Agile Manifesto 2001] states principles that are used by many of the flexible approaches.
However, the manifesto principles leave open the theory behind the flexible processes. The manifesto doesn‟t
explain why various principles are important, nor does it explain how the principles are intended to be enacted. A
more formal approach for understanding the use of control mechanisms in order to achieve organizational goals is
embodied in control theory as articulated by Ouchi [1977, 1979, 1980]. In the study presented in this paper, we use
a conceptual research approach to marry the observations of formal control theory with the practical knowledge
embedded in existing flexible processes. Our goal is to better understand the role and use of controls in flexible
software development processes. In order to reflect actual control practices, we propose an expansion of control
theory to encompass emergent dynamic controls.

1
 We use the term flexibility instead of agility to be more inclusive of processes that encourage change during development but that may not meet

some definitions of agile processes.

Volume 24 Article 43
759

II. FLEXIBILITY IN SOFTWARE DEVELOPMENT

Although plan-driven development processes are in broad use, the demand for more flexible alternatives is evident.
In a recent study, 85 percent of CIOs indicated that agility is part of their core business strategy [Ware 2004]. While
it is widely recognized that software development methods must be flexible, it is very difficult for managers to
determine what forms of flexibility are best suited for a given instance of development.

As a case in point for the need of flexibility, consider the FBI Virtual Case Project that was cancelled after $170
million in expenditures. According to SAIC, the contractor, the problem was an evolving design [Hayes 2005]:

…And what the FBI called software deficiencies were really more changes in requirements. And users kept rejecting
SAIC's software designs, taking what one SAIC executive complained was a "trial-and-error, we-will-know-it-when-
we-see-it approach to development."

The article‟s author offered his opinion regarding the issues:

And in the frantic days after Sept. 11, SAIC should have spotted that stable requirements for this project just weren't
in the cards. The FBI needed results in the face of a crisis. SAIC should have shifted gears and methodologies to
start producing working deliverables right away, no matter how far the project was from a complete set of
requirements.

One insight from this case is that the SAIC executive dismissed the FBI‟s design process as a “trial-and-error”
approach. Although this instance may have been an example of trial-and-error (ad hoc) development, the quote
highlights a problem with flexible methods; managers may not be able to identify and effect flexible control
mechanisms and, thus, they may not be able to differentiate between a flexible approach and an ad hoc
development approach.

MacCormack, Verganti, and Iansiti [MacCormack et al. 2001] provide another example that illustrates the confusion
over the workings of flexible controls. The researchers asked managers at a company to identify a successful project
and an unsuccessful one. Analysis revealed that the „successful‟ project was a well structured project with no
changes and no surprises once the design was locked down. In contrast, the „unsuccessful‟ project underwent
continual change in response to market and competitive changes. However, surprising news was revealed when
objective measures of success were examined. The „unsuccessful‟ flexible project had higher quality levels and used
fewer resources relative to its level of complexity.

In this research we develop a theoretical framework for controls in software development based on control theory
and an analysis of development methods in use. We held an informal focus group to help stage the research. The
focus group confirmed that some developers believe a plan-driven approach is „correct‟ and that a flexible approach
is less favored. Upon further discussion, it became clear that the problem may be there is not a common
understanding of the distinction between a flexible, „anything goes‟ approach and a controlled-flexible approach.

This confusion might trace its roots back to the creation of the „waterfall‟ approach to development. Early software
projects were unstructured, ad hoc initiatives. The problems with these initiatives were addressed through the
introduction of the waterfall approach or related plan-driven derivatives. Using this as a frame, a development
approach might be classified using a continuum between a plan-driven approach and an ad hoc, flexible approach
as illustrated in Figure 1.

Plan

Driven

Ad

Hoc

Plan

Driven

Ad

Hoc

Figure 1. Continuum between Plan-Driven and Ad Hoc Development Processes

Although there is some insight in the continuum in Figure 1, we argue that this picture is limiting and that it does not
fully present the range of controlled-flexible approaches. The Figure 1 continuum creates two end-points: 1) It
envisions a fully plan driven method wherein development is completely specified and controlled by the plan; and 2)
it envisions a fully ad hoc method wherein developers are given no guidance and complete freedom with regard to

760
Volume 24 Article 43

both the feature set and the timing of the eventual deliverables. This worldview would then interpret any point along
the continuum as a development approach that relaxes the plan-driven controls to allow more flexibility.

However, we argue that a controlled-flexible approach is not a plan-driven approach with fewer controls. Instead, we
suggest that controlled-flexible approaches have different controls. This viewpoint was supported in our focus group
discussions. The participants were introduced to several flexible control mechanisms, such as: daily software builds,
interim releases for stakeholder review, daily meetings, and pair programming. This led participants to recognize that
controlled-flexible approaches may contain controls, but they are different from those in plan-driven approaches.
Instead of Figure 1, we propose a more two-dimensional view of flexible alternatives in software development. This
is illustrated in Figure 2, below.

Plan Driven

Controlled

Flexibility Ad Hoc

Figure 2. A Two-Dimensional View of Software Development Approaches

This figure implies that multiple dimensions exist. A plan-driven approach requires stakeholder agreement on the
plan before development begins. In an ad hoc approach, developers are given a broad vision and are expected to
report back with a completed software product. A controlled-flexible approach has its own controls that are different
from those in a plan-driven approach. Any given instance of development may exist anywhere on this „map‟ of
development alternatives. Let‟s consider a case where the specificity of the plan is reduced, thus giving more
freedom to the developer. This flexibility may be offset with increased use of flexible controls, such as daily software
builds. This would represent a movement along the left edge of the triangle from Plan-Driven toward Controlled-
Flexible. If, however, the plan becomes less specific but there are no additional constraints added, the approach can
be classified closer to the right edge of the figure in the Ad-Hoc region.

In practice, an individual instance of a development approach is not limited to points along the edge of the figure. As
an organization adopts a development process it also adapts the process to its own idiosyncratic needs [Boehm and
Turner 2004]. Preliminary interviews conducted for this study suggested that many organizations end up with
processes in practice that consist of tradeoffs between the process choices. Since there is no language for
understanding and comparing processes and their control mechanisms, it is difficult for adopting organizations to
understand whether an appropriation of a process is faithful [DeSanctis and Poole 1994].

Much of the existing research on software process improvement focuses on a single process and uses assertions
and proofs of concept as evaluation techniques [Zelkowitz and Wallace 1998]. Research on agile processes is no
exception to this trend. There is no established framework for comparing, analyzing, and evaluating flexible
processes. Similarly, there is no theory that can be used to differentiate a controlled-flexible process from a purely
ad hoc approach.

Thus, a research objective of this study is to develop a common language for analyzing and comparing flexible
processes based on their use of common control mechanisms. The current dialog centers on individual mechanisms
recommended by specific agile processes. It is difficult to know whether these separate concepts are
complementary or if they are substitutes for one another when there is no established theoretical base to explain the
purposes of various mechanisms. By drawing on the control theory literature, we hope to provide a beginning
taxonomy for understanding controls in flexible processes. In addition, we expect to aid practitioners who seek to
adopt flexible processes. This study can help adopting organizations achieve a better understanding of the role and
purposes of the control mechanisms in a flexible development method.

III. CONTROL THEORY

In this research we use control theory to establish a taxonomy for analyzing flexible processes. The initial work in
control theory established three types of controls that organizations use to manage towards objectives [Ouchi 1977,
1979, 1980; Ouchi and Johnson 1978]. These control types can be briefly defined as:

Volume 24 Article 43
761

 Behavioral control: Appropriate when the behaviors that transform inputs to outputs are known

 Outcome control: Appropriate when a process‟ output can be measured

 Clan control: Appropriate in ambiguous circumstances where neither the behaviors nor outputs can be
predicted a priori. Clan members belong to a common organization and share values, beliefs, and attitudes
[Cardinal et al. 2004; Ouchi 1980].

The relationships among the types of control are shown in Table 1. Two factors determine the proper control
approach: the availability of outcome measures and the knowledge of the transformation process. Outcome
measures are useful if an outcome can be specified a priori and if the individual‟s contribution can be tied to the
outcome. Alternatively, behavioral control can be exercised by prescribing the transformation behaviors that produce
the end product and measuring adherence to those behaviors. This behavioral control approach not only requires
well known transformations that will result in success, but it also requires that behaviors be observable. Furthermore,
the controller must be knowledgeable enough to understand the appropriate behaviors in order to observe them
[Kirsch 1997].

Table 1. Organizational Use of Control Types

 Knowledge of Transformation Process

 Perfect Imperfect

Availability of

Outcome Measures

High Behavioral or Output Output

Low Behavioral Clan

Adapted from Ouchi [1977, 1979]

The initial work in control theory was produced in a relatively deterministic world (e.g. an automobile assembly line).
Output control assumed that you could clearly and completely specify an output a priori. Furthermore, success or
failure in regards to an a priori output was binary with no ambiguity. Likewise, behavioral control was expected to be
straightforward. If every employee successfully performs specified behaviors, then every employee will deliver
acceptable results.

Ouchi recognized that employees might have multiple duties, and thus a single employee might face multiple
controls. Furthermore, he recognized that future organizations might not be so deterministic. He referred to the
emerging literature of the time and stated that clan control might be the most appropriate choice as uncertainty
increased [Ouchi 1979] .

Since Ouchi‟s initial work there has been significant research on control theory. Specific to our interests in this study
on software development are the extensions related to clan control, portfolios of control, and dynamic controls.
Researchers have suggested two different controls related to the management of software development: self control
and team control [Kirsch 1996; Choudhury and Sabherwal 2003]. In order to reconcile these extensions with Ouchi‟s
initial work, we have chosen the terms “Clan-Attitude” control and “Clan-Team” control.

When Ouchi talked about clan control [Ouchi 1979, 1980] he talked about control through common values and
beliefs. This type of control is used when formal monitoring is not possible. This corresponds to the concept of self-
control discussed by some researchers. We support this view of control, but prefer the term Clan-Attitude control
over the term „self-control‟. The purpose of any control is to manage individuals to achieve organizational objectives.
Self-control might imply a lack of organizational influence. Ouchi points to the organization‟s role in shaping clan
decisions through selection, training, and other means of socialization that shape attitudes.

In addition, researchers have pointed out that peers can also influence decisions to achieve a type of team control
[Kirsch 1996; Choudhury and Sabherwal 2003]. Ouchi did state that co-workers can subtly influence one another,
but this understates the clear signals that team members can send one another. Consider, for example, the practice
of requiring team members to wear dunce caps when they break software builds [Cusumano and Yoffie 1999].

Newer research has also emphasized the need for a portfolio of controls rather than just relying on one type of
control [Choudhury and Sabherwal 2003; Henderson and Soonchul 1992; Kirsch 1997, 2004; Nidumolu and
Subramani 2004; Orlikowski 1991]. Ouchi did recognize that multiple controls could exist. For example, he described
a retail environment in which one control might use commissions to focus employees on sales while using other

762
Volume 24 Article 43

controls to focus employees on duties such as stock arranging [Ouchi 1977]. However, Ouchi‟s work focuses on the
role of different goals to encourage different duties that an individual might have. The work on control portfolios
discusses the need for multiple controls for a single task when the task is sufficiently complex that a single control
might not be sufficient.

We find that control theory falls short in the discussion of dynamic environments, such as those involving flexible
development methods. There have been studies that investigate changes in controls over time [Cardinal et al. 2004;
Kirsch 2004]. However, these studies examined predictable changes in control approaches through the lifecycles of
projects and organizations. In the current context, we examine shorter term changes. In the short term, our goal is
not to change controls, but to establish controls that can manage change.

The primary recommendation of control theory in “conditions of ambiguity, of loose coupling, and of uncertainty”
[Ouchi 1979 p. 845] is to use clan control. While we certainly see the role of clan control as an element in a portfolio
of controls, we feel that the flexible development techniques contain more than clan controls. In making this
observation, we see a correspondence between clan control and organic organizations. We also feel a kinship with
Eisenhardt and Tabrizi‟s [1995] study of high technology companies, wherein they note that:

“… calling this organic does not capture the sense of structure that we found.”

IV. A TAXONOMY OF DYNAMIC CONTROLS

We have identified some shortcomings regarding the application of control theory to flexible development. However,
it would be a mistake to abandon control theory and start anew. Control theory has been applied many times to
understand how organizations achieve management objectives. Our goal is to marry this existing wisdom with the
insights embedded in the field of flexible development in order to extend the theory so that it encompasses both past
findings and the new requirements of flexible development.

The work of Ouchi [1979] points to limits of both output and behavioral control in uncertain environments, and
suggests the use of clan control. As discussed earlier, in order to shape attitudes of employees, the mechanisms of
clan control are achieved through selection of personnel, training, and socialization, not through direct control of the
task. However, even a casual observation of flexible development methods will reveal specific control methods that
are much more tangible than the dictates of clan control.

In fact, we specifically note that, despite the expectations of control theory, the agile manifesto [Agile Manifesto
2001] elevates the importance of outputs in the management of agile processes. The manifesto deemphasizes the
role of a planning document, but it maintains a central focus on the output of the process (working software). In order
to understand this seeming contradiction with control theory, we examine the meaning of output control as defined
by control theory and compare that to the practices in flexible software development.

Output/Outcome Control and Dynamic Development

First we must understand the nature of output controls. According to control theory, outcomes are deterministic:
produce to this specification and you will achieve an acceptable product. The most obvious instance of outcome
control in systems development is the use of a detailed plan in plan-driven development. The plan is developed
upfront. Once the stakeholders agree to the plan, it becomes an outcome control that governs development and
delivery of the software.

Output controls are akin to the cybernetic concept of control -- of which one simple example is the operation of a
thermostat. Let‟s say that the target temperature for the thermostat is 72 degrees and the actual temperature is 78
degrees. The thermostat recognizes the actual condition is above the target (78>72), and it tells the system to add
cool air until the measured temperature reaches the target level (72=72).

The visible target in outcome controls is not just something that is measured at the end of the project. The target is
used to actively direct the work as it converges toward the target. Among other criticisms, Hofstede [1978] observes
that there are problems with cybernetic control when objectives are missing, unclear, or shifting. Envision
programming a thermostat to control the temperature so that it was “comfortable.” Not only is this term undefined,
but the definition might depend on the person(s) in the room, the activity level, the time of day and many other
factors. Without an objective, an agreed-upon standard, the thermostat cannot work.

This is the problem with using output controls in flexible development – the final outcome is only known when the
process is complete. Without a fixed, a priori output definition the development team will have no guidance during

Volume 24 Article 43
763

development, Furthermore, since there is no detailed plan, there is nothing that the final output can be measured
against.

Because of these problems, traditional control theory would lead us to expect that managing outcomes would be
ineffective in the control of flexible development. However, as we look at the agile manifesto and consider examples
of flexible development, we see that the actual software developed is a primary concern of the control mechanisms:
“We value: … Working software (emphasis added) over comprehensive documentation” [Agile Manifesto 2001].

The departure between actual flexible development and control theory is in the lifecycle state used to manage and
control output (Figure 3). Traditional outcome control manages toward the final outcome. In contrast, flexible
methods cannot and do not establish a final goal because the end game is unknown during development. Instead,
flexible methods manage the output as it evolves or emerges from the production process. This difference is
illustrated in Figure 3 which shows the focus of Traditional Outcome control on its last step (Final Outcome), and the
focus of Emergent Outcome Control on the second step (Iteration Produced).

Traditional outcome control focuses on the final outcome, whereas emergent outcome control focuses on the
outcome as it continuously emerges or evolves during the development process.

Figure 3. Traditional Outcome versus Emergent Outcome

Emergent outcome controls guide the way that flexible processes evolve towards a final outcome (software

deliverable). The developer is given freedom to create the best solution as new learning is uncovered; however, this
freedom is constrained to ensure that the developer satisfies organizational objectives. The risk with flexibility is that
the developer might wander off in unproductive or idiosyncratic directions. Later in this paper we will demonstrate
how these controls work by classifying specific controls used by sample development processes. We propose two
key types of emergent outcome controls: scope boundaries and ongoing feedback.

Scope boundaries: These controls limit the amount of flexibility available by defining the feasible space for
exploration. The software vision is the crudest version of a scope control.

Although flexible methods do not use detailed plans, they may rely on software architectures and partial
specifications to further define the set of feasible development choices. A partial specification can establish an
architecture, or it can set APIs for external systems. A partial specification may also lock down some features, and
leave others open for exploration. These partial specifications may exist as formal documents, but they may also be
enacted through other means. Some examples: A legacy environment may constrain the available choices; the team
might begin development with an architectural stub; and each team member may be confined to a specific area for
exploration.

An alternative type of boundary limits the amount, not the area, of exploration. For example, consider the practice of
delivering weekly releases. The team is limited to a week‟s worth of changes between software releases and
reviews. Resource management can also be used to limit the amount of changes. For example, the number of team
members assigned to a given area may vary based on the organization‟s needs.

764
Volume 24 Article 43

Ongoing Feedback: Ongoing pervasive feedback between stakeholders is another type of emergent outcome
control. Traditional feedback compares progress against a known plan, but the standard for comparison in emergent
outcome control equates more to “I will know good work when I see it.” Because of the tacit nature of this
comparison, the team requires feedback in order to ensure progress is acceptable. In order to reduce the risk of
wasted work, this feedback must be pervasive and it must occur continuously. Feedback occurs between team
members and all stakeholders including: other team members (daily builds), user representatives, management, and
the marketplace through frequent releases.

As a result of this discussion, we consider traditional outcome control to be insufficient for describing control of
flexible processes. We propose the amendment of outcome control to include two separate classes of control:
Traditional Outcome Control and Emergent Outcome Controls. Our classification expands Emergent Outcome
Controls into the controls of scope boundaries and ongoing feedback. Scope boundaries do not specify details.
Rather, they describe the set of feasible choices that can be made. This can be accomplished by constraining the
environment (resources, API, tools) or by describing the feasible solution set. Feedback directly addresses the
emergent outcome and its match against explicit or tacit models held by various stakeholders.

Behavior Control Mechanisms

Behavioral control focuses on behaviors that transform inputs to desired outputs. In the software development
context this includes the specification of work methods and procedures [Henderson and Soonchul 1992]. Consistent
with other types of control, behavioral control in software development is not as deterministic as Ouchi may have
initially envisioned. Even with a plan-driven approach, two different developers who work on the same plan using the
same methods would be expected to produce different software development artifacts. The variability would be even
greater if a flexible method was used. This supports our contention that a single behavioral control may not be
sufficient, and that control of flexible methods may require the use of a portfolio of overlapping controls.

Clan Control Mechanisms

As we discussed previously, there are two types of clan controls. Clan-Attitude controls achieve broad goal
congruence through personnel selection, training, and socialization. The “clan” in attitude control refers to the
common beliefs and values of the clan. There is no active control over tasks; rather, individuals are socialized to
work in congruence with the clan‟s goals. This approach can be useful [Cardinal et al. 2004], but it is another
instance of a control that cannot achieve repeatable results if it is used in isolation.

The other type of clan control involves more direct team control of tasks. Peer pressure from team members can
affect the outcome of tasks. An example of this occurs in extreme programming, in which team members‟ activities
are continuously visible. Everyone can see the progress being made by each person and there is an expectation
that the team‟s work is unified, so that there are no mavericks and no surprises. Team clan control can keep the
team members synchronized, but it will not necessarily keep the team in concert with users‟ needs. Again, this is an
example of a useful, primarily internal control, but it cannot be used in isolation to match software to stakeholder
needs.

Dynamic Control Taxonomy

In summary, our proposed control taxonomy retains the full richness of control theory with the addition of emergent
outcome controls. The following taxonomy of dynamic controls is proposed:

Outcome controls: measure performance against a priori specifications

o Emergent outcome controls: manage outcomes in an evolutionary fashion
 Scope boundaries: constrain creativity to insure focus on key areas
 Ongoing feedback: provides corrective feedback as development occurs.

Behavior controls: measure adherence to behaviors that transform inputs to outputs

Clan controls

o Team: Team members provide task feedback to support coordination and communication.

o Attitude: Individuals make decisions based on attitudes and values that are congruent with
organization‟s attitudes and values.

Even with the addition of emergent outcome controls, no single control will sufficiently constrain flexible development
in order to achieve predictable, repeatable results. It is only through the use of an overlapping portfolio of the above
controls that a flexible process can be effective.

Volume 24 Article 43
765

V. DYNAMIC CONTROL AND FLEXIBLE PROCESSES

As a test of the concept of dynamic controls, we apply the control mechanism taxonomy to analyze the controls
found in three popular flexible software development processes: Extreme Programming, Synchronize and Stabilize,
and the Rational Unified Process. Our goal is to better understand where control mechanisms exist in these flexible
processes in order to support improved management of flexible software development. For completeness, we also
analyze the controls found in the Waterfall process. These analyses are depicted in Tables 2-6 in the Appendix at
the end of the paper, with the control mechanism taxonomy developed from the control literature as categories for
the key practices of each development process.

This analysis was done in two phases. First, the authors identified key practices for each development process from
industry and trade literature sources as a representation of the methods in use. Second, the authors classified each
practice mechanism into one or more parts of the control taxonomy to reveal the underlying type of control that was
exercised. To further validate the author classification, we created two surveys, each with a description of the types
of control and software practices and with half of the practices to classify (to minimize time to completion). In the
surveys, Masters-level students with software development experience were asked to classify each practice into
one, and only one, type of control, or to answer “Don‟t Know”. Fourteen subjects completed these surveys. The
results of the classifications by the authors and surveyed developers are shown in Tables 2-5 in the Appendix (the
numbers indicate how many individuals made each classification; results are shown for any classification done by at
least 2 individuals). The results of this analysis demonstrate how the different types of control are operationalized in
development processes, while also identifying differences in control portfolios in the different development
processes.

Controls in Extreme Programming (XP)

We used XP to guide development of the dynamic control taxonomy. The XP key practices [Beck and Andres 2005]
are classified according to the taxonomy in Table 2. As the table reveals, the XP mechanisms are consistent with the
expectations of the dynamic controls taxonomy. The emergent outcome mechanisms, behavior controls, and clan-
team controls are the primary forms of control used by the process.

Although XP developers are given freedom to create new solutions, scope boundaries limit technological wandering
[McDonough and Leifer 1986]. For example, XP iterations of one to three weeks limit the amount of change
developers can introduce. XP also utilizes user stories to define broad requirements and further bound creativity.
These mechanisms define the area within which developers will create the solution. Detailed feedback lets XP
developers constantly gauge progress. A user co-located with the development team provides one source of
continuous feedback. However, XP also realizes that a single user may not be representative of the market as a
whole. Another important reason for the short release cycle is that it allows the team to continually check their
evolving design against the needs of the broader market of users.

As suggested earlier, XP‟s behavior controls all have a focus on immediacy. Daily builds mean that bugs must be
fixed as they are found, not added to bug lists. Weekly releases mean that a one day slip can result in a 20 percent
schedule overrun. Ten-minute builds make it quick to compile the system. This sense of immediacy works with the
short cycle times to keep the team on course. Although the team has freedom to create, they do not have time for
idle wanderings. Compare this to a large, plan-orientated approach where the next milestone may be weeks away.
XP epitomizes the adage: „Don‟t put off until tomorrow what you can do today‟.

The analysis indicates that control theory with emergent outcomes provides a useful way of thinking about the
activities of extreme programming.

Controls in Synchronize and Stabilize

The Synchronize and Stabilize (S&S) [Cusumano and Yoffie 1999] approach provides an interesting contrast to XP.
In many ways, the S&S approach is similar to a plan-driven method. S&S has been used to manage large teams
consisting of hundreds of developers. Projects begin much like plan-driven development methods. Functional
specifications are built, major milestones are established, and feature teams of three to eight developers are
established. Standards, such as user-interface design rules, are also set [Iansiti and MacCormack 1999]. However,
these startup processes stop short of specifying every detail. About 30 percent of the product design evolves from
the development activities of the feature teams. Since the 70 percent of fixed requirements include infrastructure
items, such as the system architecture, the amount of freedom given to the feature teams is considerable. Each
feature team is expected to discover and implement the best possible solution for their product area. Many
structures are used to guide the developers, but many feature orientated decisions are left to the developers.

766
Volume 24 Article 43

Two differences between S&S and XP relate to 1) architecture and 2) code ownership. S&S develops architecture
before coding begins. The architecture constrains flexibility and ensures that any subsequent creative solutions are
true to the overall system needs. XP uses a minimalist architecture. For XP, architecture is important but for each
iteration, the architecture only supports features in that iteration. The XP philosophy is that planning an architecture
for future iterations is a waste of time since the feature set will change. The second difference relates to the
ownership of code. S&S carefully segments the code. Each feature team has ownership of only its own code
segment. In XP, the entire team has ownership of the entire code base.

Despite these differences, S&S and XP are both considered agile processes. They both encourage the developers
to pursue creative approaches and they both consider documentation an output of the process rather than an input.
Thus, we would expect S&S to have similar characteristics to XP even though its mechanisms are quite different.
Table 3 shows how the mechanisms in S&S map to control mechanisms.

The specification list provides a scope boundary; an emergent outcome control, not a fixed outcome control. This list
provides broad outlines for development but it can change as development proceeds. Scope boundaries are also
evident in other areas. For example, a feature team must fit their code into the established architecture. This
architecture is not an outcome control since it does not dictate what the team must build. However, it determines
how the team‟s code interacts with other modules and, thus, places boundaries on the extent of the changes that
can be made. S&S also relies on role definitions to place boundaries on the teams. A feature team only has
responsibility for a specific feature-set and ownership privileges are defined for each piece of code.

As can be seen, S&S‟s use of scope boundaries is different from XP‟s. XP relies primarily on short cycle times to
reign in ad hoc development. XP developers don‟t have time to wander too far afield because the next release is no
more than a few days away. S&S uses a partial specification, defined roles, a fixed architecture, and limits on code
ownership to constrain developers. Both methods use daily builds to ensure that maverick programmers do not get
too far out of step with the rest of the organization. In total, all of these mechanisms can be seen as alternative ways
to bound the creativity of the team. Although the team is given permission to innovate, these mechanisms ensure
that the innovation does not stray too far from the intent of the software.

S&S also includes mechanisms for ongoing feedback [MacCormack et al. 2001]. Multiple releases are offered to the
market in order to gather user input. For example, Netscape 3.0 underwent six beta releases to gather user input
before it was released to market [Iansiti and MacCormack 1999]. Furthermore, the team takes any chance possible
to get continuous end-user reviews of the work in progress. This ongoing user feedback is as important as
functional/bug testing.

S&S is not quite as „extreme‟ as XP. There is still a sense of immediacy derived from daily builds and testing that
occurs in parallel with development. However, this sense is muted. Although software is built daily, an individual
piece of code may go several days before being checked into a build. Since there is no user representative on each
team, the feedback is less current. Slightly more structure upfront allows for a greater use of traditional outcome
controls. However, this is a relative comparison between the two techniques. In general, the profile of controls is the
same. They both rely primarily on emergent outcome controls, they both keep a sense of immediacy in their
behavior expectations, and they both include team oriented clan controls.

Controls in the Rational Unified Process

The Rational Unified Process (RUP) [Kruchten 2000] provides an interesting contrast in our study because it is a
plan-driven approach, but it allows for learning throughout the process. In a plan-driven process, such as RUP, the
specification of the software occurs separately from the software development. Creation of the design either occurs
at the front of the process (Waterfall) or in spurts between development cycles (RUP). The programmer executes
the plan but does not directly modify the plan. In contrast, a flexible environment requires the programmer to make
real time design decisions. The RUP developer will consider both the user needs and the technical capabilities of the
environment.

When we talk about emergent outcomes we are describing a continuous design process that involves the
programmer in design decisions. Although RUP does allow for evolving designs, it does not allow for emergent
designs. RUP design decisions are agreed upon by a change committee before a programming iteration begins. The
programmer implements the design. Any creative suggestions must wait for the committee‟s action and for the next
iteration.

Table 4 maps RUP development techniques onto the control taxonomy. The table shows fewer controls for RUP as
compared to the agile processes. This is because of the central role of the design document in RUP. RUP includes

Volume 24 Article 43
767

business modeling plans, architecture plans, and a formal change management board. The results of all of these
processes are embedded in the design specification. Therefore, the inclusion of this single document factors in the
decisions of all of these processes.

The two shaded rows at the bottom of the table indicate that specific aspects of RUP are adaptive. However, this
ability to make changes is in the hands of project management, not the developers. Between each set of iterations
the change management board can adjust the controls by changing the specification.

From the developer point of view, RUP is not as flexible as the agile processes XP and S&S. As the table reveals,
RUP leans heavily on traditional outcome control. Developers are assigned due dates and detailed specifications for
each iteration. Testing helps determine if the specified outcome is successfully delivered. Certain behaviors, in terms
of tools and standards, are also pre-specified.

Controls in the Waterfall Process

The previous discussion contrasted two types of agile methods (XP and S&S) and demonstrated that despite their
differences, they contained similar approaches from the viewpoint of dynamic control theory. It then revealed the
dynamic control profile for an iterative, plan-driven approach (RUP). As a next step we analyze the Waterfall
development process using the same approach. This will help us understand how dynamic control theory
distinguishes between the agile and plan-driven approaches.

Table 5 shows how the mechanisms of the waterfall method influence development. The most significant control
again is the design document. This document encapsulates the results of many detailed sub-processes in one
formidable control tool.

As can be seen, the waterfall approach has a significantly different control profile from the agile approaches. The
waterfall approach relies primarily on traditional outcome controls. The flexible methods (XP and S&S) use a more
broad-based set of controls with special emphasis on emergent outcome controls.

VI. CONCLUSIONS AND FUTURE RESEARCH

This initial study of controls in flexible software development processes demonstrates that traditional control theory
has shortcomings when applied to dynamic situations, such as new software development. Traditional control theory
relies heavily on clan control for these situations. However, even if clan control is possible, it is not clear that it is
sufficient. The analyzed agile processes do use clan control, but they supplement it with other types of control.

The analysis suggests that extensions to control theory are needed to understand control mechanisms in dynamic
situations. Specifically, it recommends the addition of emergent outcome controls. This new control mode consists of
two key mechanisms. Scope boundaries define the limits on the developer‟s creativity. Ongoing feedback is used to
steer the creative process. In addition, the study recommends a re-categorization of informal controls. Self control
becomes clan-attitude control. It involves creation of shared attitudes and values across the clan. Clan-team control
is created to capture the concept of intra-team coordination of tasks.

Our analysis demonstrates that the new dynamic control taxonomy can be used to classify flexible control
mechanisms. This allows researchers and practitioners to understand the relationships between controls in various
development processes. For example, consider the finding that one purpose of the short cycle times in XP is to limit
the scope of development to minimize technological wandering. S&S does not use short cycle times, but it places
scope boundaries via carefully defined developer roles that restrict developers to specific feature areas. An
organization that is developing its own flexible development process may consider one of these scope limitation
devices or they may come up with an approach of their own to achieve the same purpose. See Table 6 for a
synthesis of control mechanisms by control types and development processes.

Our analysis also supports the portfolio view of controls of software development. All the development processes
analyzed employ more than one category of control. Two of the more flexible processes, XP and S&S, use many
more types of controls than RUP and the Waterfall process do. This finding underscores the importance of
understanding the nature of controls in a theoretical way. Managers adopting a flexible process need to be able to
deploy a varied and sophisticated set of control mechanisms with a clear understanding of how and why they are
using each key control mechanism.

A common feature of the agile processes is the manner in which they create a sense of immediacy. Developers are
required to be ever ready to build and demonstrate the system. This creates continuous pressure on developers to

768
Volume 24 Article 43

perform. In contrast, some plan-driven approaches establish their pacing through the use of infrequent milestones.
Developers may relax when the milestones are first established and gradually increase their pace as the due dates
approach.

Clan-team control is also a key practice of flexible methods. Unlike clan-attitude control, this team based approach
does not require lengthy socialization. Team control involves team members directly interacting to coordinate and
influence each other‟s tasks. Since this is more directive than attitude control, it can even be used in relatively new
teams. However, this type of control mechanism is likely to be more difficult in a distributed setting when interaction
is not face to face but via a communication medium. This type of control may also be more challenging when
members of the team come from different organizations and cultures (e.g. when consultants are used, or when
development is partially outsourced to different countries). More research is clearly needed to understand how best
to apply clan-team controls in distributed software development environments.

We note two limitations to the analysis reported in this paper of how software development practices embody
various types of control. First, the list of software development practices analyzed for each development approach
is not intended to be exhaustive, but rather representative of the most commonly used practices of each approach.
The goal here is to demonstrate that different types of control are used in a reasonably large set of development
practices. In particular, we study well known controls in four commonly used development approaches. Second, the
survey of developers is used here to investigate the proposed model of software development controls. The results
show clear support for the authors‟ conceptualization of control types and the authors‟ classification of a range of
software development practices into one or more types of control. Further empirical work is needed to fully validate
the taxonomy of control mechanisms and the proposed extensions to control theory.

This study provides an initial test of the new conceptualization of control mechanisms in the software development
context by analyzing XP, S&S, RUP, and the Waterfall process. As future research we plan to validate this
taxonomy of control mechanisms in an extended field study of industrial software development projects. This will
allow us to verify the role of emergent outcomes in controlling development, establish the distinction between clan-
team and clan-attitude controls, and explore any boundary conditions that might suggest when the uses of emergent
outcomes are more or less appropriate.

ACKNOWLEDGMENTS

The Associate Editor review led to several significant improvements in the final paper. An earlier version of this
paper was presented at the 2006 HICSS Conference [Harris et al. 2006].

REFERENCES

Editor’s Note: The following reference list contains hyperlinks to World Wide Web pages. Readers who have
the ability to access the Web directly from their word processor or are reading the paper on the Web, can
gain direct access to these linked references. Readers are warned, however, that:

1. These links existed as of the date of publication but are not guaranteed to be working thereafter.
2. The contents of Web pages may change over time. Where version information is provided in the

References, different versions may not contain the information or the conclusions referenced.
3. The author(s) of the Web pages, not AIS, is (are) responsible for the accuracy of their content.
4. The author(s) of this article, not AIS, is (are) responsible for the accuracy of the URL and version

information.

Agile Manifesto (2001). Manifesto for Agile Software Development, http://agilemanifesto.org, published 2001.

Beck, K. and C. Andres (2005). Extreme Programming Explained: Embrace Change, 2nd ed. XP Series Boston:
Addison-Wesley. p. 189.

Boehm, B. and R. Turner (2004). Balancing Agility and Discipline: A Guide for the Perplexed Boston: Addison-
Wesley.

Cardinal, L. B., S. B. Sitkin, and C. P. Long (2004). “Balancing and Rebalancing in the Creation and Evolution of
Organizational Control,” Organization Science 15(4), p. 411-431.

Choudhury, V. and R. Sabherwal (2003). “Portfolios of Control in Outsourced Software Development Projects,”
Information Systems Research 14(3), p. 291-314.

Cusumano, M. A. and D. B. Yoffie (1999). “Software Development on Internet Time”, IEEE Computer 32(10), p. 60-
69.

http://agilemanifesto.org/

Volume 24 Article 43
769

DeSanctis, G. and M. S. Poole (1994). “Capturing the Complexity in Advanced Technology Use: Adaptive
Structuration Theory,” Organization Science 5(2), p. 121-147.

Eisenhardt, K. M. and B. N. Tabrizi (1995). “Accelerating Adaptive Proceses: Product Innovation in the Global
Computer Industry,” Administrative Science Quarterly 40, p. 84-110.

Harris, M., A. Hevner, and R. Collins. “Controls in Flexible Software Development”, Proceedings of the 39
th
 Annual

Hawaii International Conference on System Sciences (HICSS39), Hawaii, January 2006.

Hayes, F. (2005). “$170 Million Lesson,” Computerworld,
http://www.computerworld.com/governmenttopics/government/story/0,10801,100335,00.html (current May 6,
2006).

Henderson, J. C. and L. Soonchul (1992). “Managing I/S Design Teams: A Control Theories Perspective”,
Management Science, 38(6): p. 757-777.

Hofstede, G. (1978). “The Poverty of Management Control Philosophy,” The Academy of Management Review 3(3),
p. 450-461.

Iansiti, M. and A. MacCormack (1999). “Living on Internet Time: Product Development at Netscape, Yahoo!,
NetDynamics, and Microsoft,” Harvard Business School Case Stud, 9-697-052, pp. 12.

Kirsch, L. (1996). “The Management of Complex Tasks in Organizations: Controlling the Systems Development
Process,” Organization Science 7(1), p. 1-21.

Kirsch, L. (1997). “Portfolios of Control Modes and IS Project Management?,” Information Systems Research 8(3), p.
215-239.

Kirsch, L. J. (2004). “Deploying Common Systems Globally: The Dynamics of Control,” Information Systems
Research 15(4), p. 374-395.

Kruchten, P. (2000). The Rational Unified Process: An Introduction, 2nd edition, Reading, MA: Addison-Wesley.

MacCormack, A., R. Verganti, and M. Iansiti (2001). “Developing Products on „Internet Time‟: The Anatomy of a
Flexible Development Process,” Management Science 47(1), p. 133-150.

McConnell, S. (1996). Rapid Development, Redmond, Washington, Microsoft Press.

McDonough III, E. F. and R. P. Leifer (1986). “Effective Control of New Product Projects: The Interaction of
Organization Culture and Project Leadership,” Journal of Product Innovation Managemen, 3(3), p. 149-157.

Neill, C. J., and P. A. Laplante (2003). “Requirements Engineering: The State of the Practice”, IEEE Software,
November-December pp. 40-45.

Nidumolu, S. R. and M. R. Subramani (2004). “The Matrix of Control: Combining Process and Structure Approaches
to Managing Software Development,” Journal of Management Information Systems 20(3), p. 159-196.

Orlikowski, W. J. (1991). “Integrated Information Environment Or Matrix of Control? The Contradictory Implications
of Information Technology,” Accounting, Management & Information Technology 1(1), p. 9-42.

Ouchi, W. G. (1977). “The Relationship Between Organizational Structure and Organizational Control,”
Administrative Science Quarterly 22(1), p. 95-113.

Ouchi, W. G. (1979). “A Conceptual Framework for the Design of Organizational Control Mechanisms,” Management
Science 25(9), p. 833-848.

Ouchi, W. G (1980). “Markets, Bureaucracies & Clans,” Administrative Science Quarterly 25(1), p. 129.

Ouchi, W. G. and J. B. Johnson (1978). “Types of Organizational Control and Their Relationship to Emotional Well
Being,” Administrative Science Quarterly 23(2), p. 293-317.

Ware, L. C. (2004). “The Benefits of Agile IT,” CIO www2.cio.com/research/surveyreport.cfm?id=74, (current
September 5, 2005).

Zelkowitz, M. V. and D. R. Wallace (1998). “Experimental Models for Validating Technology,” IEEE Computer 31(5)
p. 9.

770
Volume 24 Article 43

APPENDIX: CONTROL TABLES

The tables begin on the next page. This introduction explains the layout of the tables.

Fourteen experienced subjects completed surveys to classify key development practices according to the type of
control that was represented. The results of the survey are shown in the following tables.

 Each table represents a development method (XP, Synchronize and Stabilize, RUP, Waterfall).

 Each row is a key practice for the given development method (e.g. develop a specification).

 The table columns represent the types of controls that could be used. Note the inclusion of Emergent
Outcome Controls, represented by Scope Boundaries and Ongoing Feedback.

 Each cell indicates the number of respondents who felt that a given key practice was an example of a given
control type. For example, the first row of the XP table shows that three people felt that “Sit Together” was
an example of “Ongoing Feedback”, and that eight people thought it was an example of a “Clan-Team”
control.

 The responses are only shown for cells that have more than one respondent.

 In order to keep the survey to manageable size, it was split into two parts. Each respondent only saw half of
the possible key practices. As a result, the number of respondents is not identical for all practices.

Volume 24 Article 43
771

Table 2. Extreme Programming Controls
 Outcome Controls

Behavioral
Controls

Clan Controls

Traditional
Outcome

Emergent Outcomes
Clan –
Team

Clan –

Attitudes
Scope

Boundaries
Ongoing

Feedback

Sit Together 3
Progress
observable by
teammates

 8
Teammates
accessible for
advice

Whole Team 4
Feedback from
customer
representative

 6
Team is unified.
No mavericks.

Informative
Workspace

6
Visible results

 10
Outcomes
observable

3
Daily work
observable

3
Teammates see
each other‟s
progress

Energized
Work

 4
Work at fast
pace

 6
When we
are at work
we will do
our best

Pair
Programming

 4
New ideas tested
with partner

4
Work together

10
Activities
transparent to
team members

Stories 2
Describe actions
to be supported

8
Stories are broad
targets -- not
detailed

2
2

1-3 Week
Cycle

2
Know that
release is very
1-3 weeks

8
Limit change that
can occur in an
iteration

5
Market feedback
every 1-3 weeks

3
Urgency
even small
delays change
schedule

Quarterly
Cycle

 4
Focus on
Business
constraints

5
Feedback of
Management
Issues

Slack 8
Timing constraints
restrict options

 3
Weekly cycles
more important
than features

10-Minute
Build

 4
Easy to
demonstrate

4
Don‟t break the
system

3
Code must work
well with others

Continuous
Integration

 6
Always be ready
to demo latest
product

6
Fix bugs as
they occur

3
Maintain synch.
with others. No
surprises

Build test
cases first

 3
Develop a detailed
goal for each
feature

 4
Team agrees to
goals before
programming
begins

Incremental
Design

 6
Each iteration
focuses on a few
things

6
Iterations dem-
onstrated to
stakeholders

3
Don‟t over plan
for future
features you
may not need

2
 Examination of the question and consideration of the responses has led us to conclude that these two responses indicate a problem with the

phrasing of the question, and not necessarily a valid response.

772
Volume 24 Article 43

Table 3. Synchronize and Stabilize Control Mechanisms

 Outcome Controls

Behavioral
Controls

Clan Controls

Traditional
Outcome

Emergent Outcomes
Clan –
Team

Clan –

Attitudes
Scope

Boundaries
Ongoing

Feedback

Start with Vision 5
Can-provide
some control –
lacks
measurable
detail

5
Carves out area
of development

4
Provides some
basis for
comparison

Up to 70%
specified before
development

3
Partial
specification
may change –
accountability is
difficult

6
Although any
feature may
change,
majority of
features set

3
Subsequent
30% based on
feedback

 2
Workers fill in
missing pieces
based on their
interpretation

Architecture &
Feature team
assignments
first

 4
Each team
focuses on its
own area

Daily Builds 7
Progress Visible

3
Must keep code
in working
condition

3
Dunce cap if
break the build

3
Each worker
chooses when
to add to daily
build

Continuous
End-User
Reviews

 8
Focused on
delivered
functionality, not
code

Major
Milestones

5
Specify due
dates for
feature bundles

3
Major
milestones only
specify broad
targets

 2
Must plan for
broad
stakeholder
review

Development &
Testing done in
parallel

 2
Development
bounded by test
constraints

 4
Always keep
code in working
condition

Code Reviews 3
Independent
view of
progress

 8
Code must be
acceptable to
other team
members

4
Developers
share work
without being
defensive

Check-in and
Change
Tracking

 4
Limit who can
change a
section of code
at any given
time

Volume 24 Article 43
773

Table 4. Rational Unified Process Control Mechanisms

 Outcome Controls

Behavioral
Controls

Clan Controls

Traditional
Outcome

Emergent Outcomes
Clan –
Team

Clan –

Attitudes
Scope

Boundaries
Ongoing

Feedback

Developer Controls: developers are controlled using a plan-driven approach. They do not have much flexibility on a daily basis.

The ability to adjust direction comes between iterations as shown in “Team Controls” below.

Design
Document

8
Deliver to the
specification;
Proposed
changes make
later iterations

Iteration Due
Dates

5
Measurable
outcomes that
can be tracked

2
Change based
on outcome of
prior phase

Testing
Workflow

7
Makes
outcomes
visible

 2
Assess whether
project is
satisfying
requirements

3
Sets how
testing will be
done

Environmental
Workflow

 2
Limited to given
set of tools

 6
Set tools and
standards

Configuration
Manager

 6
Define code
sections a
developer can
access. Sets
rules for sharing
code.

Team Controls: The two rows below are related to the team‟s management., Developers are subject to non-flexible plan-driven

controls on a daily basis. The flexibility of the process comes from adjustments made between iterations.

Multiple
Iterations

 4
Limit changes
for each
iteration to
specific areas

2
Feedback given
at each iteration

Stakeholder
Reviews

 11
Provide
feedback
throughout the
project

774
Volume 24 Article 43

Table 5. Waterfall Process Control Mechanisms

 Outcome Controls

Behavioral
Controls

Clan Controls

Traditional
Outcome

Emergent Outcomes
Clan –
Team

Clan –

Attitudes
Scope

Boundaries
Ongoing

Feedback

Design
Specification

7
Deliver to
specification
established at
the beginning

User
Participation in
Design
Specification

2
Specify
deliverable
before
development

Project Due
Dates

6
Must deliver at
times
established at
the beginning

Project Budget

6
Set budget at
beginning of
project

3
Constraint is
budget amount

Unit Testing

2
Done based on
test plans and
expected
outcomes

2
Boundary is unit
tested

Integration
Testing

4
Done based on
test plans and
expected
outcomes

2
Limitation on
testing space

Testing 11
Make outcomes
visible. Focus
on technical
issues, not end-
user
acceptance

Environment 9
Determine tools
and standards
that the
implementer
must use

Configuration
Management

 5
Define part of
code developer
can access. Set
rules for sharing

 2
Code sharing
and
coordination

Deliverable at
end of Phase

3
Known items to
deliver for each
phase

 2
Assess
progress
against budget,
schedule, and
resources

Sign-off at end
of Phase

2
Measures
delivery against
specification

 2
Provides
feedback on
acceptability

Volume 24 Article 43
775

Table 6. Synthesis of Control Methods by Control Types and Development Process

Control
Types/

Development
Processes

XP S&S RUP Waterfall

Outcome Controls

Traditional
Outcome
Controls

Visibility of results

through an informative
workspace

1. Partial specification

that lacks detail and may
change
2. Due dates for
feature bundles

1. Delivery is to the
design document
specification
2. Measurable due
dates that are tracked

3. Testing workflow
makes outcomes
visible

1. Delivery is to the
design document
specification
2. Delivery time is

established at beginning
3. Testing for technical

issues makes outcomes
visible
4. Formal sign-off on

delivery

Emergent
Outcomes –
Scope
Boundaries

1. Time: limited, by

short iterations (1-3
weeks, quarterly)
2. Breadth of target in

overall goal, but
Detailed goal for each

feature that emerges
via test cases

1. Areas of
development

established
2. Feature specification
may change
3. Team matched to
development area,

limits on who can
change a section of
code

Code changes limited:

1. Which area a
developer can access
and how code is shared
2. By iterations, by area

Code changes limited to

which area a developer
can access and how code
is shared

Emergent
Outcomes –
Ongoing
Feedback

Feedback through:
1. Observability of

outcomes to teams &
customers
2. Continuous testing

with teammates
3. Continuously
demonstrable to

customers

1. Progress visible
2. Progress compared
to initial vision
3. Independent review

of progress through
code reviews

Stakeholders review to

provide continuous
feedback

Assess progress versus
budgets at major

milestones

Behavioral Controls

Behavioral
Controls

1. Work pace: fast

with a sense of
urgency
2. Collaborative
3. Weekly schedule

goals
4. System always
working, bugs fixed

immediately

Code must always be
kept in working
condition via daily builds

and concurrent coding
and testing

Set tools and
standards

Set tools and standards

Clan Controls

Clan - Team 1. Teammates:

accessible for advice,
unified, no mavericks,
synchronized, no
surprises
2. Transparency of

activities to others in
team
3. Code works well

with others in 10
minute builds and
continuous integration

1. Code reviewed by

other team members
2. Visible sanction by
teammates (dunce cap)

if team member breaks
the build

 Code sharing

Clan –
Attitudes

Work Value: When

we are at work, we do
our best

776
Volume 24 Article 43

ABOUT THE AUTHORS

Michael L. Harris is an assistant professor of Business Administration at Indiana University Southeast. He held
managerial positions in the software field for 20 years before earning his Ph.D. in Business Administration from the
University of South Florida. Dr. Harris‟ research interests include management of innovation, organizational change,
knowledge management, and entrepreneurship. He has refereed research in ISR (forthcoming), Communications of
the ACM, ICIS, HICSS, AMCIS, SMA, and ISOneWorld.

Alan R. Hevner is an eminent scholar and professor in the Information Systems and Decision Sciences Department
in the College of Business at the University of South Florida. He holds the Citigroup/Hidden River Chair of
Distributed Technology. Dr. Hevner's areas of research interest include information systems development, software
engineering, distributed database systems, healthcare information systems, and service oriented computing. He
has published more than 150 research papers on these topics and has consulted for a number of Fortune 500
companies. Dr. Hevner received a Ph.D. in Computer Science from Purdue University. He has held faculty
positions at the University of Maryland and the University of Minnesota. Dr. Hevner is a member of ACM, IEEE, AIS,
and INFORMS.

Rosann Webb Collins is an associate professor of Information Systems and Decision Sciences at the University of
South Florida. Her current research focuses on global information systems, systems development, the impact of
information technologies on work, and behavioral issues in information markets. Her publications include a book,
Crossing Boundaries: The Deployment of Global IT Solutions, and research articles in MIS Quarterly, Information
Systems Research, IEEE Transactions on Software Engineering, the Journal of the American Society for Information
Science, and other MIS and information science publications. Dr. Collins has consulted with numerous businesses,
community organizations, libraries, and educational organizations on information technology use and issues. She is
a member of Beta Gamma Sigma, AIS, ACM, and IEEE.

Copyright © 2009 by the Association for Information Systems. Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for
components of this work owned by others than the Association for Information Systems must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O.

Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from ais@aisnet.org.

mailto:ais@gsu.edu

Volume 24 Article 43

 .

 ISSN: 1529-3181

EDITOR-IN-CHIEF
Ilze Zigurs

University of Nebraska at Omaha
AIS SENIOR EDITORIAL BOARD
Guy Fitzgerald
Vice President Publications
Brunel University

Ilze Zigurs
Editor, CAIS
University of Nebraska at Omaha

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Institute of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Paul Gray
Founding Editor, CAIS
Claremont Graduate University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

Ken Kraemer
University of California at Irvine

M. Lynne Markus
Bentley College

Richard Mason
Southern Methodist University

Jay Nunamaker
University of Arizona

Henk Sol
University of Groningen

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
University of San Francisco

Jane Fedorowicz
Bentley College

Jerry Luftman
Stevens Institute of Technology

CAIS EDITORIAL BOARD
Michel Avital
University of Amsterdam

Dinesh Batra
Florida International
University

Indranil Bose
University of Hong Kong

Ashley Bush
Florida State University

Fred Davis
University of Arkansas,
Fayetteville

Evan Duggan
University of the West Indies

Ali Farhoomand
University of Hong Kong

Sy Goodman
Georgia Institute of
Technology

Mary Granger
George Washington
University

Ake Gronlund
University of Umea

Douglas Havelka
Miami University

K.D. Joshi
Washington State
University

Chuck Kacmar
University of Alabama

Michel Kalika
University of Paris
Dauphine

Julie Kendall
Rutgers University

Claudia Loebbecke
University of Cologne

Paul Benjamin Lowry
Brigham Young
University

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Fred Niederman
St. Louis University

Shan Ling Pan
National University of
Singapore

Jackie Rees
Purdue University

Jia-Lang Seng
National Chengchi
University

Paul Tallon
Loyola College, Maryland

Thompson Teo
National University of
Singapore

Craig Tyran
Western Washington
University

Chelley Vician
Michigan Technological
University

Rolf Wigand
University of Arkansas,
Little Rock

Vance Wilson
University of Toledo

Peter Wolcott
University of Nebraska at
Omaha

Yajiong Xue
East Carolina University

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Sal March and Dinesh Batra

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
James P. Tinsley
AIS Executive Director

Vipin Arora
CAIS Managing Editor
University of Nebraska at Omaha

Copyediting by Carlisle Publishing Services

	Communications of the Association for Information Systems
	6-1-2009

	Controls in Flexible Software Development
	Michael L. Harris
	Alan R. Hevner
	Rosann Webb Collins
	Recommended Citation

	Controls in Flexible Software Development

