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A Two-Step Approach for Transforming Continuous Variables to Normal: 
Implications and Recommendations for IS Research 

Gary F. Templeton 

Department of Management and Information Systems, Mississippi State University 

gtempleton@cobilan.msstate.edu 

This article describes and demonstrates a two-step approach for transforming non-normally distributed continuous 
variables to become normally distributed. Step 1 involves transforming the variable into a percentile rank, which will 
result in uniformly distributed probabilities. Step 2 applies the inverse-normal transformation to the results of the first 
step to form a variable consisting of normally distributed z-scores. The approach is little-known outside the statistics 
literature, has been scarcely used in the social sciences, and has not been used in any IS study. The article 
illustrates how to implement the approach in Excel, SPSS, and SAS and explains implications and 
recommendations for IS research. 
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I. INTRODUCTION 

Traditionally, data transformations (e.g., power and logarithm) have been pursued by improving normality 
incrementally using a trial-and-error approach. Unfortunately, it is rarely the occasion that a researcher may actually 
achieve statistical normality as indicated by accepted diagnostics tests (e.g., Kolmogorov-Smirnov, P-P plot, 
skewness, kurtosis). This research demonstrates a simple yet powerful approach herein referred to as the Two-
Step, which may be used to transform many non-normally distributed continuous variables toward statistical 
normality (i.e., satisfies the preponderance of appropriate diagnostics tests for normality). The proposed 
transformation can achieve statistically acceptable kurtosis, skewness, and an overall normality test in many 
situations and improve normality in many others. With the exception of two limitations described later, the approach 
optimizes normality of the resulting variable distribution. The Two-Step offers an ideal standard for transforming 
variables toward normality and a new perspective on MIS research. 

In studies on the effects of non-normality on association tests, prior research has used simulated data [e.g., 
Figelman, 2009], whereas the proposed Two-Step procedure will enable the use of observed variables. For 
example, the Productivity Paradox is a term that describes the perplexing inability of information systems (IS)

1
 

researchers to uncover relationships between a range of information technology (IT) investment criteria and 
organizational productivity. Within this topic, a tremendous amount of multidisciplinary scholarly effort has been 
expended to better understand specific streams, such as the relationship between IT investment and financial 
performance [Brynjolfsson and Hitt, 2003]. Despite the enormity of effort and its prominence across disciplines, very 
little resolution has been made to the Paradox and, surprisingly, studies on the subject rarely mention the 
distributional aspects of underlying data. Simulation studies, which use data devoid of theory to study normality 
implications, cannot directly advance the Paradox stream. By contrast, the Two-Step offers the potential to transform 
observed variables toward statistical normality and the realization of downstream effects on study findings, such as 
main effect sizes. 

Among the dozens of generic distributions available, the normal distribution has the most applications in quantitative 
research. Many parametric statistical procedures (e.g., multiple regression, factor analysis) used in quantitative 
research are sensitive to normality. For instance, the presence of normality has been shown to improve the 
detection of between-groups differences in both covariance and components-based structural equation modeling 
[Qureshi and Compeau, 2009]. Improved normality will reduce the heteroscedasticity shown in P-P plots [Hair et al., 
2010], thereby increasing the level of statistical correlation observed between two variables. 

The proposed approach addresses at least four voids that may be observed in IS research. First, as will be 
demonstrated in the following section, normality has barely been addressed in IS studies that should address the 
issue. Second, the Two-Step transformation approach presented here has not been used at all in IS research to 
date. Consequently, researchers have had no exposure and have been unaware of the technique. For the first time, 
this tutorial makes the approach available to the IS community as a method and subject of research. Third, recent 
trends in pervasive computing, remote sensing, and cloud computing are making dramatically more data available to 
more organizations and members of the ―information society.‖ The greater availability of data will only increase the 
societal reliance on analyses of such data. For example, data mining is proliferating and raising the importance of 
causal testing in practice. Fourth, due to the availability of less expensive and more comprehensive electronic 
databases, researchers are more interested in data reduction than ever. Consequently, rigorous formative index 
construction studies, which rely heavily on the results of intercorrelation tests between logically grouped variables, is 
more important. While the Two-Step approach is relevant in studies utilizing any continuous data, it is perhaps more 
useful to those in the highly multidisciplinary IS research community. 

The purpose of this tutorial is to illuminate a transformation approach that promises to help advance any topic 
constrained by the non-normality of continuous data. The significance of the article is in its description of a novel 
procedure and its potential for providing a new perspective on IS research. While each step has been used 
disparately in the social sciences, the originality of this manuscript lies in its description of two steps for transforming 
observed variables toward normality. In particular, the algorithm introduced here has not been described or studied 

                                                      
1
  Similarly, productivity paradoxes also exist in other fields, such as human resources management [Wigblad et al., 2007] and manufacturing 

[Skinner, 1986]. 
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in published research. Therefore, the article serves as a means by which IS researchers can access the approach to 
determine if it will improve theoretical understandings and rates of scientific advancement in the IS discipline. 

This article provides a background of foundational concepts, explains a logical algorithm researchers may follow, 
illustrates its use in three common software applications, and provides examples of its application to observed data. 
The article then discusses its implications for IS scholarship, uses of the approach and recommendations for 
researchers, and a brief conclusion. 

II. BACKGROUND 

This section explains the research context, which involves the current state of normality research in IS and other 
social sciences disciplines. While normality remains a significant issue in IS and other disciplines, it goes largely 
unaddressed in studies that should address the issue. An EBSCO Host

TM
 Business Source Premier journal article 

search was performed to find business-related studies that should address normality issues. The sample frame 
included only articles that contained both of the the phrases ―corporate financial performance‖ (CFP) and ―structural 
equation modeling‖ (SEM) in the full text. Measures of CFP are known to universally depart severely from normality 
[Barnes, 1982; Deakin, 1976] and studies including these measures should address the extent of normality in all 
cases. SEM is an analytical method that is sensitive to the normality assumption [Qureshi and Compeau, 2009] and 
studies using the approach should also address normality. The results indicate that normality has barely been 
mentioned in studies that combine both subjects. Of the seventy-nine articles including both phrases in the text, 
twelve (15 percent) included the word skewness, eight (10 percent) included ―kurtosis,‖ and fifteen (19 percent) 
included ―normality.‖ This analysis indicates that authors are not addressing normality in articles that should and 
many are working with non-normally distributed data. Furthermore, it has become common and accepted practice to 
not report attempted variable transformations in analyses in final publications [see Massetti, 1998]. 

An evaluation of IS and strategic management literature reveals an ongoing ―normality burden‖ faced by quantitative 
researchers. For example, Saeed et al. [2005] tested the relationship between e-commerce competence and CFP. 
They dutifully transformed two CFP variables (Tobin’s q and economic value added) using the Box-Cox 
transformation to address heteroskedasticity in model association tests. The researchers do not report any pre- or 
post-transformation normality diagnostics. Subsequently, little is known about how such a change in distributions 
would have improved heteroskedasticity in model association tests, nor how much the study effect sizes would have 
improved had the variables been transformed toward statistical normality. Another example is Choi and Wang 
[2009], who tested the relationship between stakeholder relations and CFP, which was indicated by return on assets 
and Tobin’s q. In this study, there was no report of distributional diagnostics or any attempt at transformation toward 
normality. Finally, Tanriverdi [2005] tested the association between information-technology mediated knowledge 
management aspects and CFP (return on assets and Tobin’s q). Despite using SEM, Tanriverdi [2005] reports no 
attempt to transform CFP nor normality diagnostics. While association test results were significant, attempts to 
improve findings through increased normality were not reported. 

Each of the above three examples are exemplary and rigorous studies on many accounts. The examples show the 
diverse ways in which normality is addressed in studies that presumably should address the topic. They also show 
the common situation of researchers faced with uncertainty regarding how much non-normality threatens the results, 
statistical power, and reliability of quantitative studies. 

III. TRANSFORMATION ALGORITHM 

This section provides the origins, logic, and limitations of the Two-Step transformation algorithm. It concludes with a 
section describing how it is distinct from other procedures that are more common in IS research. 

Origins 

Researchers and practitioners across disciplines have traditionally used distribution functions to produce random 
variables for simulation studies [e.g., Yuan and Chen, 2009] and assessing the distributional fit of original variables 
[Fishman, 2003]. Unfortunately, most original continuous data from real-world phenomena can be shown to be 
arbitrarily distributed. That is, the data does not statistically conform to one of the generic distributions (e.g., normal, 
chi-square, F, Pereto) produced by a known cumulative distribution function (CDF). When CDFs are inverted (called 
inverse cumulative distribution functions), they may be used to calculate random numbers that conform to that 
generic distribution. For example, to generate normally distributed random variables, simulation researchers 
generate random probabilities (ranging from 0 to 1) that are then transformed using the inverse-normal CDF. It is 
from this tradition that the proposed approach was conceived, although the math, several peripheral issues, and 
implications differ between random normal variate generation and the Two-Step transformation toward normality. 
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Another important generic distribution is the uniform distribution, which characterizes variables produced by random 
number functions. The uniform distribution is assumed before successfully transforming to any generic continuous 
distribution. As prescribed below, transformation of observed variables toward uniformity does not involve the use of 
an inverse distribution function. 

Logic 

Figure 1 illustrates the Two-Step algorithm (including procedures A through K) for transforming arbitrarily distributed 
continuous variables to normal. The approach classifies all variables using three categories: 

1. Normal-Original—the extremely rare case that the original values are found to be statistically normal (i.e., 
satisfies the preponderance of normality diagnostics) 

2. Normal-Feasible—the case that the original variable is found to be non-normal, but is transformable to normal 

3. Normal-Infeasible—the case that the original variable is found to be non-normal and is not transformable to 
normal 

This categorization scheme is useful because the calculus of the Two-Step causes any transformed continuous 
variable to approach perfect normality. The technique is limited by two distributional characteristics described in 
greater detail in the Limitations section below. In many cases, the approach causes transformation results to satisfy 
―statistical normality‖ (i.e., the variable will satisfy the preponderance of appropriate normality diagnostics tests), 
which is an extremely high standard for IS and other sciences. Researchers may alternatively bypass this proposed 
algorithm and simply apply the Two-Step for exploration purposes (e.g., to identify distributional properties that may 
be limiting its efficacy). 

 

Figure 1. A Two-Step Algorithm for Transforming Continuous Variables to Normal 

Step 1: Transformation to Uniformity 

The first step involves transforming the original variable toward statistical uniformity (i.e., satisfies the preponderance 
of diagnostics tests for uniformity) by calculating the percentile (or fractional) rank of each score. In an attempt to aid 
in its interpretability, three representations of variables will be used: 

1. Column X—original variable 

2. Column Y—result of transforming Column X to uniform probabilities (Step 1) 

3. Column Z—result of transforming Column Y to normally distributed values (Step 2) 
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The approach begins with the calculation of original values for a continuous variable (starting with Procedure A in 
Figure 1) that will be referred to as Column X. If diagnostic tests show that Column X is normal (Procedure B), it is 
classified as Normal-Original (Procedure C) and the researcher may proceed with parametric statistical tests 
(Procedure D). If tests show that Column X is not normal, the researcher should conduct diagnostic tests for 
uniformity (Procedure E). If found to be uniformly distributed, Column X proceeds to Step 2 for transformation to 
normal. If not found to be uniform, Column X is computed to uniform using the percentile rank function (Procedure F, 
resulting in Column Y). A basic formula for percentile rank, which results in values ranging from 0 to 1, is (1): 

Percentile Rank = 1 – [Rank(Xi) / n]          (1) 

 Where, 

Rank(Xi) = rank of value Xi 

n = sample size 

For example, Generic Company reports an annual profit rate of 1.3, which ranks seventh among 100 companies. 
The percentile rank is 1 – (7/100) = .93, which is interpreted to mean that 93 percent of sample observations have 
profit rates below that of Generic Company. The achievement of statistical uniformity is a prerequisite for the 
achievement of statistical normality using the Two-Step procedure. Therefore, if Column Y does not show statistical 
uniformity (Procedure G), the original variable (Column X) is categorized as Normal-Infeasible (Procedure H) and 
the researcher should consider non-parametric statistical procedures (Procedure I). 

Step 1 is a critical step since the achievement of statistical uniformity is required before Step 2 will result in statistical 
normality. Some situations will not allow for the achievement of statistical uniformity, which is a very high standard 
according to the norms of social sciences (and IS) research. If Step 1 fails to achieve statistical uniformity, 
researchers have at least four options: 

1. Tolerate less than the ―statistical uniformity‖ standard and proceed to Step 2 (which will not reach the standard 
of ―statistical normality.‖ 

2. Use the traditional trial-and-error transformation approach to optimize uniformity, then proceed to Step 2. 

3. Consider the association to be multi-functional and split the sample accordingly; one part of the sample will 
likely perform better than other parts; retry Step 1 with the amenable parts of the sample. 

4. Only where logical to do so, replace mode values of zero with missing values [Andrés et al., 2010] and retry 
Step 1. 

Step 2: Transformation to Normality (from Uniformity) 

Any variable found to conform to statistical uniformity is Normal-Feasible (Procedure J). Uniform probabilities 
(Column Y) may be transformed to normal (Procedure K, resulting in Column Z) using the inverse normal distribution 
function shown in (2): 

12  ( 1 2Pr)p erf     
         (2) 

 Where, 
p = z-score resulting from Step 2 


 =  mean of p (recommendation is 0 for standardized z-scores) 
  =  standard deviation of p (recommendation is 1 for standardized z-scores) 
erf

-1  =  inverse error function 
Pr     =   probability that is the result of Step 1           [Source: Abramowitz and Stegun, 1964] 

For example, a researcher wants to transform the results of Step 1 (Column Y) into a variable conforming to the 
normal distribution (Column Z). Three parameters are necessary for the normal-inverse function: (1) a probability (Pr, 
in Column Y), (2) the expected mean (µ) of the resulting variable (Column Z), and (3) the expected standard 
deviation (σ) of Column Z. Researchers may consider any values for µ and σ to approach normality. To produce z-
scores, the researcher uses Pr = variablename, µ = 0, and σ = 1 as parameters. A value of.025 will be transformed 
to a z-score of –1.96. 

As described above, each of these two steps is explained in some statistics sources and appears in analytic 
software tools. Regardless, the social sciences has ignored applying both steps in succession to transform observed 
variables.  



 

 

46 
Volume 28 Article 4 

Limitations 

There are two limitations of the efficacy of the described Two-Step procedure. To the extent that variables are not 
characterized by these two limitations, the Two-Step will produce transformations with perfect normality 
characteristics. The limitations are: (1) the presence of a low number of levels and (2) the presence of influential 
modes. 

Number of Levels 

The approach will be successful to the extent that the original variable is continuous (which means that a meaningful 
cumulative probability can be obtained). Therefore, order among levels is necessary and therefore nominal 
(categorical) data types cannot logically be transformed into normal distributions using the approach. Ordinal and 
interval data types with greater numbers of levels will be more successful and ratio data is most amenable to 
successful transformations using the approach. As examples, the approach will have very little impact on variables 
represented by 5-point and 7-point Likert scaled responses. To improve normality in these studies, social scientists 
will need to design scales with many more levels, such as 30, or perhaps 100. While scales with so many levels is 
certainly not the norm, a low number of levels severely limits the efficacy of the Two-Step. Further research on the 
practicality of such scales is significant to the extent that normality is an important assumption in statistical 
procedures. 

Influence of Modes 

When using the technique, researchers should be conscious of the frequency and influence of mode values. 
Variables are diverse in the location and relative frequency of their modes. In all research contexts, researchers 
should consider removing subjects that are meaningless in the study of causal relationships [Shadich et al., 2002]. 
Likewise, researchers should ensure that only those mode values relevant to the theory tested are retained in the 
analysis. If modes are found to impair results, researchers should investigate and consider replacing mode values 
with missing values and retry the transformation. In count variables, influential modes are typically represented by 
values of zero. There is a general relationship between the number of levels and the influence of modes. By 
definition, a variable with a low number of levels usually has highly influential modes. A variable with a high number 
of levels may or may not have one or more influential modes. 

Experience shows the Two-Step is more effective at transforming variables with both a high number of levels and 
with less influence of high-frequency modes (e.g., excessive zeros). As examples, financial and economic data can 
be readily amenable to the approach while binary

2
 data (e.g., gender) will not. 

Distinctions 

The Two-Step is distinct from random number generation and standardization. Users of the Two-Step approach may 
correctly note that random number generation also uses two steps and that the second step (application of the 
inverse-normal function) is identical to that used in random number generation. However, the purpose and calculus 
for Step 1 is what differentiates the two procedures. During random number generation, the first step involves the 
generation of uniformly distributed probabilities. This operation does not occur in the Two-Step, which transforms 
observed variables toward uniformity using a percentile rank. Random number generation starts with no values, 
while the Two-Step is applied to observed values. Accordingly, random number generation aimed at the production 
of random normal variates will always approach statistical uniformity after the first step, and statistical normality after 
the second step. This is not the case with the proposed Two-Step approach, which may not achieve statistical 
uniformity after the first step. 

Researchers should also note that the Two-Step is distinct from standardization, which is the calculation of z-scores 
for all values. Standardizing has the intentions of (1) making variables comparable by setting all units of 
measurement to be one standard deviation and (2) accurately representing the original distribution. The Two-Step 
also achieves unit standardization and z-score units are recommended above. Therefore, researchers using the 
Two-Step as described here will not need to use z-score standardization. 

IV. USE IN STATISTICAL SOFTWARE 

Both steps necessary to complete the above transformation are easily accessible in modern statistical software 
packages. This section provides the functions available in three popular analytical tools: Excel, SPSS, and SAS. 
Each illustration uses the CitationsPerPublication variable as the example, with results of the transformation 

                                                      
2
  When binary dependent variables are involved, researchers are referred to Probit analysis methods, which often involve the PROBIT function. 

See Borooah (2002) for introductory guidelines on conducting probit analysis. Researchers may also find value in Doyle [1977], who compares 
probit analysis to logit and tobit analyses in a marketing context. Probit analysis can be generalized to ordinal variables, such as Likert scales 
as described in a review by Daykin and Moffatt [2002]. 
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illustrated later. In each example, note that the results of Step 1 must be in probability units ranging between 0 and 1 
(exclusive) in order to complete Step 2. Furthermore, the achievement of statistical uniformity resulting from Step 1 
is a prerequisite for transformation to statistical normality during Step 2. 

Excel 

To accomplish Step 1 in Excel, use the PERCENTRANK function, which has the following syntax and argument 
definitions: 

PERCENTRANK(original series, original value) 

 Where, 

Original series  =  reference to the original variable to be transformed 

Original value  =  the cell, or single value, to be transformed 

Unless otherwise specified (using a third argument), PERCENTRANK produces probabilities using three digits 
(0.NNN). Use of this function is illustrated in the column labeled ―Step 1‖ (Column D) in Figure 2. The illustration 
shows that logic was necessary to avoid three potential pitfalls during transformation: 

1. The first IF function is necessary to avoid applying the function to an empty cell, which would otherwise cause 
an error. 

2. The second IF function is necessary to replace any resulting 1’s with .9999. Otherwise, an error would occur 
during the second step. 

3. Likewise, the third IF function replaces any resulting 0’s with .0001. An error would occur during the second 
step otherwise. 

In the cases of #2 and #3 above, replacement is much less drastic than removal, and allows for the retention of all 
variable values. 

 
    =IF(C2="","", 
        IF(PERCENTRANK($C$2:$C$451,C2)=1,0.9999, 
            IF(PERCENTRANK($C$2:$C$451,C2)=0,0.0001, 
                PERCENTRANK($C$2:$C$451,C2)))) 

 

 
 

                                                                    =IF(D2="","",NORMINV(D2,0,1)) 

Figure 2. Illustration of Applying the Two-Step in Excel 

To accomplish Step 2 in Excel, use the NORMINV() function, having the following syntax: 

NORMINV(Step 1 result, imposed mean, imposed standard deviation) 

 Where, 

Step 1 result = the result of Step 1, which must be in probability form 
Imposed mean = mean of the variable resulting from the transformation 
Imposed standard deviation = standard deviation of the resulting variable 

The mean and standard deviation arguments are arbitrary in that they will not affect the shape of the resulting 
distribution. Again, in order to standardize in units of z-scores, set the mean equal to 0 and the standard deviation 
equal to 1.  
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Use of this function is illustrated in the column labeled ―Step 2‖ (Column E) in Figure 2. The IF function is necessary 
to avoid applying the function to an empty cell, which would otherwise cause an error. This will happen when the 
result of Step 1 is a blank cell. 

SPSS 

Step 1 is accomplished in SPSS by selecting Rank Cases from the Transform option in the main menu. After 
selecting the variable and moving it to the Variable(s) box, as shown in Figure 3, select the Rank Types command 
button. In the Rank Cases form, the ―Display summary values‖ checkbox is irrelevant to the transformation results. 
As shown in Figure 4, deselect Rank, select Fractional Rank, and select the Continue command button. The 
―Smallest value‖ radio button should be selected for the Assign Rank 1 To control. Selecting the OK command 
button will generate values for a new variable, which is now viewable in both the Data View (which depicts values in 
relational format) and Variable View (which depicts variable properties in relational format). Users should note three 
caveats: (1) the type of the input variable must be numeric for the operation to work, (2) missing original values will 
result in missing transformed values, and (3) replacing resulting 0’s and 1’s after Step 1 must be done manually in 
SPSS. The SPSS code for Step 1 is shown below: 

GET 
    FILE='FileName.sav'. 
DATASET NAME DataSet1 WINDOW=FRONT. 
RANK VARIABLES=CitationsPerPublication (A) 
    /RFRACTION 
    /PRINT=NO 
    /TIES=MEAN. 

 

 

 

Figure 3. View of the Rank Cases Form in SPSS 
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Figure 4. View of the Rank Cases Types Form in SPSS 

Step 2 involves selecting Transform from the main menu, then Compute Variable. From the Compute Variable form 
(Figure 5), select Inverse DF as the Function Group and select Idf.Normal from Functions and Special Variables to 
build the function. The first parameter is the result of Step 1, the second can be any desired mean, and the third can 
be any desired standard deviation. For ease of interpretation, we suggest using 0 (zero) as the first argument and 1 
(one) as the third argument. This will produce standardized z-scores that are transformed toward normality to the 
extent the original variable allows. Below is the SPSS code to complete Step 2: 

COMPUTE CPP_TwoStep=IDF.NORMAL(RCitatio,0,1). 
EXECUTE. 

 

 

Figure 5. View of the Compute Variable Form in SPSS 
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SAS 

Use PROC RANK with the FRACTION option to complete Step 1 in SAS: 

 
PROC RANK 
   DATA=inputfilename 
   OUT=outputfilename 
   FRACTION 
   TIES=MEAN; 
RANKS step1result; 
var step1result; 
RUN; 

 

Users should consult the SAS syntax guides to customize the code for the situation at hand. For example, the 
DECENDING option may be used to reverse the order of values (i.e., the highest value has a rank of 1). 

To complete Step 2, use the PROBIT function, which transforms from uniform probabilities to normal: 

step2result=PROBIT(step1result); 

V. ILLUSTRATIVE EXAMPLES 

The Two-Step is useful across all types of continuous variables, for applications ranging from exploration to the 
achievement of almost perfect normality. To illustrate how the algorithm in Figure 1 is applied during research, a 
data set including a diverse range of variable characteristics was sought. The author used a data set recently 
collected in the field of scientometrics applied to the IS field. It includes a sample of 450 faculty contained in the AIS 
Faculty Directory

3
 who also graduated from 1985–1990 with a terminal degree (i.e., Ph.D.s and DBAs). The data set 

included variables on authorial experiences and career performance and two variables are included in this 
illustration: (1) Citations Per Publication and (2) Total Citations. Citations Per Publication is the number of career 
citations attributed to articles each author published in the study journal basket divided by the number of those same 
articles. Total Citations is the total number of career citations attributed to those same articles. For our purposes, the 
definition of these variables is less important than the characteristics of the distributions that influence normal 
feasibility. As described below, Citations Per Publication was found to be easily transformable to normality, and Total 
Citations was not, using the algorithm. This section concludes by illustrating the importance of addressing high-
frequency values before using the algorithm (i.e., in procedure A of Figure 1). 

Table 1 defines the criteria used to evaluate normality and uniformity for all three versions of variables used as 
examples. Note that, depending on the software tool used, the highest and/or lowest value(s) within a variable may 
be transformed to 0 or 1 at the completion of Step 1. These values are not allowed as inputs into the inverse–normal 
function. So that neither of these values is lost in transformation, it is recommended here to replace any 0 with .0001 
and any 1 with .9999 after Step 1. This will allow Step 2 to be completed so that all subjects are retained and with 
minimal effects on distributional shape or test results. 

Table 1: Test Criteria and Definitions 

Criteria Definition (source) How Interpeted 

Skewness p-value 
Skewness is the degree and direction of asymmetry. The 
skewness p-value is the probability that a skewness 
statitistic is less than the observed value for that variable 

p-value < .05 (extreme 
negative values) or > .95 
(extreme positive values) 
indicate significant deviation 
from 0 (kurtosis or 
skewness) 

Kurtosis p-value 

Kurtosis is the degree to which the sizes of the 
distribution tails deviate from normality. The kurtosis p-
value is the probability that a kurtosis statistic is less than 
the observed value 

Kolmogorov-Smirnov 
Significance, test for 
normality 

Tests to determine whether the variable distribution is 
significantly different from the normal distribution 

p-value > .05 indicates that 
the distribution is the test 
distribution (normal or 
uniform) 

Kolmogorov-Smirnov 
Significance, test for 
uniformity 

Tests to determine whether the variable distribution is 
significantly different from the uniform distribution 

                                                      
3
  The AIS Faculty Directory web interface is available here: http://home.aisnet.org/displaycommon.cfm?an=1&subarticlenbr=339. 

http://home.aisnet.org/displaycommon.cfm?an=1&subarticlenbr=339
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Analysis Resulting in Normal-Feasibility 

Table 2 depicts the versions of Citations Per Publication as it progresses through the three stages of the Two-Step: 
(1) the original variable, (2) transformation toward uniformity, and (3) transformation toward normality. Calculation of 
the original values (Procedure A in Figure 1) resulted in the original distribution (see ―Original‖ column in Table 2). 
Tests (Procedure B in Figure 1) showed that the original variable was found to have significant skewness (p-value = 
1.000) and kurtosis (p-value = 1.000), and to depart significantly from normality according to the K-S test (p-value = 
.000). Since the variable was not statistically normal, the K-S test for uniformity was observed (procedure E in Figure 
1) and the variable found to significantly depart from uniformity (p-value = .000). Therefore, the variable was 
transformed toward uniformity (Procedure F, Figure 1) resulting in the distribution shown in the ―Step 1‖ column in 
Table 2. Subsequent testing (Procedure G) indicated that the variable was statistically uniform (p-value = .987), so 
the variable was classified as Normal–Feasible (Procedure J). The variable was then transformed to normal 
(Procedure K) according to the K-S test (p-value = .200) and parametric analyses should proceed (Procedure D). 

Table 2: Three Versions of Citations Per Publication as Transformed Using the Two-Step 

Version Original 
Step 1 

(Fractional Rank) 
Step 2 

(Inverse-Normal) 

Histogram 

   
N 176 176 176 

Skewness p-value 1.000 .502* .580* 

Kurtosis p-value 1.000 .001 .183** 

K-S – normality .000 .047 .200*** 

K-S – uniformity .000 .987**** .000 
Key: *acceptable skewness; **acceptable kurtosis; ***distribution is normal; ****distribution is uniform 

Analysis Resulting in Normal-Infeasibility 

Table 3 depicts the versions of Total Citations as it progresses through the three stages of the Two-Step. Calculation 
of the original values (Procedure A in Figure 1) resulted in the distribution shown in the ―Original‖ column. Tests 
(Procedure B in Figure 1) showed that the variable was found to have significant skewness (p-value = 1.000) and 
kurtosis (p-value = 1.000), and to depart significantly from normality according to the K-S test (p-value = .000). Since 
the variable was not statistically normal, the K-S test for uniformity was observed (Procedure E in Figure 1) and the 
variable found to significantly depart from uniformity (p-value = .000). Therefore, the variable was transformed 
toward uniformity (Procedure F, Figure 1) resulting in the distribution shown in the ―Step 1‖ column in Table 3. 
Subsequent testing (Procedure G) indicated that the variable departed from statistically uniformity (p-value = .000), 
so the variable was classified as Normal-Infeasible (Procedure H). The algorithm suggests that non-parametric 
analyses should be used (Procedure I). 

Table 3 shows the results of applying Step 2 to the results of Step 1—the variable is found to have significant 
skewness (p-value = 1.000), acceptable kurtosis (p-value = .577), and to depart from normality (p-value = .000). The 
distributions show graphically how influential modes cause non-normality, and these deviations are reflected in the 
K-S distributional tests indicating statistical non-normality. 

Examination of Modes to Improve or Achieve Statistical Normality 

In a study testing the relationship between Total Citations and Article Count, the researcher may conclude that it is 
illogical to include all records with values of zero for both variables. The researcher may justify replacing these zeros 
with missing values by arguing that authors having no publications (within a given journal basket) will always have 
no citations and that including these records would not be useful to those interpreting the findings. Of the 450 
authors in the Total Citations example, 268 were found to have zero publications and zero citations. Table 4 shows 
the progression of Total Citations, with most zeros replaced by missing values, through the Two-Step algorithm. 
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Table 3: Three Versions of Total Citations as Transformed Using the Two-Step 

Version Original 
Step 1 

(Fractional Rank) 
Step 2 

(Inverse-Normal) 

Histogram 

   

N 456 456 456 
Skewness p-value 1.000 1.000 1.000 
Kurtosis p-value 1.000 0.000 0.577** 
K-S – normality .000 .000 .000 

K-S – uniformity .000 .000 .000 
Key: *acceptable skewness; **acceptable kurtosis; ***distribution is normal; ****distribution is uniform 

Replacing these values with missing values reduced the frequency of zeros from 274 to 6 and the sample size from 
450 to 182 and drastically improved the results of the Two-Step transformation. The six zeros not replaced with a 
missing value were associated with authors having at least one career article but no citations attributed to those 
articles. Thus, these zeros could not be justifiably removed from the analysis acording to the aforementioned logic. 

This example illustrates how a justifiable elimination of influential mode values can change the path a variable takes 
through the Two-Step algorithm shown in Figure 1 and improve normality after transformation. While researchers 
may not find justification to replace all influential mode values in their datasets, this example shows that mode 
values should be replaced where justified before using the Two-Step (or any statistical procedure). It should be 
emphasized that researchers may find justification for replacing with missing a fraction or all of the mode values. 
Whatever the justification, whether it centers on achieving normality through the Two-Step or some other, the 
justification should be reported within the study so that subsequent researchers may find reliability in the results. 

Table 4: Three Versions of Total Citations (with most zeros replaced by missing) as Transformed 
Using the Two-Step 

Version Original 
Step 1 

(Fractional Rank) 
Step 2 

(Inverse-Normal) 

Histogram 

   

N 175 175 175 
Skewness p-value 1.000 0.501* 0.578* 
Kurtosis p-value 1.000 0.001 0.183** 
Kolmogorov-Smirnov Sig. .000 .095*** .200*** 
K-S – uniformity .000 .987**** .000 
Key: *acceptable skewness; **acceptable kurtosis; ***distribution is normal; ****distribution is uniform 

This example emphasizes two aspects of modes that negatively influence results of the transformation. First, a 
relatively high percentage of mode values negatively affect transformation success. Researchers should be wary of 
any and all high-count values in variables they are attempting to transform using the technique. Second, modes are 
especially confounding the further they are away from the mean. Had the mode value in the original value of Total 
Citations (see Step 1 in Table 3) been closer to the mean, the efficacy would have been better. However, even if the 
mode value was equal to the mean, it may still negatively influence the efficacy of the Two-Step. 
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VI. DISCUSSION 
The following sections encourage future research, propose implications for the IS discipline, and summarize 
recommendations for using the proposed Two-Step transformation. 

Implications for Scholarly Topics 

It is expected that the procedure will have implications for IS research on at least three levels. First, the technique is 
expected to change the methodological choices, outcomes, and value of findings within studies. The technique 
promises to simplify transformation toward normality whereas trying a diverse range of options has been 
encouraged. Furthermore, the relevance of statistical procedures for association tests hinges in part on the 
underlying distributions of variables. In general, transformations-to-normal among study variables are expected to 
improve statistical power [Baroudi and Orlikowski, 1989] and Type I error—effects that will in turn reduce required 
sample size. Enhanced normality increases the applicability of computing confidence bounds and improves the 
normality of residuals in linear regression. In factor analysis, transformations to normal will increase measures of 
sampling adequacy and communality. Improved normality in studies will often change the total variance explained, 
parsimoniousness, representativeness, and stability of factor structures. 

Second, the procedure may change the rate of advancement within research streams. By reducing 
heteroscedasticity in association tests, the procedure will improve the strength of main effects. In some streams, this 
may influence theoretical understanding. For example, economic data is renowned for poor normality across 
datasets. The method may help with the construction of economic indices, the development of which depends on the 
findings of association tests. In this example, decisions regarding the indicators used in indices may be 
reconsidered. Because tests of association can improve, so may the probability of replication [Killeen, 2005] and 
hence the value of research streams employing the technique. 

Third, the transformation technique may affect the numerous diverse topics across the IS discipline among others. 
The procedure is applicable to any topic using continuous data that suffers from non-normality. Continuous data can 
be observed in the output of a wide range of organization-relevant phenomena (e.g., counting events, production 
processes, financial transactions). Many of these data, especially in efficiency ratios (e.g., financial performance), 
have shown extreme departures from normality. 

Implications for Causal Inferences 

A review of multidisciplinary literature indicates that the Two-Step can improve each of four validity categories 
impacting causal inference in studies [Cook et al., 1990]. These validity categories are (1) statistical conclusion, (2) 
internal, (3) construct, and (4) external. As a transformation approach, the Two-Step has the most implications for 
improving the statistical conclusion validity of causal inferences. 

Statistical conclusion validity includes threats to inferring from hypothesis and effect size tests. Because the order of 
values do not change when the transformation is made, inferences using parameters (such as p-values) remain 
valid. The retention of the order of values means that when the population distribution is believed or assumed to be 
normal, inferences may be more accurate for variables transformed using the Two-Step compared to the same 
inferences made using severely non-normally distributed variables. The use of transformation methods to mitigate 
outliers in financial ratios has been shown to improve statistical conclusion validity [Watson, 1990]. The Two-Step 
has the advantage over competing procedures (e.g., truncation) of retaining outliers. It is well-known that non-
normality causes heteroscedasticity in regression tests and produces bias in statistical results. Such bias should be 
mitigated as much as possible in statistical analyses [Schweder and Hjort, 2002] and is minimized as variable 
distributions approach normality. The Two-Step is demonstrated to improve the reliability of measures aspect of 
statistical conclusion validity in van Albada and Robinson [2007]. 

Statistical conclusion validity depends on the appropriate application of statistical tools [Straub et al., 2004]. 
Therefore, researchers should select appropriate statistical approaches that maximize statistical power and 
parametric tests are more powerful than non-parametric tests [Baroudi and Orlikowski, 1989]. The Two-Step 
transforms variables toward the distributional shape that is assumed when making statistical inferences about 
populations and will, therefore, often improve statistical power. As examples, SEM and PLS are two prominent 
statistical approaches containing procedures that are sensitive to normality: ―both techniques struggle with the 
prediction of a highly skewed and kurtotic dependent variable‖ [Qureshi and Compeau, 2009, p. 197]. 

The literature also shows that the Two-Step can improve the internal validity aspect of causal inferences. Internal 
validity is concerned with whether inferred findings are attributable to causality. For example, it is known that outliers 
negatively influence statistical regression bias [Zeis et al., 2009], an important aspect of internal validity. By retaining 
and bounding extreme values, use of the Two-Step results in the mitigation of an important threat to internal validity. 
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Transformations toward normality using the Two-Step can also enhance construct validity, which is the extent to 
which measures are operationalized in theory-relevant terms. In modern survey research, a common problem arises 
when there are confounding relationships between a low number of construct levels. For example, in a scale with 
four levels, the first and fourth level may be uncorrelated, but the second and third correlated. Using items having 
distributions homogenized by the Two-Step addresses this issue: ―when the distributional shapes of two paired 
variables are different, the resulting coefficient is understated (i.e., biased)‖ [Shumate et al., 2007, p. 360]. 
Coincidentally, Nunnally and Bernstein [1994] also argue that reducing this bias depends on increasing the number 
of measurement levels. This agrees with the recommendation herein to design survey scales with as many as 100 
levels, which is easily amenable to transformations to statistical normality using the Two-Step. 

Finally, the literature also indicates that the Two-Step can improve the external validity of causal inferences. External 
validity is the extent to which a causal relationship can be generalized to other samples. Outliers may be the result of 
historical effects interacting with treatments. For example, several outlying accounting measures may be the result 
of a catastrophic weather event. By moving these values from an extreme toward the center of the distribution, the 
Two-Step makes variables more content valid [Brito and de Vasconcelos, 2009, p. 124] and consequently mitigates 
any history-treatment interaction. 

Implications for Future Research on the Two-Step Approach 

Due to changing technology (e.g., the increasing deployment of streaming data systems), continuous data will gain 
even greater prominence in IS research. The multidisciplinary IS research community, situated in all matters 
involving information and data processing, should take a more prominent role in addressing normality issues that 
pervade all social sciences. Future research is needed to advance understanding about the merits and limitations of 
transformations to normal. In general, what effect does the transformation of observed data toward normality have 
on association tests? While this question cannot be answered with Monte Carlo simulations, the proposed Two-Step 
will allow such an investigation. More generally, the Two-Step transformation provided here allows for investigations 
concerning the efficacy of normality when applied to data representing real-world phenomena. 

Uses of the Approach 

Figure 6 depicts a framework researchers can use to design measures to be more amenable to the Two-Step. 
Variables will lie anywhere on this conceptual map constructed from the two limitations of the approach (except the 
arc drawn across Boxes 1 and 3 indicates that variables with an extremely low number of levels cannot have low 
influence and, therefore, may not lie to the left of the arc). 
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Figure 6. Application Framework for the Two-Step 

 
Box 1 

In the extreme case of only two levels (binary variables such as gender or participation in a dichotomous treatment 
program), the Two-Step will have no usefulness in transforming toward normality. Variables with lower levels (e.g., a 
5- or 7-point Likert scale) will naturally have higher mode influence, as all levels act as influential modes in these 
cases. In order to ―escape‖ Box 1, researchers should design instruments (e.g., perceptual questionnaire scales or 
remote sensors) with many more levels than are often the current practice. 
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Box 2 

Variables in the extreme top right of the matrix (high number of levels and low extent of mode influence) are the 
most amenable to the technique. A depiction of such ideal situations is shown in Table 2. Variables characterized by 
extremely low influence of modes and an extremely large number of levels will reach ―statistical normality‖ when 
transformed using the Two-Step. Researchers should design instruments with many levels to potentially transform 
variables to unprecedented levels of normality and its associated downstream effects. 

Box 3 

Variables in the extreme bottom left of the matrix (low number of levels and high mode influence) will not be very 
successfully transformed toward normality using the Two-Step. In the extreme, binary variables by definition have 
highly influential modes and coincidentally cannot be improved using the approach. Count variables are often 
characterized as having a low number of levels and highly influential mode values of zero. Both aspects will diminish 
normality improvements, although researchers will often observe improvements toward normality. 

Box 4 

In the case of a high number of levels and high mode influence, researchers will observe distributional changes as 
shown in Table 3. In order to alleviate the situation, researchers should consider removing mode values where 
justified. When the influence of modes has been diminished, such variables would be reclassified as Box 2 
variables. An example of such a reclassification is Total Citations and the effects of such changes are shown by 
comparing Tables 3 and 4. 

Recommendations 

Table 5 summarizes important recommendations for researchers using the Two-Step technique. The 
recommendations are grouped into aspects that may be of interest to adopters of the approach. 

Table 5: Recommendations for Researchers Using the Two-Step 

Researcher Concern Recommendation 

When do I use the 
transformation? 

Any continuous variable may be transformed using the Two-Step. Variables with a high 
number of levels and non-influential modes will show the most improvement toward 
normality.  

When do I not?  
The procedure is not applicable to nominal (categorical data). Binary variables will show 
no change in distribution or improvement based on normality diagnostics. 

How do I use the 
approach? 

See Figure 1 and associated explanation for the logic of the Two-Step approach. 
 
Functions for transforming variables using percentile (fractional) ranks and the normal-
inverse function are available in many modern statistical software packages. Avoid 
applying any function to an empty cell. 
 

Step 1: Depending on the software tool used, the highest and/or lowest value(s) 
within a variable may be transformed to 0 or 1. If this happens, replace any resulting 
1’s with .9999 and 0’s with .0001. 

 
Step 2: The Two-Step may produce z-score units by using arguments  =0 and 

 =1 in the inverse-normal function. 

What are implications 
towards the results 
that I will get? 

In ideal situations, the results of the Two-Step will approach perfect normality according 
to appropriate diagnostic tests. Improvements to the validity of causal inferences will 
generally depend on the degree to which normality was improved using the procedure. 

What is the value of 
using the approach? 

The transformation may improve causal inferences, including statistical power, 
hypothesis tests, effect sizes, and generalizability. Consequently, it can reduce required 
sample size. 

What are challenges I 
should note? 

The efficacy of the technique depends on two distributional characteristics: 
 

Influential Modes: In the original variable version, the negative influence exhibited by 
a given mode is due to 1) the proportion of values it represents in the sample and 2) 
its distance from the mean. Only those mode values relevant to the theory tested 
should be retained in the analysis. 

 
Low Number of Levels: Variables with a low number of levels will not be as 
amenable to success. Consequently, Likert scales of 5- and 7-points is discouraged 
and should be replaced with scales containing a high number (up to 100) of levels.  
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VII. CONCLUSIONS 

A vast amount of emphasis has been placed on the importance of univariate and multivariate normality in statistics 
courses, published studies and conference presentations. However, studies in IS and other social sciences rarely 
report descriptive statistics on the underlying distributional properties of data. The extent of normality of a given 
study variable can have tremendous influence on a wide range of statistical tests that influence findings and 
understanding about the subject matter [Berger, 2000]. 

This article offers a new perspective on normality by providing a means for approaching perfect statistical normality 
in variables most amenable to the Two-Step Transformation. The approach will transform any variable with a high 
number of levels and negligible influence of modes toward statistical normality. Based on literature reviewed here, IS 
researchers should achieve greater statistical results in association tests when the approach is successfully used. 
That is, researchers should experience more significant findings, greater effect sizes, less threats to causal 
inferences (especially statistical conclusion validity), and more reliable results as a consequence of using the Two-
Step. 

Researchers should be aware of the two limitations of the approach (a low number of levels and high influence of 
modes). Measures should be designed accordingly and it is recommended that perceptual survey instruments be 
constructed to take advantage of the Two-Step. Furthermore, researchers should we conscious of influential modes 
in study variables and remove them where justified. Empirical research on the efficacy of the Two-Step and its 
implications on downstream effects on studies is strongly encouraged. 
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