
Communications of the Association for Information Systems

Volume 23 Article 27

11-2008

Managing Uncertainty in Organic Development
Projects
Lars Mathiassen
Georgia State University, lmathiassen@gsu.edu

Keld Pedersen
Aalborg University, Denmark

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Mathiassen, Lars and Pedersen, Keld (2008) "Managing Uncertainty in Organic Development Projects," Communications of the
Association for Information Systems: Vol. 23 , Article 27.
DOI: 10.17705/1CAIS.02327
Available at: https://aisel.aisnet.org/cais/vol23/iss1/27

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol23?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol23/iss1/27?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol23/iss1/27?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Volume 23 Article 27

Managing Uncertainty in Organic Development Projects

Lars Mathiassen

Centre for Process Innovation,

Georgia State University

lmathiassen@gsu.edu

Keld Pedersen

Computer Science,

Aalborg University, Denmark

A variety of organic models for systems development have been recommended for more than three decades. These
models rest on the assumption that the uncertainty is high and additional team capabilities have to be developed
during the project life-cycle. In contrast to the single-pass and document-driven waterfall model, organic models
impose less rigid structure on the process, and they are geared toward exploration. We know little, however, about
how uncertainties are managed over the life-cycle of organic systems development projects.

In response to this challenge, we adapt task uncertainty theory to conduct a qualitative study of management
practices in a project based on two-phase funding, staged delivery, and a combination of prototyping and
specifications. We provide detailed narratives of how uncertainties emerged, interacted, and were addressed in the
project. The subsequent analyses suggest that the adopted organic model facilitated management of uncertainty,
but it also introduced surprising and demanding management challenges that were not accounted for in the model.

The study adds to our understanding of management practices in organic systems development. It shows how
combinations of offensive and defensive responses can help managers address the uncertainties they face. In
addition, managers are advised to differentiate between developing know-what and know-how capabilities and to
dynamically adapt their uncertainty response mode to fit a project’s evolving context.

Keywords: Organic systems development, uncertainty, project management

Volume 23, Article 27, pp. 483-500, November 2008

Managing Uncertainty in Organic Development Projects

484
Volume 23 Article 27

I. INTRODUCTION
The waterfall model [Royce 1970] offers detailed guidelines for how to structure the development process, distribute
tasks, monitor progress, assure quality, and integrate solutions. While the waterfall model is a powerful sense-
making device and provides easy-to-follow support for project management, it assumes the task is well structured
and team capabilities fit the task [McFarlan 1981; Mathiassen and Stage 1992]. These assumptions are seldom met
in practice because it is difficult to specify and stabilize requirements early, because developers might have
insufficient experience with technology, and, because the complexity might exceed developer experiences
[McFarlan 1981].

Thought leaders of our profession have therefore for more than three decades promoted a variety of organic models
based on iteration, prototyping, two-phase funding, staged delivery, and agile principles [e.g., Basili and Turner
1975; Boehm 1988; McConnell 1998; Cockburn and Highsmith 2001; Larman and Basili 2003]. These models
assume the task uncertainty [Galbraith 1973] is high and additional team capabilities have to be developed during
the project life-cycle [McFarlan 1981; Mathiassen and Stage 1992]. In contrast to the single-pass and document-
driven waterfall model [Larman and Basili 2003], organic models impose less rigid structure on the process and they
are geared towards exploration. As a consequence, projects are more unpredictable and require considerable
project management attention. However, we know little about how to manage uncertainties in organic development
projects.

The purpose of this research is therefore to investigate project management practices in organic systems
development. To that end we adapt theories about task uncertainty [Galbraith 1973; Iivari 1992] to conduct a
qualitative study of a project based on two-phase funding, staged delivery, and a combination of prototyping and
specifications [McConnell 1998]. Inspired by the classical notion of task uncertainty - “the difference between the
amount of information required to perform the task and the information already possessed” [Galbraith 1973, p. 5] -
we present in-depth analyses of how uncertainties emerged, interacted, and were addressed. Our analyses suggest
that the adopted organic model facilitated management of uncertainty, but it also introduced surprising and
demanding management challenges that were not accounted for.

The study adds to our understanding of organic development projects and suggests tactics for their management. In
the following, we present the background literature and describe our research approach. We then provide two
detailed narratives of the investigated project. Subsequently, we adapt task uncertainty theory to make sense of the
data. Finally, we discuss the contribution and implications for research and practice.

II. ORGANIC SYSTEMS DEVELOPMENT
A fundamental reason for adopting organic models in systems development is high task uncertainty [Galbraith 1973;
Mathiassen and Stage 1992]. McFarlan [1981] distinguishes between three general types of systems development
uncertainty, the first being a project’s conception of the problem and its solution. Requirements are often hard to
define, communicate, and validate and once they are specified and agreed upon they often change [e.g. Naumann
and Jenkins 1982; Gould and Lewis 1985; Curtis et al. 1988; Rising and Janoff 2000; Orr 2004; Sarkkinen and
Karsten 2005; Turk et al. 2005]. As a consequence, most researchers promote prototyping, iterative models, or agile
approaches to quickly deliver partial solutions to customers in order to support feed-back and progress [e.g.
Naumann and Jenkins 1982; Beck 1999; Turk et al. 2005].

A second type of uncertainty relates to a project’s experience with technology; these increase as the project’s
familiarity with the technical platform decreases [McFarlan 1981]. Brooks [1975] states that we must be prepared to
throw away the first version and build and deliver a second whenever we use a new concept or rely on new
technology. Organic models typically reduce these uncertainties by allowing early use [Parnas and Clements 1986]
and by providing information about team productivity acquired in previous steps [Lott 1997].

A third type of uncertainty relates to a project’s complexity [McFarlan 1981]. Brooks [1987] argue that it is impossible
to build complex systems faultlessly, and it is therefore advisable to iterate or adopt staged delivery. Sotirovski
[2001] adds that if we are going to fail it is better to do it fast and in small scale. Parnas and Clements [1986] argue
human errors are unavoidable and even when all information is available up-front, we cannot fully comprehend it.
Generally, we can manage complexity by separating concerns and by using stepwise refinement [Wirth 1971].

Volume 23 Article 27
485

To address these types of uncertainties, the literature discusses a variety of organic models. There is prototyping
where the basic idea is to present a series of mock-ups or draft versions to users and improve the design based on
their feed-back [Baskerville and Stage 1996]. There is structured use of documentation to gradually build and adjust
specifications [Parnas and Clements 1986]. There is the spiral model that combines risk management with a cyclic
approach to problem identification, experimentation, and documentation [Boehm 1988]. There is the combination of
two-phase funding and staged-delivery that allow for contractual adjustments and stepwise delivery of a solution
[McConnel 1998]. There is extreme programming that includes the use of on-site customers, minimal
documentation, pair programming, and continuous integration of new components [Beck 1999]. There is the recent
focus on agile methods [Cockburn and Highsmith 2001; Orr 2004; Baskerville and Pries-Heje 2004; Boehm and
Turner 2004; Turk et al. 2005]. Finally, there is the inclusion of iteration as a key tactic in development methods [e.g.
Jacobsen et al. 1999].

While organic models allow project teams to develop additional capabilities in response to high task uncertainty, the
literature also suggests that they imply a number of challenges. First, managers must structure the process and
combine use of prototypes and specifications [Boehm et al. 1984; Boehm 1988; Mathiassen and Stage 1992;
Mathiassen et al. 1995; Sotirovski 2001]. Alavi and Wetherbe [1991] found that if prototyping was preceded by a
systematic analysis, fewer iterations were needed and more efficient solutions were achieved, but at the cost of
making the process more complicated and stressful. Second, organic projects must manage contracts and distribute
economic risks in a way that is acceptable for both customers and vendors [Boehm 1988]. Third, they must facilitate
exploration, but at the same time ensure convergence. Chillarege suggests that an agile approach that allows for
fast feedback from the market is best in the early stages while predictability and control are more important in later
stages [2002]. This is well in line with the spiral model [Boehm 1988]. Fourth, managers must design iterations to fit
the particular project. Several authors suggest limiting the duration of iterations, except the first, to a few weeks
[Beck 1999; Rising and Janoff 2000; Baskerville and Pries-Heje 2004] and also and placing the most valuable and
important functionality in the first iteration. The rationale is to make sure that customers get the important
requirements satisfied even if the project runs out of money or gets delayed [Beck 1999]. Sotirovski adds that
systems mature over time, and better quality is achieved by building the most critical parts first [2001]. Organic
projects must finally recurrently manage agreements between stakeholders [Sarkkinen and Karsten 2005], emerging
interactions between developers and users [Gallivan and Keil 2003], make decisions between alternative options,
and measure progress and nearness-to-completion [Baskerville and Stage 1996].

Key solutions to address these challenges include: cycles that combine prototypes and specifications [Boehm 1988],
two-phase funding to allow for contractual flexibility [McConnel 1998], risk management [Boehm 1988; Mathiassen
et al. 1995], faking of a rational design process [Parnas and Clements 1986], risk analysis to control prototyping
[Baskerville and Stage 1996], staged delivery of solutions [McConnel 1998], and balancing agility with disciplined
approaches [Boehm and Turner 2004].

Organic models are, in summary, motivated by different types of uncertainty and there is a portfolio of supporting
techniques available that allow project teams to develop additional capability. While there are definite challenges
involved in managing organic development projects, there are no studies of how uncertainties emerge and are
addressed over the life-cycle of organic projects.

III. ORGANIZATIONAL TASK UNCERTAINTY
There is a long tradition for adopting information processing as an integrating concept in studying organizational
practices [e.g., Burns and Stalker 1961; Tushman and Nadler 1978; Gresov 1989; Goodhue and Thompson 1995].
The basic approach is to study how information processing requirements can be linked to information processing
options to obtain a satisfactory fit [Iivari 1992].

Galbraith’s classical theory [1973] suggests that bureaucratic organizations, with hierarchical structures, centralized
control, and standard operating procedures, in general are the most efficient in processing information. A
bureaucratic organization relies, however, on the assumption that the task uncertainty is low so the information it
needs to process outside its pre-programmed procedures is minimal. As the task uncertainty increases, the
hierarchy becomes overloaded with ad-hoc information processing requests and the organization must be modified
choosing from among four strategies [Galbraith 1973; Van de Ven and Drazin 1985]. Two of these, creation of slack
resources and creation of self-contained units, reduce internal interdependencies and the need to process additional
information, while two other strategies, investment in vertical information systems and creation of lateral relations,
offer mechanisms to process more information. In the extreme case with high task uncertainty, organizations
become organic with network structures, decentralized control, and ad-hoc mutual adjustment.

486
Volume 23 Article 27

Galbraith’s theory [1973] provides a useful foundation for studying uncertainty in systems development for a number
of reasons. First, there is a strong analogy between Galbraith’s understanding of organic organization as a response
to increased uncertainty in bureaucratic organizations, and organic development as a response to the limitations of
the waterfall model. Second, uncertainty has played and continues to play a key role in studying systems
development [e.g. Alter and Ginzberg 1978; McFarlan 1981; Rai and Al-Hindi 2000; Turk et al. 2005]. Third, applying
the task-uncertainty lens led us to practically relevant and theoretically interesting insights.

In the following, we adapt Galbraith’s concepts to systems development projects as follows. Uncertainty is, at any
point in time, understood as the difference between the capabilities required to successfully execute the project and
the capabilities currently possessed by the project. As a consequence, projects can address the uncertainties they
face either by reducing the additional capabilities required or by increasing their current capabilities.

IV. RESEARCH APPROACH
On this background, we organized an exploratory, interpretive case study [Yin 1994; Walsham 1995, 2006] of an
outsourced government development project in a Scandinavian firm, SoftConsult, to address two research
questions:

1. How do uncertainties emerge and interact over the life-cycle of an organic development project?
2. How does an organic development project respond to uncertainties over its life-cycle?

The research was conducted in close collaboration between the two authors [Mathiassen 2002]. One author was
project manager of the studied project and the other is systems development researcher. One authors’ participation
in the project gave access to data that are normally very difficult to obtain. Relying on several data sources
supported triangulation and helped establish a valid basis for analysis [Yin 1994]. Data about events, activities, and
decisions were systematically collected based on the project manager’s participation and unlimited access to the
project’s complete set of documentation, products, and measurement data. Additional data were collected using
estimates, time used on individual program modules, errors found, change requests, and changes in plans that were
collected during the project. Productivity data from the staged delivery phase were used to analyze the impact of
iteration based on learning curves [Epple et al. 1991; Lapre et al. 2000]. Productivity was defined as the number of
hours used to program and unit test a system function. Also, to compare across functions, we categorized them as
simple, medium, or complex based on function points [Jones 1991] and inter-subjective evaluations by team
members.

We adopted a combination of narratives and alternate template analysis to make sense of the data [Langley 1999].
The advantage of narratives is that they provide rich and detailed account of events, activities, and decisions as an
important part of the research contribution [Langley 1999]. The disadvantage is that authors are likely to suffer from
bias. The narrative was therefore developed iteratively as a joint tale [Van Maanen 1988] between the two authors;
also, key project members and colleagues critically reviewed the narrative and subsequent corrections were
implemented. The narratives were developed by asking for each project phase: Which uncertainties emerged? What
impact did the uncertainties have? How were uncertainties addressed? What were the conditions for addressing
uncertainties?

Alternate template analysis offers interpretations based on different, but internally coherent theoretical lenses. While
narratives are basically inductive drawing primarily on raw data, the alternate template approach is primarily
deductive drawing on theory [Langley 1999]. Our interpretations were based on Galbraith’s theory [1973] and
benefited from two lenses focusing on uncertainty dynamics (i.e. research question 1) and organic responses (i.e.
research question 2).

V. INDUSTRIAL CONTEXT
The project was conducted by SoftConsult, a large Scandinavian supplier of IT-based solutions, on behalf of a
Danish government agency. SoftConsult operates in a dynamic and complex environment and each delivered
solution tends to be unique. The company engages highly trained experts that are deployed to work in multi-
disciplinary teams. Projects share resources and a basic quality assurance system, but they are based on different
technologies and relate to a great variety of customers. Projects are typically designed with customers and the
technical architecture is designed to conform to their preferences. The company’s core asset is its ability to run
medium to large projects, more than knowledge about specific application areas and technologies. The company
operates at different locations, and projects are occasionally staffed across locations. Whenever new technologies
or applications are in demand, SoftConsult develops the necessary skills as an integral part of a customer contract.
Recent large IT failures in the public sector make government agencies focused on avoiding failure.

Volume 23 Article 27
487

The project took place from February 2000 to October 2001. The effort was approximately 17,000 man-hours and
the system covered 3,200 function points. The project manager adopted an organic model composed of two-phase
funding, staged delivery, and a combination of prototyping and specifications [McConnell 1998]. Project
management was heavily inspired by state-of-the-art literature [McConnell 1998; Humphrey 1989]. During project
start up, Capability Maturity Model level 2 processes [Humphrey 1989] were defined and established except for
subcontract management. Analysis and overall design followed an object oriented method [Mathiassen et al. 2001]
and user interface prototyping of the complete interface [McConnell 1998]. During staged delivery, the first three out
of four deliveries were released to user test, not for production. The overall intention was to ensure adequacy of the
design compared to user needs and to foster learning so that experiences from one phase could improve the system
and processes in the next phase [McConnell 1998]. The project was reasonably successful. Compared to the
original schedule it was one month late, but the delivered system included more functionality than originally agreed
upon. The major phases were:

1. Getting in position (01/11/99-14/02/00): Invested in initial explorations to make a better bid
2. Preparing the bid (14/02/00-06/04/00): Developed proposal based on stated system requirements
3. Negotiating contract (06/04/00-01/06/00): Presented project proposal to customer and negotiated

contract
4. Project planning (02/05/00-07/06/00: Detailed processes, a project organization, and technical

infrastructure put in place
5. Analysis and design (22/05/00-09/10/00): Requirements analyzed, system designed, and development

of technical architecture initiated
6. Staged delivery (23/10/00-20/08/01): Detailed design, construction, and test performed through four

stages of delivery

Approximately 1,000 hours were spent on preparation and sales (01.01.2000-01.05.2000), approximately 2,600
hours on project management, education, and development of technical infrastructure, and 2,500 hours on
installation, pilot tests, and handling of errors found during the first year after customer approval. Key data, including
earned value [Fleming and Koppelman 2000], are summarized in Table 1.

Table 1. Overview of Project Phases

Activity People Hours Deviation Earned value

Project planning 5 450 -7% 2.8

Analysis & design 7 2,530 +14% 15.8

Stage 1 7 1,480 +18% 7.8

Stage 2 11 2,930 +10% 18.3

Stage 3 11 2,550 +3% 16.5

Stage 4 9 1,680 +27% 7.6

VI. NARRATIVES
In the following, we present two project narratives [Van Maanen 1988; Langley 1999]. The first focuses on how
uncertainties emerged, interacted, and were addressed; the second focuses on how the adopted organic model
impacted uncertainties during the project. The uncertainties are defined in Table 2 and the Appendix provides a
summary of how they were addressed during the different stages of the project.

Uncertainty Dynamics

Getting in Position
SoftConsult knew that a major development project, to be outsourced by a government agency, was underway. The
project would generate business for many years to come, the customer was already buying other services from
SoftConsult, and the company believed it could win the contract. At the same time, the would-be project manager
was between projects and was given time to prepare for the project. The project manager was at this point the only
person engaged in the project. His initial strategy was exploratory because there was little information available. He
had limited resources because there was a risk that SoftConsult would not get the contract.

488
Volume 23 Article 27

The project manager addressed system requirements (#1) by seeking relevant information from colleagues that
knew the government agency and by studying publicly available reports on the agency’s strategy. He identified two
alternative technical solutions (#2), a Web-based and a three-tier client server architecture. The project manager
also started to address the development strategy (#8). The government agency preferred the waterfall model.
However, the project faced many uncertainties and the project manager believed the agency would accept an
organic approach if properly presented.

Table 2. Uncertainties

Uncertainty Type Concern

1 System requirements Product What are the customer’s requirements?

2 Technical solution Product What technical solution is appropriate?

3 Change implications Product What are the implications of requirements changes?

4 User interface Product How will users respond to the interface?

5 Design conformance Product Does the design meet the requirements?

6 Implementation strategy Product How can we implement the design?

7 System quality Product Is the quality satisfactory?

8 Development strategy Process What strategy fits this project?

9 Developer capability Process What is the capability of each developer?

10 Process improvement Process How can we improve during execution?

11 Competition Process What is the competition for the contract?

12 Customer economy Process How big is the customer’s project budget?

13 Development cost Process What are the development costs?

14 Development process Process How can we get the job done?

15 Project status Process How are we doing?

An organic approach would allow developers to learn through traditional analysis and design activities and at the
same time provide user feedback from prototypes and versions of the system [Mathiassen et al. 2001]. Two-phase
funding would further facilitate early adjustment of commitments and expectations and releasing often and early
through staged-delivery would also provide valuable information [McConnell 1998]. Second, an organic approach
would help develop important team capabilities. Two-phase funding would help tailor the project to the situation and
staged delivery would allow ”end-of-stage wrap-ups” [McConnell 1998] to improve team capabilities in subsequent
stages.

The project manager addressed developer capability (#9) by collecting quantitative data from similar projects to
support estimation, by committing selected colleagues to participate in the project, and by continuing to select
process models and solutions from within SoftConsult. Finally, at this stage, the project manager started to identify
tactics for implementing process improvements (#10) based on the staged delivery approach [McConnell 1998;
Humphrey 1989]. He hoped in this way to allow learning to influence planning and management as the project
unfolded.

These responses were constrained by several factors. Legislation aimed to secure fair and open competition and
made it difficult to acquire customer information or take part in the customer’s requirements elicitation. Such
involvement would disqualify SoftConsult from participating in the bid. Also, technical decisions were not only
focused on creating ideal solutions. Choice of technology had implications for where in SoftConsult the project would
be placed, which people would be involved, and what career possibilities would open after project completion.
Finally, quite limited resources were available because it was still unclear whether SoftConsult would get the
contract. Solutions were therefore sketchy. Despite these limitations, the project manager succeeded to lay the
foundation for an organic approach with improvements at each stage of delivery.

Volume 23 Article 27
489

Preparing Bid
The bidding was regulated by legislation. There were six weeks for preparation and customer communication had to
follow strict procedures. During this process an ad-hoc team, including the project manager, sales people,
managers, and future team members analyzed 400 pages of requirements. These activities involved designing the
process, preparing questions to the customer, analyzing prizing and competition issues, producing an overall design
of a solution, developing a budget, conducting internal quality reviews, and finally producing and delivering the bid.
The strategy was to balance between a solution the customer would prefer and one based on existing capabilities
within SoftConsult. In addition, the adoption of two-phase funding split the project. The first step would lead to a
detailed specification of the system. The specification was subsequently to be agreed upon by the customer. This
would then form the basis for contracting the second phase based on staged delivery.

The ad-hoc team addressed system requirements (#1) through systematic studies of stated requirements, by
consulting application domain experts within SoftConsult, and by addressing vague and conflicting requirements in
the bid. Technical solutions (#2) were developed with internal experts on hardware, software, network technologies,
and security. Also, it was decided to adopt the three-tier client server architecture building on previous projects.
Finally, detailed technical decisions were postponed whenever feasible. Potential competition (#11) and the
customer’s budget (#12) played important roles at this stage. The team addressed these uncertainties through
informal sources. The competition was considered moderate and the customer’s budget sufficient to develop a
satisfactory bid. The final development cost (#13) was based on function point counts, budgets from similar projects,
and risk and stakeholder analyses. Slack was build into the analysis and design phase because of outstanding
requirements. Some highly uncertain requirements were also separated out based on an hourly rate rather than
fixed price. The rationale for the overall development strategy and a detailed description of the process (#14) was
included in the bid.

Uncertainty responses during this phase were severely restricted by the short time period and limited opportunities
to interact with the customer. Customer requirements were very detailed and badly structured and the customer
wanted to extend contract coverage while the competition was still on. There was also internal rivalry between
departments at SoftConsult. A satisfactory outcome was achieved despite these conditions. The combination of
partially reduced requirements, a technical solution based on previous experience, the adoption of an organic
approach, and a budget based on systematic estimates created a satisfactory basis for the project. Uncertainties
related to competition and customer budget were never completely resolved; but they became irrelevant after this
phase. The team knew the adoption of the traditional architecture resulted in strong developer capabilities, but it also
created a new uncertainty: would the solution meet customer requirements?

Negotiating Contract
Different vendors presented their proposals and the customer decided to initiate negotiations with SoftConsult.
Uncertainties were addressed by the ad-hoc team of people, now including SoftConsult’s legal advisor. The team’s
strategy was conservative. It strongly favoured current team capabilities over exploring new opportunities. In some
areas both parties wanted to reduce uncertainties (e.g. creating a common understanding of vague requirements), in
other areas (e.g. changes because of releases from Microsoft, IBM, or Oracle) negotiations distributed economic
risks in a way acceptable for both parties. The customer tried to improve the solution and the vendor tried to
minimize implementation risks.

The technical solution uncertainty (#2) was dramatically simplified by adopting the three-tier architecture. Emerging
requirements were difficult to assess (#3). The team generally refused to guarantee implied changes from operating
systems, office packages, and database systems. Instead, additional analysis and design activities were included
into the first phase of funding. The development process (#14) was discussed in detail so the customer was
committed to the organic approach. It was agreed that the customer should develop the online help and all user-
documentation based on guidelines from SoftConsult.

It was difficult for the ad-hoc team to openly acknowledge major uncertainties in front of the customer, especially on
issues where the customer expected SoftConsult to be expert. There was limited time available and the customer
was eager to avoid any responsibility for possible failures. The project continued to converge despite these
limitations. It was, however, still quite uncertain whether team capabilities would align with the contract and whether
the technical solution would satisfy customer requirements.

Project Planning
To meet deadlines, the planning process started before the contract was signed. The goal was to create appropriate
conditions before development started. Detailed plans were made, the project organization defined, and process and
product standards were developed. During project start up, processes for Capability Maturity Model level 2

490
Volume 23 Article 27

[Humphrey 1989] were established except for subcontract management. Commitments to plans were created
through meetings and reviews between the project team and customer representatives. Finally, an official kick-off
seminar was conducted to give customer representatives and team members a possibility to build relations and
debate the project. Requirements were at this point clarified and detailed by the project manager, the project team,
customer representatives, and the steering committee. The strategy was to systematically define processes to
support project tracking and oversight and to allow new insights to influence the project.

Customer requirements issues (#1) were addressed by allocating expert users to the project and through reviews
conducted with customer representatives. The expert users had worked in the customer organization for many
years, they knew relevant work tasks, and they were highly regarded by co-workers. User interface design (#4) was
simplified by developing a standard and by having it approved across relevant user communities. The customer
found this important because other projects had experienced problems getting users to agree on interface issues.
The development process (#14) was further detailed in close collaboration with the customer, in particular analysis,
design, and project management. Developer capability (#9) was enhanced by forming the project team, by training
team members in the adopted analysis and design methods, and by assigning individual responsibilities to all team
members.

Customer requirements were constantly addressed. Uncertainties were reduced on specific issues, but also
increased due to changed conditions. The uncertainty of development costs was still substantial even though the
project team was formed and the task was better understood. The project manager knew little about individual
developer capabilities. The team included people new to SoftConsult, without formal systems development training
but with many years of industrial experience.

Analysis and Design
Uncertainties were addressed by the project team and customer representatives. The strategy was to collect
information and increase team capabilities to reach a satisfactory fixed-price contract for staged-delivery. The
analysis and design task was accomplished by dividing the system into subsystems. Each subsystem was analyzed
and designed by one or two developers in collaboration with customer representatives. Several initiatives aimed at
increasing team capability and the customer was generally satisfied with the process and results.

Product standards were defined to support design across subsystems and each working group followed a similar
process, using object-oriented analysis and design and user-interface prototyping. This analysis was complemented
with renegotiation of complex requirements. Some requirement issues (#1) were settled by studying how the old
system was working. Sometimes, users were not certain about rules and simply stated that the solution should
comply with the old system, or they would explain requirements in terms of what was to be different. The interface
(#4) was elaborated through prototyping and usability tests. All designs were reviewed both internally and with
customer representatives and approved by the customer to ensure design conformance (#5). Two developers
started full time to implement the technical architecture and prepare for programming (#6). The project manager
implemented processes for project tracking (#15) based on definition of activities and deliverables and adoption of
earned value analysis. Developer capability (#9) was developed in a number of ways. The project manager
thoroughly checked and revised all analysis and design documents to compensate for inadequate skills amongst
team members; separation of concerns was used to isolate complex implementation issues; standards were
developed to support programming activities; team members were trained in using the programming environment;
expected requirements changes were over estimated to compensate for unknown programming productivity; also,
relevant literature and courses continued to be available for the team. Finally, the staged delivery plan was modified
and detailed (#14).

The developers visited the customer organization to observe work practices (#1). Analysis and design was,
however, accomplished over the summer where key users at times were inaccessible. Also, the technical platform
was not yet available for experiments. Purchasing more than a year before the platform was needed was too costly
and would make the hardware outdated sooner. Despite these limitations, requirements were now well understood
by developers and having the customer accept design documents reduced conformance uncertainties. The
implementation strategy was now clear and preparations had been made to support programming. But there were
still no reliable quantitative data to support estimation. By overestimating requirements changes, the project
manager attempted to create options for increasing developer capability. Most developers had limited experience
with fixed-price contracts. They had previously worked with standard software and had no experience with projects
where requirements, designs, and programs had to be carefully managed, documented, and approved by a
customer, and where activities were estimated and tracked in detail.

Volume 23 Article 27
491

Staged Delivery
Programming, test, and delivery were divided into four stages each delivering part of the system. Uncertainties were
addressed by the project manager assisted by senior developers in charge of each major subsystem and in close
collaboration with management, customer representatives, and the steering committee. The strategy was to use
staged delivery to manage requirements issues and to use stage-wise improvement to gradually improve developer
capabilities. Each stage followed the same generic process: initial re-planning of stage, detailed design,
programming and unit test, integration and system test, end-of-stage user test including management of resulting
changes, and finally an end-of-stage “wrap-up” to decide what to improve in the next stage. When a delivery was
formally approved by the customer, the related contractual payment was released to SoftConsult.

The adopted implementation strategy (#6) was enacted by relying on experiences from previous projects and by
assigning a skilled and dedicated person. To help ensure satisfactory system quality (#7), staged delivery provided
early and continued feedback; expert users prepared test data and took part in designing test cases; and, the expert
users’ preparation of on-line help revealed weaknesses in design. The project manager continued to collect metrics
from each stage and to plan stage wrap-ups to improve estimates and processes in subsequent stages. The
resulting information was used to adjust the development process (#14). Project status (#15) was addressed through
earned value analysis and definition of activities and deliverables. Developer capability (#9) was improved to some
extent through ad-hoc initiatives. One full time developer was dedicated to work on subsequent deliverables. Slack
was increased trough deliberate underestimation of programmer productivity and overestimation of changes. More
team members were included and the project manager concentrated fully on the implementation effort and a
dedicated resource was allocated to manage customer relations.

Staged delivery supported customer collaboration and helped manage requirements (#1), especially related to
functionality and user interface design. It also made it possible to handle changes without serious delays. Changes
and errors were considered in parallel with development of the next delivery. The cost of general changes and errors
were reduced because they were found and addressed early. During the first test, 10 percent of the 150 problems
identified by the users applied to most other modules of the same type—e.g. users wanting the system to accept a
variety of formats or more help when entering data. Such problems would not have been identified early without
staged delivery and they would have been more costly to fix after delivery. As a side effect, staged delivery helped
create more realistic expectations both amongst users and in the project team. Staged delivery was, however, not
the only way requirements issues were addressed: by having users prepare online help and test-data in parallel with
development they were forced to consider the design which led to deeper understanding of requirements (#1).
During programming, developers repeatedly stumbled on requirements issues (#1). These issues were typically
resolved by informal contacts to expert users.

The project manager’s intention was team capabilities should continually increase through systematic process
improvement (#10). Informal assessments [McConnell 1998] were conducted during and after the first stage.
Likewise, attempts were made to extract lessons. But the assessments revealed few insights that the team did not
know in advance and most discussions were about differences in values among team members concerning what
constituted professional practices or good quality. The activities were experienced as superficial by most members
and were, as a consequence, abandoned. The failure to use staged delivery to increase developer capabilities made
the project manager change his role. He became a coach accepting that developers were quite different,
emphasizing improvement without providing solutions, and, removing concrete obstacles for individual developers.
Instead of providing improved processes, the project manager used his time to solve specific problems for
developers.

Staged delivery required intense coordination with the customer. For example, planning and running the acceptance
tests amounted to about 800 hours. This compares to an estimated 400–500 hours of post-project-completion
needed without staged delivery in similar projects within SoftConsult. This, however, came as no surprise; it was
perceived as a small price to pay to effectively reduce uncertainty. The project manager realized it was difficult to
practice continuous improvement based on stage wrap-ups. He considered this a failure of the adopted organic
approach and he was concerned throughout the project that insufficient learning took place. Because of these
concerns and the indications provided by productivity numbers from the first stages, he ended up adding more
people to the project than were actually needed.

Organic Responses
The adopted organic model helped the project develop a satisfactory product. By releasing deliveries to user-tests,
feedback was received in the form of error reports, change request, and informal discussions with user
representatives. These and other responses related to product uncertainties are summarized in the appendix. It is
difficult to rank the impact of these responses to product uncertainties, but the change requests raised by users
indicate which responses triggered these requests and how each request affected redesign of system elements.

492
Volume 23 Article 27

Based on this indicator, the responses related to analysis and design had the highest impact on product
uncertainties, with those related to staged delivery in second place. Moreover, the impact of early releases was, as
expected, more significant than that of later releases. Early releases lead to identification of general problems that
were addressed before subsequent releases. Also, uncertainties about how expensive the project would be and how
much the project would be delayed, made both the customer and project manager reluctant to encourage and
approve changes.
In contrast, the organic approach did not effectively address process uncertainties. The systematic attempts at
process improvement during staged delivery failed and the project manager had to address process uncertainties
through a number of ad-hoc initiatives. The appendix summarizes the responses to process uncertainties. Again, it
is difficult to rank individual responses by impact. The project manager’s perception was, however, that the impact of
dividing the construction into stages and using experience from an end-of-stage wrap-up to systematically improve
the development process in the next stage was close to zero.

According to the project manager, the two most important responses to process uncertainties were the up-front
investment in planning and preparing development (e.g. development of standards, templates, tools and plans) and
the informal and unmanaged learning activities carried out by individual developers as an integral part of doing their
job. Despite the failure to practice planned and managed improvements, developers in general kept improving their
performances for about three to four months after they were assigned to the project before productivity stabilized,
and these changes in productivity were much larger than anticipated. The improvements for most developers’
resembled learning curves in the literature [Epple et al. 1991; Lapre et al. 2000]. Some developers increased their
productivity more than 100 percent during the first months. These were not junior programmers on their first
assignment, but well-educated programmers with more than five years of experience. These improvements were,
however, fragile and highly dependent on distribution of responsibilities. Moving a programmer from a subsystem he
had designed to a subsystem designed by another developer instantly decreased his productivity. The opposite
effect was seen when developers did two similar tasks in sequence. Then productivity improved in the following task.
As a consequence, the difference between estimated and actual productivity was reduced from stage-1 to stage-3,
but then increased again in stage-4 where some radically different tasks were involved, see Table 1.

There were two important reasons that the planned improvement efforts failed. First, one assumption in software
process improvement is that developers, at some level, use the same processes. Team members had, however,
different qualifications, preferences, and work styles. They needed different processes, they had particularly strong
preferences for specific working styles when doing technical work, and their development approach changed over
time. Even though there were similarities across individuals, the idea of having common processes and improving
systematically upon them was not feasible. Second, the team members’ commitment to develop an appropriate
solution and the stressful context with strong focus on deadlines made it difficult to engage them in thorough
reflections about work practices. Frequent deadlines created a short term out-look in which process issues were
pushed to the background. Moreover, learning about and improving development processes turned out to be far
more difficult than learning about customer requirements, and the adopted organic model offered little advice on how
to do this.

The organic model did not only fail to respond effectively to process uncertainties. It introduced additional ones.
During staged delivery, a number of issues emerged resulting in increased process uncertainties:

• Sequencing: Which functions should be implemented in which deliveries? Criticality of functionality was
not the only criterion; the project manager had to consider productivity, coherence, and politics as well.

• Frequency: How often should the project deliver? There were approximately three months between
deliveries. That was far from the short cycles recommended in the literature; but it was difficult to reach
deadlines because there was little room for unexpected events. Whenever a team member was late,
resources had to be moved to meet the deadline. That had a negative impact on short-term productivity
because it broke the planned continuity and made it more difficult to exploit task specific knowledge.
Staffing issues also became complicated. The project was highly vulnerable to team members’ absence
and it was difficult to integrate new members because the team was busy reaching the next deadline.

• Rework: What should be redone as a consequence of requirements changes? Changes created a need
for precise and current information about dependencies between modules and functions. They also
created a need for information about which tests had to be redone. Customer tests at the end of each
stage resulted in the identification of 313 errors and a total of 297 change requests representing
approximately 1,600 hours of work. In practice, this turned two-phase funding into many-phase funding
and it added significant management overhead to reestimate activities and re-negotiate contractual
issues.

• Deadlines: When can we actually deliver? Deadlines were considered contractual events that had to be
reached on time. Neither the customer nor the supplier wanted to miss a deadline given the media

Volume 23 Article 27
493

interest in failing projects within the public sector. Always having a relative short time period to the next
delivery combined with change requests and a great variation in personal productivity placed the project
team in a permanently stressful situation.

VII. ANALYSES
In the following, we analyze the case based on task uncertainty and systems development theory. In response to
research question 1, we identify insights related to understanding uncertainties at SoftConsult. In response to
research question 2, we identify insights related to understanding responses to these uncertainties.

Understanding Uncertainty
Uncertainty types. Table 2 identifies fifteen different uncertainties categorized as product uncertainties (dealing
with the client’s problem and its solution) and process uncertainties (dealing with the organization of the project).
The two key uncertainties, system requirements (#1) and development process (#14), reflects this dual nature of
task uncertainty in the SoftConsult project. While both types were addressed throughout the project life-cycle they
were impacted differently by the organic approach. As detailed throughout the uncertainty dynamics narrative earlier,
two phase funding, staged delivery, and the combination of specifying and prototyping [McConnell 1998] helped
reduce all major product related uncertainties. The organic approach also provided overall guidance to handle
process uncertainties, in particular in relation to development strategy (#8) and process improvement (#10).
However, important process uncertainties, e.g. related to the development process (#14), kept posing serious
challenges throughout the project.

Interestingly, impacts of organic approaches in the literature are mainly focused on product related issues: number
of system features [Gordon and Bierman 1995; Boehm and Papaccio 1988], system performance [Gordon and
Bierman 1995], system quality [Gordon and Bierman 1995; Mahmood 1987], and system maintenance [Gordon and
Bierman 1995; Naumann and Jenkins 1982]. While some attention is drawn to process issues like effort and user
participation [Gordon and Bierman 1995], there is little emphasis on emerging process issues. On several key
issues, for example frequency and sequencing of stages, rework, and management of deadlines, no or insufficient
advice was provided by the adopted organic model. This lack of emphasis on process uncertainties in the organic
development literature is inconsistent with the experiences from SoftConsult.

Capability types. We adapted Galbraith’s notion of task uncertainty [1973] to indicate the gap between the
capabilities required and the current capabilities in a systems development project. While this simple notion of
uncertainty applied well to the case, further elaborations are needed to explain how project capabilities were
challenged and developed at SoftConsult. We observed two quite different types of capabilities. First, know-what
capabilities focused on what the project needed to known or actually knew about requirements, solutions,
development strategy, and process. Know-what capabilities related to specific areas of knowledge (e.g. a new
system function); and, they were typically created through analysis, by asking colleagues or customers, by making
decisions, or through renegotiations with the client. Second, know-how capabilities focused on specific skills or
experiences required or actually possessed by the project to support problem-solving and collaboration (e.g. to
program system functions, to test modules, or to interact with users). Know-how capabilities were brought into the
project through participants’ earlier experiences and they were further developed through training, practicing, and
collaboration with peers. Know-how capabilities were, however, experienced as quite different and as more difficult
to develop than know-what capabilities.

The distinction between know-what and know-how capabilities makes sense in relation to the systems development
literature. A project’s perception of its task [McFarlan 1981] can, for example, be seen as a relation between the
client’s problem (know-what) and the team’s problem-solving capability (know-how). A project’s experience with
technology [McFarlan 1981] expresses a relation between general knowledge about applied technologies (know-
what) and the team’s skills and experiences related to these technologies (know-how). Finally, a project’s size and
complexity [McFarlan 1981] can be seen as a relation between the project’s characteristics (know-what) and the
project manager’s experience (know-how). However, the literature offers no explication of know-what and know-how
capabilities or similar distinctions that describe the different aspects of uncertainty experienced at SoftConsult. On
the contrary, Larman and Basili [2003] argue systems developers need to create know-what capabilities about the
problem and its solution and iteration is in most cases required to do so. While this is definitely true, there is no
mentioning of the needs for creating know-how so projects can successfully adopt and leverage organic models.
Similarly, McConnell’s [1998] two-phase funding and staged delivery approaches are focused on creating the
necessary know-what capabilities without sufficiently detailing the consequences for know-how management.

Uncertainty dynamics. The project manager at SoftConsult not only had to deal with many uncertainties, but these
uncertainties interacted throughout the project to constantly create new needs to process information. Again, we

494
Volume 23 Article 27

observed considerable differences in how dynamics impacted the project across product and process uncertainties.
The key product uncertainty, system requirements (#1), was for example addressed from the very start and
interacted with most other uncertainties throughout the project life-cycle. All requirements changes were, however,
treated as adjustments to the initial call for tender, so the overall profile and structure of requirements remained
stable from the preparing bid phase and onwards. The key process uncertainty, development process (#14), was
addressed from the second phase and also interacted with most of the other uncertainties. However, the
development process was influenced by other uncertainties in ways that made it increasingly complex and dynamic
during staged delivery. As a consequence, the project manager had to focus all his energy on managing internal
process issues during the delivery stages of the project.

The literature highlights several challenges related to manage uncertainty in systems development (see Section II).
Some are implications of the adoption of an organic approach (e.g. combining specification and prototyping), some
are implied by other uncertainties (e.g. the need to renegotiate contracts is implied by changes in requirements), and
some represent changes in the profile of major uncertainties (e.g. ensuring convergence on the solution). The
literature offers, however, no account of how uncertainties interact and how uncertainty profiles change over the
project life-cycle. The implicit, underlying assumption seems to be that uncertainty is the problem and organic
models the solution. There is little understanding of how the complex and dynamic relationship between
uncertainties and adoption of specific organic models dramatically influence a project manager’s agenda as it did at
SoftConsult.

Understanding Responses
Response types. We observed a variety of uncertainty responses at SoftConsult. Combining Galbraith’s [1973] two
generic responses, i.e. offensively developing new capabilities and defensively reducing the need for additional
capabilities, with uncertainty and capability types, reveals a total of eight different response types. Table 3 shows
examples of how each of these was adopted at SoftConsult.

Table 3. Response Types

 Product uncertainties Process uncertainties

Know-what capabilities

Systematically evaluating user
interface prototypes.

Tracking project on progress and
productivity.

Offensive
responses

Know-how capabilities
Training users to play active
role during design and test.

Training team members in analysis
and design methodology and
programming environment.

Know-what capabilities

Refusing to guarantee
changes in related application
and standard software.

Building slack into schedule and
budget.

Defensive
responses

Know-how capabilities
Adopting three-tier architecture
known from previous projects.

Separating out high uncertainty
requirements based on hourly rate.

The project generally adopted a rich variety of responses. Defensive responses normally took the form of a decision
or a negotiation between stakeholders, they were least time consuming, and they typically focused on ensuring the
project was completed within schedule. Offensive responses also took a variety of forms, they typically required
some or considerable investments, and they pushed the project in direction of a more satisfactory product.

Response context. We also observed that uncertainty responses often were shaped by the project context. The
bidding was, for example, constrained by laws that excluded useful offensive responses. SoftConsult was not
allowed to take part in the customer’s requirements elicitation, the bid had to be prepared within six weeks, and strict
procedures had to be followed to secure fair and open competition. The initial context encouraged, in this way,
adoption of defensive responses even though more offensive ones could have been valuable. When resources,
time, and possibilities for interaction with customer and users were limited, the project manager responded by
aligning the task with available know-how within SoftConsult. Later, during staged delivery the project had to commit
to specific deadlines even though major process issues had not been resolved. That created a context in which the
options to effectively address product related uncertainties were severely restricted.

Volume 23 Article 27
495

These findings from SoftConsult suggest uncertainty responses depend on two issues [Keil et al. 1998]. One is the
project’s understanding of the uncertainty it faces and how these develop over time. The other is the context in
which the project operates and the degree of control the project can exercise over specific uncertainties. At
SoftConsult, two events dramatically changed the context. The first was the customer’s choice of SoftConsult by
which the project acquired the first phase of funding. The second was the agreement about a contract for staged
delivery by which the project acquired the second phase of funding.

Response modes. Changes in perception of uncertainties as well as in the context for responding to uncertainties
led to three different response modes over the project life-cycle: competitive mode, risk-hedging mode, and
collaborative mode, see Table 4.

Table 4. Response Modes

Mode Competitive Risk-Hedging Collaborative

Phases Getting in position
Preparing bid

Negotiating contract
Project planning
Analysis and design

Staged delivery

Objective Win contract Reduce risks Meet deadlines

Integration Internal External Internal

Uncertainty Product Product-Process Process

Capability Know-what Know-what Know-how

Response Offensive Defensive Offensive

The project initially (01/11/99-06/04/00) operated in competitive response mode with the primary objective to win the
contract. Due to laws and regulations, there was little integration between the emerging project at SoftConsult and
the customer, and the project manager put considerable effort into internal networking. Counter to the ideal during
the early stages of a project [McFarlan 1981], there was little emphasis on external integration. The main focus was
on internal integration to reduce product uncertainties by offensively generating know-what capabilities about the
problem and its solution.

After the customer decided to negotiate with SoftConsult (06/04/00-09/10/00), responses changed to risk-hedging
mode [Lee, 2002]. The primary focus shifted to distributing economic risks between customer and provider and to
detailing the second-phase contract for staged delivery [Boehm 1988]. The objective for the project was to reduce its
risks and responses were consequently defensive. There was equal emphasis on developing know-what capabilities
about the product (detailing system requirements and the technical solution) and the process (developing a plan for
staged delivery).

Finally, during staged delivery (23/10/00-20/08/01), the project operated in collaborative response mode with primary
focus on meeting deadlines. The project manager delegated customer relationships to another team member and
focused entirely on internal integration of the team including close collaboration with expert users. The focus was
primarily on managing the process by offensively using and cultivating available know-how capabilities. The
attempts to systematically improve available know-how based on end-of-stage “wrap-ups” failed. Instead,
developers improved capabilities as an integral part of doing their job. As a consequence, the project delivered the
system only one month later than scheduled, and with more functionality than anticipated.

The literature suggests that development projects generally should emphasize exploration in early phases to allow
for feedback from customers and the market, and then increasingly emphasize predictability and control in the later
stages as uncertainties are resolved [Boehm 1988; Mathiassen and Stage 1992; Chillarege 2002]. In the
SoftConsult project, early explorations were, however, severely restricted by the context for winning the contract and
by the focus on distributing risks between the customer and SoftConsult. Also, the construction mode was initiated
before all product uncertainties were addressed so the contract for staged delivery included severe outstanding
uncertainties. The project was, therefore, not able to realize the ideals expressed in the literature. Two-phase
funding [McConnel 1998] is a simplified, pragmatic version of the multi-phase approach of the spiral model [Boehm
1988], and it represents a huge improvement over one-shot, fixed contracts because it allows for initial reduction of
uncertainties before a final contract is negotiated. However, we saw at SoftConsult how early explorations were

496
Volume 23 Article 27

severely restricted in the first funding phase and how the second phase was left with challenging uncertainties
making the fixed, staged delivery contract a somewhat problematic proposition.

VII. CONCLUSION
The key contribution of this research is the detailed insights it gives into management practices in organic systems
development. The unlimited access to data from SoftConsult made it possible to provide detailed narratives of
systems development practices that are rarely seen in the literature. The presentation and interpretation of the case
were based on analyses of how uncertainties and responses manifested themselves and interacted. To manage
organic projects effectively, the research suggests to distinguish between product and process related uncertainties,
between know-what and know-how capabilities, and to emphasize that uncertainties are highly dynamic as projects
unfold. The research also suggests distinguishing between offensive and defensive responses, to focus on how
responses depend on context, and to appreciate that different response modes become appropriate as a project
unfolds. The adopted organic model did help respond to product uncertainties at SoftConsult. At the same time,
however, the model offered quite limited and in some ways inappropriate help to respond effectively to emerging
process uncertainties.

Based on Galbraith’s theory [1973], it makes sense to see organic systems development models as alternatives to
the single-pass and document-driven waterfall model [Royce 1970] that become increasingly appropriate as the task
uncertainty increases. We adapted Galbraith’s theory to propose the overall distinction between offensive and
defensive responses. We could also identify specific responses in the case corresponding to creation of slack
resources (i.e. build slack into schedule and budget) and to creation of lateral relations (i.e. informal contacts and
discussions between developers and users). However, we didn’t find the other detailed organizational responses in
Galbraith’s theory particularly useful in distinguishing systems development practices. As a result, we developed a
uncertainty response framework dedicated to organic development projects (Tables 3 and 4).

While the adaptation of task uncertainty theory [Galbraith 1973; Iivari 1992] helped us make sense of managerial
practices in the organic project at SoftConsult, our findings are of a preliminary nature and needs to be further
validated and developed in relation to other organic models and industrial contexts. It is also worth noting other
important contributions within our field provide complementary views to task uncertainty theory. Feldman and March
[1981] have for example demonstrated that organizations not only produce information in response to requests and
as a basis for rational choice and decision-making. Organizations also systematically gather more information than
they need to serve symbolic purposes. Another complementary view is offered by Ngwenyama and Lee [1997] who
demonstrate that critical social theory reveal informational behaviours in organizations that are not accounted for
through traditional theory. It is for these reasons important to engage in complementary research that can help us
understand the broader cultural and political dimensions of managing uncertainty in organic systems development.

Our findings suggest managers of organic projects need to stay pragmatic and balance the ideals build into organic
models with the realities enforced by laws, contractual agreements, organizational conditions, and the highly
complex and dynamic nature of organic projects. Organic development is not a solution to the uncertainty challenge.
Rather it is a framework for identifying and addressing uncertainties as they emerge and develop over the project
life-cycle. Organic models help reduce product uncertainties, but they also introduce and reinforce process
uncertainties requiring complementary management tactics throughout the project.

Managers of organic projects are advised to combine offensive responses in which they seek to increase team
capabilities with defensive responses in which they seek to reduce the need for additional capabilities. Defensive
responses are executed through decisions or negotiations with involved stakeholders. Offensive responses are
executed through staffing, studying, experimentation, experiencing, or improvisation. Our research suggests that
defensive responses are the least time demanding and typically focus on ensuring that the project is completed
within schedule. Offensive responses require some or considerable investments and typically push the project in
direction of more satisfactory results. Finally, managers are advised to differentiate between know-what and know-
how capabilities and to dynamically adapt their response mode to fit the project’s evolving context.

REFERENCES
Alavi and Wetherbe. (1991). “Mixing Prototyping and Data Modelling For Information System Design,” IEEE

Software 8(3), 86 – 91.

Alter and Ginzberg. (1978). “Managing Uncertainty in MIS Implementation,” Sloan Management Review 20(1), 23-
31.

Basili and Turner. (1975). “Iterative Enhancement: A Practical Technique for Software Development,” IEEE
Transactions on Software Engineering, SE-1(4), 390–396.

Volume 23 Article 27
497

Baskerville and Stage. (1996). “Controlling Prototype Development through Risk Analysis,” MIS Quarterly 20(4),
481-504.

Baskerville and Pries-Heje. (2004). “Short Cycle Time Systems Development,” Information Systems Journal 14(3),
237-264.

Beck. (1999). eXtreme Programming Explained, Embrace Change. Upper Saddle River, N. J, Addison-Wesley.

Boehm. (1988). “A Spiral Model of Software Development and Enhancement,” Computer 21(5), 61–72.

Boehm and Papaccio. (1988). “Understanding and Controlling Software Costs,” IEEE Transactions on Software
Engineering 14(10), 1462 –1477.

Boehm and Turner. (2004). Balancing Agility and Discipline: A Guide for the Perplexed. Boston, Massachussets:
Addison-Wesley.

Brooks. (1987). “No Silver Bullet,” Computer 20(4), 10–19.

Brooks. (1975). The Mythical Man-Month: Essays on Software Engineering Reading, Mass.: Addison-Wesley.

Burns and Stalker. (1961). The Management of Innovation. London, UK: Tavistock Institute.

Chillarege (2002). The Marriage of Business Dynamics and Software Engineering. IEEE Software, 19(6), 43 - 49.

Cockburn and Highsmith. (2001). “Agile Software Development: The People Factor,” IEEE Computer 34(11), 131-
135.

Curtis, Krasner and Iscoe. (1988). “A Field Study of the Software Design Process for Large Systems,”
Communications of the ACM 31(11), 1268 – 1287.

Epple, Argote and Devadas. (1991). “Organizational Learning Curves: A Method for Investigating Intra-Plant
Transfer of Knowledge Acquired Through Learning by Doing,” Organization Science 2(1), 58-70.

Fleming and Koppelman. (2000). Earned Value Project Management, Pennsylvania: Project Management Institute.

Galbraith. (1973). Designing Complex Organizations. Reading, Massachusetts: Addison-Wesley.

Goodhue and Thompson. (1995). “Task-Technology Fit and Individual Performance,” MIS Quarterly 19(2), 213-236

Gallivan and Keil. (2003). “The User–Developer Communication Process: A Critical Case Study,” Information
Systems Journa, 13(1), 37-68.

Gould and Lewis. (1985). “Designing for Usability: Key Principles and What Designers Think,” Communications of
the ACM 28(3), 300 – 311.

Gordon and Bierman. (1995). “Rapid Prototyping: Lessons Learned,” IEEE Software 12(1), 85 – 95.

Gresov (1989). Exploring Fit and Misfit with Multiple Contingencies. Administrative Science Quarterly, 34, 431-453.

Humphrey. (1989). Managing the Software Process. SEI Series in Software Engineering, Addison-Wesley, USA.

Iivari (1992). The Organizational Fit of Information Systems. Information Systems Journal, 2, 3-29.

Jacobsen, Booch and Rumbaugh. (1999). The Unified Software Development Process. Reading, Massachusetts:
Addison-Wesley.

Jones. (1991). “Applied Software Measurement Assuring Productivity and Quality,” Software Engineering Series,
New York, McGraw-Hill.

Keil, Cule, Lyytinen and Schmidt. (1998). “A Framework for Identifying Software Project Risks,” Communications of
the ACM 41(11), 76-83.

Langley. (1999). “Strategies for Theorizing from Process Data,” Academy Management Review, Vol. 24, No. 4, pp.
691-710.

Lapre, Mukherjee and Van Wassenhove. (2000). “Behind the Learning Curve: Linking Learning Activities to Waste
Reduction,” Management Science, 46(5), 597–611.

Larman and Basili. (2003). “Iterative and Incremental Development: A Brief History,” IEEE Software 36(6), 47-56.

Lott. (1997). “Breathing New Life Into the Waterfall Model,” IEEE Software 14(5), 103 –105.

Mahmood. (1987). “System Development Methods – A Comparative Investigation,” MIS Quarterly 11(3), 293 – 311.

Mathiassen and Stage. (1992). “The Principle of Limited Reduction in Software Design,” Information, Technology &
People 6(2), 171-184.

498
Volume 23 Article 27

Mathiassen, Seewaldt, and Stage. (1995). “Prototyping and Specifying: Principles and Practices of a Mixed
Approach,” Scandinavian Journal of Information Systems 7(1), 55 – 72.

Mathiassen. (1998). “Reflective Systems Development,” Scandinavian Journal of Information Systems 10(1-2), 67 –
118.

Mathiassen, Munk-Madsen, Nielsen and Stage. (2001). Object Oriented Analysis & Design. Aalborg, Denmark:
Marko Publishers.

Mathiassen (2002). Collaborative Practice Research. Information, Technology & People, 15(4), 321-345.

McConnell. (1998). Software Project Survival Guide. Redmond, Washington: Microsoft Press.

McFarlan. (1981). “Portfolio Approach to Information Systems,” Harvard Business Review 59(5), 142-150.

Mintzberg. (1983). Structures in Fives: Designing Effective Organizations. Englewood Cliffs, N. J.: Prentice Hall.

Mohr. (1982). Explaining Organizational Behavior. San Francisco, CA: Jossey-Bass.

Naumann and Jenkins. (1982). “Prototyping: The New Paradigm for Systems Development,” MIS Quarterly (6:3), 39
- 48.

Orr. (2004). “Agile Requirements: Opportunity or Oxymoron?” IEEE Software 21(3), 71-73.

Parnas and Clements. (1986). “A Rational Design Process: How and Why to Fake it,” IEEE Transactions on
Software Engineering 12(2), 251 – 257.

Pfleeger. (2001). Software Engineering Theory and Practice, Second Edition. Prentice Hall.

Rai and Al-Hindi. (2000). “The Effects of Development Process Modeling and Task Uncertainty on Development
Quality Performance,” Information & Management 37(6), 335-346.

Rising and Janoff. (2000). “The Scrum Software Development Process for Small Teams,” IEEE Software 17(4), 26 –
32.

Royce. (1970). “Managing the Development of Large Software Systems: Concepts and Techniques,” Proceedings
WesCon.

Sarkkinen and Karsten. (2005). “Verbal and Visual Representations in Task Redesign: How Different Viewpoints
Anter into Information Systems Design Discussions,” Information Systems Journa, 15(3), 181-212.

Sotirovski. (2001). “Heuristics for Iterative Software Development,” IEEE Software 18(3), 66 – 73.

Turk, France, and Rumpe. (2005). “Assumptions Underlying Agile Software-Development Processes,” Journal of
Database Management 16(4), 62-87.

Tushman and Nadler. (1978). “Information Processing as an Integrating Concept in Organizational Design,”
Academy of Management Review 3, 613-624.

Van de Ven and Drazin. (1985). “The Concept of Fit in Contingency Theory,” Research in Organizational Behavior 7,
333-365.

Van Maanen. (1988). Tales From the Field: On Writing Ethnography. Chicago: Chicago Press.

Walsham. (1995). “Interpretive Case Study in IS Research. Nature and Method,” European Journal of Information
Systems 4, 74 - 81.

Walsham. (2006). “Doing Interpretive Research,” European Journal of Information Systems 15(3), 320-330.

Wirth. (1971). “Program Development by Stepwise Refinement,” Communications of the ACM 14(4), 221 – 227.

Yin. (1994). CASE Study Research Design and Methods, Second Edition, Applied Social Research Methods Series,
Volume 5, SAGE Publications.

ABOUT THE AUTHORS
Lars Mathiassen received his master’s degree in computer science from Aarhus University, Denmark, in 1975, his
Ph.D. in informatics from Oslo University, Norway, in 1981, and his Dr. Techn. degree in software engineering from
Aalborg University, 1998. He is currently GRA Eminent Scholar and professor in Department of Computer
Information Systems and co-founder of Center for Process Innovation at Georgia State University. His research
interests are within information systems and software engineering with a particular emphasis on process innovation.
He has coauthored Computers in Context (Blackwell 1993), Object Oriented Analysis & Design (Marko Publishing,
2000), and Improving Software Organizations (Addison-Wesley, 2002). He has served as senior editor for MIS

Volume 23 Article 27
499

Quarterly and his research is published in journals like Information Systems Research, MIS Quarterly, IEEE
Transactions on Engineering Management, Communications of the ACM, Journal of AIS, Information Systems
Journal, and IEEE Software.

Keld Pedersen holds a masters degree and Ph.D. in computer science from Aalborg University, Denmark. He has
been involved in systems development research, practice, and education for more than 20 years. During this period
his primary interests has been project management, software process improvement, organizational learning, and
knowledge management. He has always positioned himself in the borderland between research and practice, and
has published several papers based on empirical data from his participation in systems development projects and
software process improvement initiatives. Currently, Keld Pedersen is engaged in a European collaborative research
project investigating the possibilities for supporting knowledge sharing in systems development projects with wiki,
semantic web and personalization technologies.

APPENDIX: SUMMARY OF UNCERTAINTY MANAGEMENT
Uncertainty Getting in position Preparing the bid Negotiating contract
1 System

requirements
Asking colleagues

Studying public reports
Analyzing requirements

Consulting domain experts
Addressing uncertain

requirements

2 Technical solution Identifying alternative
technical solutions

Using internal expertise
Using experience from similar

projects
Postponing decisions

Adopting three-tier
architecture

3 Change
implications

 Rejecting uncertain
change requests

4 User
interface

5 Design
conformance

6 Implementation
strategy

7 System
quality

8 Development
strategy

Proposing organic approach

9 Developer
capability

Estimating based on similar
projects

Selecting project members
Adopting SoftConsult

processes and solutions

10 Process
improvement

Tactics for process
improvements

Adaptive planning and
management

11 Competition Information from informal
sources

12 Customer
economy

 Information from informal
sources

13 Development cost Counting function points
Using experience from similar

projects
Risk and stakeholder analyses

Planning with slack
Hourly rate on uncertain

requirements

14 Development
process

 Including strategy and process in
bid

Committing customer to
organic approach

15 Project
status

500
Volume 23 Article 27

Uncertainty Project planning Analysis and design Staged delivery
1 System

requirements
Allocating users to project
Conducting reviews with

customer s

Collaborating with users
Analysis and design

Prototyping
Studying old system

Observing work practice

Feedback on increments
Users preparing on-line

help and test data
Addressing uncertain

requirements
2 Technical solution
3 Change

implications

4 User
interface

Agreeing on standard
interface

Prototyping and usability tests

5 Design
conformance

 Design reviews
Customer approval

6 Implementation
strategy

 Implement architecture
Prepare for programming

Using project experience
Assigning skilled person

7 System
quality

 Staged delivery
feedback

Users preparing on-line
help and test data

8 Development
strategy

9 Developer
capability

Forming project team
Training team in analysis

and design
Assigning individual

responsibilities

Document quality check
Separation of concerns
Programming standards
Training in programming

environment
Over estimating requirements

changes
Team access to literature and

courses

Ad-hoc initiatives

10 Process
improvement

 Informal assessments
Extracting lessons

Coaching developers
Removing individual

obstacles
11 Competition
12 Customer

economy

13 Development cost
14 Development

process
Involving customer in
detailing of process

Modifying staged delivery plan Stage-wrap-ups to
improve process

15 Project
status

 Earned value analysis Earned value analysis.

Copyright © 2008 by the Association for Information Systems. Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for
components of this work owned by others than the Association for Information Systems must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O.
Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from ais@aisnet.org

Volume 23 Article 27

 .
 ISSN: 1529-3181

EDITOR-IN-CHIEF
Joey F. George

Florida State University
AIS SENIOR EDITORIAL BOARD
Guy Fitzgerald
Vice President Publications
Brunel University

Joey F. George
Editor, CAIS
Florida State University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Paul Gray
Founding Editor, CAIS
Claremont Graduate University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M. Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
University of Groningen

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Jane Fedorowicz
Bentley College

Jerry Luftman
Stevens Inst. of Tech.

CAIS EDITORIAL BOARD
Michel Avital
Univ of Amsterdam

Dinesh Batra
Florida International U.

Indranil Bose
University of Hong Kong

Ashley Bush
Florida State Univ.

Erran Carmel
American University

Fred Davis
U of Arkansas, Fayetteville

Gurpreet Dhillon
Virginia Commonwealth U

Evan Duggan
Univ of the West Indies

Ali Farhoomand
University of Hong Kong

Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Mary Granger
George Washington U.

Ake Gronlund
University of Umea

Ruth Guthrie
California State Univ.

Juhani Iivari
Univ. of Oulu

K.D. Joshi
Washington St Univ.

Chuck Kacmar
University of Alabama

Michel Kalika
U. of Paris Dauphine

Claudia Loebbecke
University of Cologne

Paul Benjamin Lowry
Brigham Young Univ.

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Fred Niederman
St. Louis University

Shan Ling Pan
Natl. U. of Singapore

Kelly Rainer
Auburn University

Paul Tallon
Loyola College, Maryland

Thompson Teo
Natl. U. of Singapore

Craig Tyran
W Washington Univ.

Chelley Vician
Michigan Tech Univ.

Rolf Wigand
U. Arkansas, Little Rock

Vance Wilson
University of Toledo

Peter Wolcott
U. of Nebraska-Omaha

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Sal March and Dinesh Batra

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
James P. Tinsley
AIS Executive Director

Robert Hooker
CAIS Managing Editor
Florida State Univ.

Copyediting by Carlisle
Publishing Services

	Communications of the Association for Information Systems
	11-2008

	Managing Uncertainty in Organic Development Projects
	Lars Mathiassen
	Keld Pedersen
	Recommended Citation

	Microsoft Word - journal.doc

