
Communications of the Association for Information Systems

Volume 13 Article 34

March 2004

The Subtle and Counterintuitive Hazards of Non-
Sequential Evaluation in Languages of the C Family
Adam Victor Reed
California State University. Los Angeles, areed2@calstatela.edu

Knox B. Wasley
California State University. Los Angeles, kwasley@calstatela.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Reed, Adam Victor and Wasley, Knox B. (2004) "The Subtle and Counterintuitive Hazards of Non-Sequential Evaluation in Languages
of the C Family," Communications of the Association for Information Systems: Vol. 13 , Article 34.
DOI: 10.17705/1CAIS.01334
Available at: https://aisel.aisnet.org/cais/vol13/iss1/34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301377288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol13%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol13?utm_source=aisel.aisnet.org%2Fcais%2Fvol13%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol13/iss1/34?utm_source=aisel.aisnet.org%2Fcais%2Fvol13%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol13%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol13/iss1/34?utm_source=aisel.aisnet.org%2Fcais%2Fvol13%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 580 Communications of the Association for Information Systems (Volume 13, 2004)580-588

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by
A. Reed and K.B. Wasley

THE SUBTLE AND COUNTERINTUITIVE
HAZARDS OF NON-SEQUENTIAL EVALUATION

IN LANGUAGES OF THE C FAMILY

Adam Reed
Knox B. Wasley
Department of Computer Information Systems
California State University, Los Angeles.
areed2@calstatela.edu

ABSTRACT

In the family of programming languages derived from the C programming language, the order of
evaluation of expressions between sequence points is left undefined and may be counterintuitive.
While most programmers assume that this lack of a defined order refers only to a lack of
preference between left-to-right and right-to-left sequential evaluation, the standards actually
permit, and language processors implement, a variety of non-sequential evaluation orders. In
some cases, particularly those where expressions containing sequence points are combined
without an intervening sequence point, computed results can be unanticipated, and can vary with
different compilers for the same code. Yet these results fail to trigger any warning from compilers
or syntax-checkers. Because languages of the C family dominate Information Systems curricula
and new business application code, the risk that code in those languages may give incorrect
results without any warning from automated tools presents significant hazards against the
integrity of financial calculations. This article explains those hazards and outlines
countermeasures.

KEYWORDS: ANSI C, C, C++, Perl, Java, programming languages, programming standards,
software engineering, order of evaluation, sequence points, programming education, language
processors, compilers, interpreters, virtual machines.

I. INTRODUCTION

During the 2001-2002 academic year, IS students at California State University, Los Angeles,
took 3568 units of coursework in programming languages of the C family (C++, Perl and Java)
and 1052 units of coursework in the only programming language we teach outside the C family,
Visual Basic. With 77% of all programming coursework in languages whose syntax and
semantics are derived from C, most of our students did not obtain experience in any
programming language outside the C family by the time they graduated, and wrote all or nearly all
of subsequent business application code in languages of the C family.

Communications of the Association for Information Systems (Volume 13, 2004) 580-588 581

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by A.
Reed and K.B. Wasley

In that year, in one of our examinations in a C++ course several students wrote code that
appeared to be correct and generated no warning from any compiler or syntax-checking tool
available on our campus, yet gave apparently incorrect results when compiled and run. Clearly,
programmers face the risk that similar, apparently correct code, may threaten the integrity of IS
systems in ways that are difficult to detect and fix. In this article we share our observations on the
subtle and counterintuitive hazards of non-sequential evaluation.

The C language was originally developed in 1971, on a PDP-11 computer with 24 K bytes of core
memory [Ritchie 1984, pp 1588, 1592]. That is approximately one-millionth the typical memory
size (24 GB) of a comparably priced server computer ($ 65,000., Ritchie 1984 p. 1587) in 2004. C
was the first computer language to combine a concise and readable free-format syntax with the
flexibility and expressive precision of assembly language. In 2004, C remains the language of
choice, among programmers, for the development of operating systems, device drivers, and other
software that still demands the combination of expressive precision with extreme computational
efficiency.

The minimal storage requirements and extreme computational efficiency of the C language were
achieved by relaxing some of the intuitive constraints implicit in how programmers read, write,
and think about programs. Programmers read and write code as though programmatic
expressions were evaluated in some well-defined order, such as left to right or right to left. This
assumption, the assumption of sequentiality, was mostly discarded in the design of compilers and
interpreters for C and its family of languages. ANSI C contains only three sequentiality
requirements, two in the definition of pre-increment/decrement and post-increment/decrement
operators, plus the requirement that all operations before a sequence point precede operations
after a sequence point [ISO 1999, p. 13]. The order of operations between sequence points is
otherwise left undefined. Precedence and grouping, even explicit grouping with parentheses, do
not actually determine the order in which computations may be carried out [ISO 1999, p. 16]. The
replacement of strict sequentiality implicit in human cognitive models of program operation, with
discrete sequence points at fixed places in the code and possibly non-sequential evaluation in-
between, is the source of the subtle and counterintuitive problems discussed in this paper.

Regardless of the order in which a programmer thinks about the operation of a program, a C
language processor is just as likely to evaluate a statement with more than two expressions
between sequence points in some asymmetric sequence, such as middle-right-left or right-left-
middle, as in an intuitively expected order such as right to left or left to right. Even when
expressions are organized in sub-expressions, the language processor is free to evaluate some
parts of one sub-expression, then work on parts of other sub-expressions, and eventually come
back, often repeatedly jumping from place to place in the code. Moreover, our experience shows
that putting precautionary sequence points into the code is not a real solution. If a sub-
expression containing an internal sequence point is used together with other sub-expressions,
without an external sequence point between them, language processors may, and do, jump out of
and into different sub-expressions (even sub-expressions with internal sequence points) in any
order that may be convenient.

II. HISTORY

The first book on C by Kernighan and Ritchie [1978,] included a two-page section on
"Precedence and Order of Evaluation" (pp. 48-50). The precedence rules discussed in this
section were well understood by most programmers; many kept page 49, with its table of
precedence and associativity of operators, permanently bookmarked in their copy of "K&R". The
material on order of evaluation, on the other hand, was seldom understood in all of its
implications. K&R wrote that “C, like most languages, does not specify in what order the
operands of an operator are evaluated” - but “intermediate results can be stored in temporary
variables to assure a particular sequence.” “In any expression involving side effects,” that is
where some variable is changed as a by-product of evaluating an expression, “there can be
subtle dependencies on the order in which the variables taking part in the expression are stored.”

 582 Communications of the Association for Information Systems (Volume 13, 2004)580-588

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by
A. Reed and K.B. Wasley

When assignments take place it “is left to the discretion of the compiler, since the best order
strongly depends on machine architecture.”
While K&R's discussion can be seen, after consideration of findings presented later in this article,
as a warning about C's general lack of a defined order of evaluation, it was actually read, by most
programmers, as indicating a lack of preference between the two sequential orders of evaluation,
left to right and right to left. The first author of this article (Adam Reed) participated in several
dozen code reviews at Bell Labs, AT&T, and Lucent Technologies, at which the possibility of non-
sequential evaluation was never considered by anyone, including programmers who learned C
directly from its inventors. When questions about order of evaluation arose during code reviews,
the participants considered only evaluation in the two intuitive orders, sequentially left to right and
sequentially right to left; if the result was the same, the code was approved.

 The availability of code verifiers, such as lint, also contributes to general ignorance about the
lack of sequentiality constraints in the order of evaluation of C. The qualifier "most" (in K&R's note
that "lint will detect most dependencies on order of evaluation") was often overlooked. After lint
became a required step in the code development process, code that linted cleanly was seldom
examined for defects that lint was thought to warn about. And if it was examined, code that
evaluated to the same result in the two sequential orders was assumed to be correct. Code
verification eventually became a standard, on-by-default feature of production compilers and
other language processors. Programmers educated in the last two decades assume that they will
be warned about all errors related to the syntax, and the relation between syntax and semantics,
of the languages they are working with. As we will see, such assumptions with respect to
languages of the C family can lead to defective programs and corrupt results.

 This conflict, between intuitive and literal interpretations of the lack of specified order of
evaluation in C, is most likely to surface when multiple assignments are made to the same
variable in the course of computing an expression. The intuitive interpretation is that the assigned
value is the value that will be used in the place where the evaluation occurs. That is, when the
value of "(v=something)" is used, its value is the value returned by the "something". However, the
language processor is free to do anything else, including actions that change the value of the just-
evaluated variable, between assigning a value to a variable and using the variable in the
expression. Therefore, by the time v is used, its value may have changed to something else.

 This last point was first recognized by Bolsky [1985]. In a half-page section on "operand
evaluation order" (p. 19), Bolsky writes:

"Caution - When you make an assignment to a variable in any kind of expression
(including function calls), do not use that variable again in the same expression."

This statement is perhaps , in retrospect, the first published warning about the counterintuitive
consequences of the possibility of non-sequential evaluation in C. We did not find any other
warnings about this possibility until the first ANSI C standard ISO/IEC 9899-1990 [ISO 1990].

Other counterintuitive aspects of the syntax and semantics of C, and of languages derived from
C, are well known among programmers. The short-circuiting of Boolean expressions, for
example, is counterintuitive to anyone used to thinking of Boolean expressions in the context of
symbolic logic rather than the programmatic specification of computational procedures. For this
reason, instructors usually make sure that this aspect of C and C-like languages is well
understood by students. C standards [ISO, 1990, ISO, 1999] explicitly specify the short-circuiting
of Boolean expressions. Some programmers consider C to be, in this respect, better than some
other languages, which leave the choice to short-circuit (or not to) to compiler implementers. The
Java Language Specification [Gosling et al 2000] provides alternative operators (“&” and “|”
instead of “&&” and “||”) without short-circuiting, and in Java those operators are often taught as
the default.

 Beginning with C Traps and Pitfalls [Koenig 1988], there has been a persistent market for books
on counterintuitive aspects of languages of the C family. Some issues, including the short-

Communications of the Association for Information Systems (Volume 13, 2004) 580-588 583

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by A.
Reed and K.B. Wasley

cicuiting of Boolean expressions, are covered well in these books. But none of those books
mention pitfalls associated with C's undefined order of evaluation. Even the most recent (C++
Gotchas: Avoiding Common Problems in Coding and Design, [Dewhurst 2003]) conflates order of
evaluation with precedence, though the ANSI C standard explicitly warns against assuming that
precedence and grouping determine the order of evaluation (e.g. [ISO1999] p. 16.)

III. COUNTERINUTIVE ORDERS OF EVALUATION

Programmers, and automated syntax checking components of language processors, tend to
assume that the ambiguity in the order of evaluation is adequately removed by inserting a
sequence point after each assignment or other side-effect. Consider, for example, the following
expression, written to compute the desired result and communicate the programmer’s intention in
a situation that is frequently encountered in real financial applications:

 ((actual(&returnOnInvestment),returnOnInvestment)

 - (expected(&returnOnInvestment),returnOnInvestment))

or more generally,

 ((f1(&v),v) - (f2(&v),v))

which is a special case of

 (a,b) - (c,d).

Intuitively one of two orders of actual evaluation is expected: [a,b,c,d] if expressions are
evaluated left-to-right, or [c,d,a,b] if they are evaluated right-to-left.

However, the only constraints imposed by inserting sequence points are that a be evaluated
before b, and c before d. These constraints are satisfied by any of the following orders:

 (1) [a,b,c,d]

 (2) [c,d,a,b]

 (3) [a,c,b,d]

 (4) [a,c,d,b]

 (5) [c,a,b,d]

 (6) [c,a,d,b]

Abbreviating (f1(&v),v) as v1 and (f2(&v),v) as v2, we see that when (f1(&v),v) - (f2(&v),v) is
evaluated, the first two orders produce the intuitively expected result, (v1-v2). However, orders (3)
and (4) give the result (v2-v2), while orders (5) and (6) give (v1-v1). If real language processors
use the latter orders rather than the former, the results of intuitively coded computations will not
be what the programmer expects.

Instead of the case of ((f1(&v),v) - (f2(&v),v)), frequently used in actual business applications, in
the following example we used the case of ((f1(&v),v) + (f2(&v),v)), which more clearly illustrates
the variety of results from identical or equivalent code in common C language processors.

IV. RESULTS WITH COMMON LANGUAGE PROCESSORS

Table 1 shows the variety of results obtained when the code for a simple example, ((v=2,v) +
(v=1,v)), is processed with 12 common language processors for different languages of the C
family:

 584 Communications of the Association for Information Systems (Volume 13, 2004)580-588

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by
A. Reed and K.B. Wasley

Table 1. Results

 Language and Code Language Processor PLATFORM (2+1)

GNU gcc, version
3.0.3

Solaris 8
UltraSparc 4

Sun WorkShop 6 cc
(update 2 C 5.3
2001/05/15)

Solaris 8
UltraSparc 3

Microsoft Visual C++
6.0
(Service Pack 5)

Windows 2000
Pentium 3 2

C

main(){
 int v, sum;
 sum = (v=2,v) + (v=1,v);
 printf("The value of “,
 “(2 + 1) is %i\n",sum);
}

bcc32.exe
Borland C++ 5.5

Windows 2000
Pentium 3 3

GNU g++, version
3.0.3

Solaris 8
UltraSparc 4

Sun WorkShop 6 CC
(update 2 C 5.3
2001/05/15)

Solaris 8
UltraSparc 2

Microsoft Visual C++
6.0
(Service Pack 5)

Windows 2000
Pentium 3 2 C++

#include <iostream.h>
int main() {
 int v, sum;
 sum = (v=2,v) + (v=1,v);
 cout<<"The value of (2 + 1) is "
 <<sum<<endl;
 return 0;
 }

bcc32.exe
Borland C++ 5.5

Windows 2000
Pentium 3 3

Perl

#! /usr/bin/perl
 $sum = ($v=2) + ($v=1);
 print "The value of (2 + 1) is “;
 print “$sum\n”;

perl, version 5.005_03 Solaris 8
UltraSparc 2

GNU gcj, version
3.0.3

Solaris 8
UltraSparc 3

Sun Java 1.4.0 javac
(build 1.4.0-b92)

Solaris 8
UltraSparc 3

Java

import java.util.*;
public class Bug1 {
 public static void
 main(String[]args) {
 int v, sum;
 sum = (v=2) + (v=1);
 System.out.println("The value”
 + “ of (2 + 1) is " + sum);
 }
 }

Microsoft Visual J++
6.0
(Service Pack 5)

Windows 2000
Pentium 3 3

The only language in which the intuitive order of evaluation was followed by all current language
processors was Java. The Java Language Specification [Gosling et al, 2000] guarantees that
Java code will be “evaluated in a specific evaluation order, namely, from left to right.” This
specification eliminates the need for reliance on sequence points. The Java compilers will not
compile code that contains otherwise redundant (sequence-point only) comma operators.
Moreover, current Java compilers produce code for the Java virtual machine, rather than the
actual target hardware platform on which they happen to execute.

Communications of the Association for Information Systems (Volume 13, 2004) 580-588 585

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by A.
Reed and K.B. Wasley

V. COUNTERMEASURES

Computational errors due to non-sequential evaluation in common C language processors are a
threat to the integrity of information systems. To safeguard the system integrity, the following
steps need to be taken:

1. examine all code in affected languages that is in current use,

2. replace references to variables that are modified more than once in the same
statement with references to separate variables.

For example, replace

 ((actual(&returnOnInvestment),returnOnInvestment) -

 (expected(&returnOnInvestment),returnOnInvestment))

with

 ((actual(&actualReturnOnInvestment),actualReturnOnInvestment) –

 expected(&expectedReturnOnInvestment),expectedReturnOnInvestment))

Tools that can flag statements in which the same variable is modified more than once can be
written by most software vendors. They should be demanded from language processor vendors
and deployed without delay when they become available. Language processors should, at
minimum, provide a warning in such cases.

Using additional variables, as illustrated above, is not the only possible approach to this
requirement, but other approaches have significant disadvantages. Thus, one might be seduced
by the relative simplicity of programming guidelines that totally forbid sub-expressions with side
effects. Such guidelines, however, are likely to compromise the programmer’s ability to
communicate intentions and logics within the code, to its future maintainers and re-users. The
use of additional, explicitly differentiated variables adds some typing but does not compromise
clarity of expression.We offer four recommendations:

1. The potential conflict between programming guidelines, which are advocated by some leading
academic researchers, and the programmer’s ability to communicate with future maintainers and
re-users, is a particularly important consideration for the praxis of organizational IS. In
organizations that are not dedicated to creating new software, and even in some that are, the
most important factor, in individual and organizational programming productivity, is to eliminate
the waste of time and effort that would be unavoidable with writing software from scratch. When
software is needed, individual and organizational productivity is maximized by starting with
existing software components, and using the least additional programming effort to add the newly
specified functionality. At the same time, future maintainability, extensibility and reusability
require that the software remain maximally readable and understandable after the changes are
performed. But to make the augmented software readable and comprehensible, modified and
added code must fit into the pre-existing patterns, conventions, idioms, and techniques of the
original code. If new programming guidelines are applied to added and modified code only, then
the resulting code when read as a whole (in the context of future maintenance, augmentation or
re-use) will be incoherent and incomprehensible. If the whole re-used component were re-written
to comply with the newly imposed guidelines, then most of the potential productivity gains from
the strategy of software re-use will be lost. For this reason we recommend the use of explicitly
differentiated variables, rather than the imposition of coding guidelines.

2. IS managers ought to make sure that every programmer who writes code in the affected
languages is aware of the subtle and counterintuitive hazards implicit in the current standards and
implementations of C, C++ and Perl. In particular, the fact that the use of precedence and

 586 Communications of the Association for Information Systems (Volume 13, 2004)580-588

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by
A. Reed and K.B. Wasley

sequence points is not sufficient to guarantee a desired order of evaluation needs to be
understood, and applied whenever code in those languages is being written or reviewed.

3. IS managers should persuade language processor vendors to update their products to
guarantee sequential evaluation in C, C++ and Perl. Some language processors for C and C++
may already implement sequential evaluation in practice (Table 1) but all need a systematic re-
check of processor internals before such a guarantee could be provided by their vendors. Other
language processors may have to be re-designed or re-implemented before such guarantees
could be made. In the meantime, all production code in C and C++ should be re-tested by re-
compilation with multiple language processors.

4. IS managers should consider writing new application code in Java, rather than C or C++. The
Java Language Specification (Gosling et al, 2000) guarantees that Java code will be “evaluated in
a specific evaluation order, namely, from left to right.” While Gosling et al [1998] recommend
“that code not rely crucially on that specification,” their recommendation is based on a perceived
need to write code with a view to the possibility of code being retro-ported back to C++, rather
than on any limitation in the applicability of the guarantee of sequential evaluation in Java. As
long as the bytecode sequence produced by the compiler conforms to the language specification,
a uniform order of evaluation across all platforms is further assured by execution in a functionally
identical Java Virtual Machine on any platform. Although execution in the Java Virtual Machine is
significantly slower than the execution of code compiled for each native processor, the rapid
growth in processor speed and in the availability of large multi-processor platforms makes for new
tradeoffs in business applications, in which the integrity of financial computations is of paramount
importance. Java compilers that produce platform-specific binary code for maximum efficiency
will become usable in business computing only when they are guaranteed to conform to the Java
Language Specification. We do not recommend jumping into the more innovative parts of Java,
such as threads, because the IS discipline does not, at this time, have enough experience on the
interaction of programmer intuitions with non-deterministic aspects of threading. We do
recommend the use of Java to implement non-threaded code that might otherwise be
implemented in C or C++.

VI. INSTRUCTIONAL IMPLICATIONS

Computer languages that compile into assembler and machine code, such as C and C++, rather
than virtual machine or interpreter code, such as Java or Perl, remain indispensable for high
machine cycle efficiency, real-time performance, and communication with hardware registers.
Thus C and C++ will remain, for the foreseeable future, the languages of choice for the
implementation of operating system components, libraries, device drivers, language processors
and virtual machines, as well as for computer games, hardware control, and real-time application
software. All of the above software is produced primarily by researchers and software vendors; it
is seldom written in typical business IS environments. The demand for C and C++ programmers
will continue to be met by graduates of Computer Science departments. In business, and
especially in financial calculations, we believe that, because the Java Language specification
guarantees sequential evaluation on all platforms, fluency in Java (and in not necessarily in any
other programming language) is an overwhelming advantage. It is now the indispensable
qualification for a career in business information systems.

 The counterintuitive hazards implicit in the C and C++ standards are a good reason to switch to
Java as the primary instructional computer language. Introductory programming instruction
inculcates habits that are meant to last a lifetime. One of those essential habits of effective
programmers and programming managers is always to be aware of the operations implicit in
code. But when the language standard permits these operations to depend on idiosyncrasies of
processors and environments, this is not possible. With C and C++, habits that ought to make
programmers effective become counterproductive to the goal of writing reliable code.

Communications of the Association for Information Systems (Volume 13, 2004) 580-588 587

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by A.
Reed and K.B. Wasley

At our institution, Cal State LA, after the fall quarter of 2003 the introductory programming course
required in the undergraduate IS curricula is no longer taught in C or C++. Students who would
have taken the introductory programming course in those languages are now advised to take it in
Java. Our courses in Perl and in Visual Basic will not change, since in some environments, such
as Microsoft Windows scripting in the case of Visual Basic, or CGI scripting in the case of Perl,
those languages are likely to remain dominant for the foreseeable future. Elective courses in C++
and COBOL will remain available.

In our courses in C++ and Perl, students are required to learn about the possibility that
expressions, even when equipped with sequence points, may be evaluated by some language
processors in counterintuitive orders. This problem will be pointed out, when C++ or Perl are first
introduced, as a salient difference between those languages, and the Java language with which
the student is already familiar. It is of course our hope that actual language processors, for C,
C++, and Perl will be modified to guarantee sequential evaluation. Until this change occurs, the
counterintuitive hazards documented in this article must be attended to.

 Editor’s Note: This article was received on October 23, 2003. It was with the authors for
approximately three and a half months for two revisions. It was published on June 8, 2004.

REFERENCES

Bolsky, M. I. (1985). The C Programmer's Handbook. Englewood Cliffs, N.J.: Prentice-Hall,

Dewhurst, S. C. (2003). C++ Gotchas: Avoiding Common Problems in Coding and Design.
Boston, MA: Addison-Wesley

Gosling, J., Joy, W., Steele, G., and Bracha, G. (2000). The Java Language Specification,
Second Edition. Cupertino, CA: Sun Microsystems.

ISO (1990) International Organization for Standardization and International Electrotechnical
Commission International Standard ISO/IEC 9899:1990 (E) - Programming Languages -
C. Geneva, Switzerland: International Organization for Standardization.

ISO (1999)International Organization for Standardization and International Electrotechnical
Commission. International Standard ISO/IEC 9899:1999 (E) - Programming Languages -
C, Second Edition. Geneva, Switzerland: International Organization for Standardization.

Kernighan, B. W., and D. M. Ritchie (1978). The C Programming Language. Englewood Cliffs,
N.J.: Prentice-Hall

Koenig, A. (1988). C Traps and Pitfalls. Reading, MA: Addison-Wesley.

Ritchie, D. M. (1984). The Evolution of the UNIX Time-sharing System. AT&T Bell Laboratories
Technical Journal, (63) 8.2 , pp. 1577-1593. October

Rosen K. H., R. R. Rosinski, J. S. Farber and D. A. Host, eds. (1996), UNIX System V Release 4,
An Introduction, Second Edition. Berkeley, CA: Osborne McGraw-Hill.

ABOUT THE AUTHORS

Adam Reed is Associate Professor of Information Systems at California State University, Los
Angeles. His current research interests include productivity and accessibility of information
systems, epistemology of knowledge representation, programming languages, operating
systems, network protocols, and network security administration. His research publications have
appeared in Science, Memory and Cognition, Contemporary Psychology, Journal of Verbal

 588 Communications of the Association for Information Systems (Volume 13, 2004)580-588

The Subtle and Counterintuitive Hazards of Non-Sequential Valuation in Languages of the C Family by
A. Reed and K.B. Wasley

Learning and Verbal Behavior, and in Behavior Research Methods and Instrumentation. He is the
author of three chapters on Unix in Rosen et.al [1996], He holds 3 US Patents.

Knox Wasley is Associate Professor of Computer Information Systems at California State
University, Los Angeles. He received an MBA (Accounting) and and MS (Information Science)
and earned CPA, CISA and CDP certifications. His teaching interests include Programming,
Analysis and Design, I.T. Auditing, and Entrepreneurship. His research interests include how to
include the topic of Application Systems in CIS curricula and studies that measure and lead to
improvements in CIS majors’ impacts in the workplace. He held positions at Affiliated BancShares
of Colorado, Touche Ross & Co., Union Bank, and First Interstate Bank.

Copyright © 2004 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish
from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from
ais@gsu.edu

ISSN: 1529-3181

EDITOR-IN-CHIEF
Paul Gray

Claremont Graduate University
AIS SENIOR EDITORIAL BOARD
Detmar Straub
Vice President Publications
Georgia State University

Paul Gray
Editor, CAIS
Claremont Graduate University

Sirkka Jarvenpaa
Editor, JAIS
University of Texas at Austin

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M.Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Chris Holland
Manchester Bus. School

Jaak Jurison
Fordham University

Jerry Luftman
Stevens Inst.of Technology

CAIS EDITORIAL BOARD
Tung Bui
University of Hawaii

Fred Davis
U.ofArkansas, Fayetteville

Candace Deans
University of Richmond

Donna Dufner
U.of Nebraska -Omaha

Omar El Sawy
Univ. of Southern Calif.

Ali Farhoomand
University of Hong Kong

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University

Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Joze Gricar
University of Maribor

Ake Gronlund
University of Umea,

Ruth Guthrie
California State Univ.

Alan Hevner
Univ. of South Florida

Juhani Iivari
Univ. of Oulu

Munir Mandviwalla
Temple University

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Emannuel Monod
University of Nantes

John Mooney
Pepperdine University

 Michael Myers
University of Auckland

Seev Neumann
Tel Aviv University

Dan Power
University of No. Iowa

Ram Ramesh
SUNY-Bufallo

Maung Sein
Agder University College,

Carol Saunders
Univ. of Central Florida

Peter Seddon
University of Melbourne

Thompson Teo
National U. of Singapore

Doug Vogel
City Univ. of Hong Kong

Rolf Wigand
U. of Arkansas, Little Rock

Upkar Varshney
Georgia State Univ.

Vance Wilson
U.Wisconsin,Milwaukee

Peter Wolcott
Univ. of Nebraska-Omaha

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Alan Hevner and Sal March

Papers in French
Editor: Emmanuel Monod

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Samantha Spears
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

	Communications of the Association for Information Systems
	March 2004

	The Subtle and Counterintuitive Hazards of Non-Sequential Evaluation in Languages of the C Family
	Adam Victor Reed
	Knox B. Wasley
	Recommended Citation

	Microsoft Word - Journal.doc

