
Communications of the Association for Information Systems

Volume 23 Article 34

12-2008

Lessons Learned from Distributed Agile Software
Projects: A Case-Based Analysis
Indranil Bose
The University of Hong Kong, bose@business.hku.hk

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Bose, Indranil (2008) "Lessons Learned from Distributed Agile Software Projects: A Case-Based Analysis," Communications of the
Association for Information Systems: Vol. 23 , Article 34.
DOI: 10.17705/1CAIS.02334
Available at: https://aisel.aisnet.org/cais/vol23/iss1/34

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol23?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol23/iss1/34?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol23/iss1/34?utm_source=aisel.aisnet.org%2Fcais%2Fvol23%2Fiss1%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Volume 23 Article 15

Lessons Learned from Distributed Agile Software Projects: A Case-Based
Analysis

Indranil Bose

School of Business

The University of Hong Kong

Pokfulam Road, Hong Kong

bose@business.hku.hk

Agile software development in a distributed setting is challenging. The teams involved in the process face difficulties
in communication, personnel selection, work culture, and knowledge management. The shortcomings associated
with working in different time zones and the inabilities to develop trusting relationships between developers are well
known. Companies often take recourse to agile software development methods in a distributed environment in
search of reduced cost, higher efficiency, increased flexibility, and good customization. However, it is not clear
whether agile methods can be successfully followed and their benefits realized in a distributed setting. This paper
revisits and synthesizes the lessons learnt from twelve case studies detailing successful implementation of
distributed agile software projects. The cases are analyzed from the perspective of the agile manifesto to determine
how closely they follow its values and principles and to what extent they realize the benefits of the agile
methodology. The cases lead to the discovery of disparate and innovative solutions adopted by different companies
for overcoming the challenges of distributed agile software development. Some solutions are commonplace and
others are unique and their combination in the context of the challenges is enlightening. The list of solutions can
suitably guide companies that plan to adopt the agile methodology in distributed software development
environments in future.

Keywords: agile methods, case analysis, case studies, distributed development software development

Volume 23, Article 34, pp. 619-632, December 2008

Lessons Learned from Distributed Agile Software Projects: A Case-Based
Analysis

620
Volume 23 Article 15

I. INTRODUCTION
Distributed software development has been around for some decades. Many large organizations have taken
advantage of it for projects that involve cooperation and collaboration between teams located at different locations.
In distributed software development the bulk of the work is often offshored to developing countries with a small team
of consultants working onshore with the clients. Other than low cost, the main drivers for distributed software
development are flexibility and increased productivity. The lure of distributed software development arose from the
availability of talented knowledge workers in multiple locations around the globe, who could develop software of high
quality at lower cost. Distributing the work also meant that developmental work could be done around the clock
taking advantage of the difference in the time zones. But managing a distributed software development team is a
great challenge. This is due to complexities resulting from asynchrony of communication, differences in work culture,
and differences in organizational practices. Companies that look for economic methods for developing quality
software sometimes combine distributed development with agile methods for software development. The hope is
that such a combination will allow companies to leverage the advantages of agile methods and increase the gains
achieved in distributed software development. However, incorporating agile methodologies in a distributed setting
makes the software development process even more challenging. In this paper, we analyze and synthesize twelve
case studies on successful implementation of distributed agile software projects that address the key challenges
encountered in such projects. The solution strategies proposed are listed in the context of six commonly occurring
problems in such projects and studied from the perspective of the values and principles of the agile manifesto.

II. AGILE METHODS OF SOFTWARE DEVELOPMENT
The agile method of software development aims to develop software quickly, economically, and efficiently. From the
late ‘90s, the agile methods have become popular because they can take care of volatile customer requirements,
establish close interaction between customers and developers, and deliver software within shorter time periods and
stringent budget constraints. Various agile software development methods such as extreme programming (XP),
feature-driven development, crystal clear method, and SCRUM, etc., have become popular in recent times
[Abrahamsson et al. 2003]. In a traditional plan driven model software is developed in a sequential manner—
requirements are gathered from clients, different roles are assigned to developers for coding and control, and finally
software is tested and integrated with existing systems [Huo et al. 2004]. In doing so, a large amount of
documentation is produced that contains knowledge about developmental processes. Interactions between clients
and members of the development team are very little, and the focus is on achieving efficiency by improving the
repeatable processes.

Agile methods aim to overcome the limitations of the plan driven approaches by considering that requirements for
building software are not static but dynamic. Hence, instead of development taking place in the form of highly
defined processes, it takes the form of “minimally defined and adaptive” processes in agile methods [Bowen and
Maurer 2002]. They also aim to involve customers in the software design from the very beginning for providing
feedback about the product and the process. Since the customers know how the software is shaping up from the
beginning, they have the opportunity to delay decisions on certain items till they become absolutely necessary. This
helps reduce costly overruns at the end and helps the code remain up to date with the requirements. Also, as the
requirements keep changing, there is less importance attached to keeping proper and lengthy documentation. Agile
methods use the repetitive process of short iterations consisting of build, then consult with customers on site, and
then build some more to avoid mismatch between the deliverable and the customers’ expectations. Some experts
have compared this style of software development to “artful making” because of the lack of structure in the entire
process [Austin and Lee 2003].

Agile methods also tend to build software with teams of smaller size, and there is frequent face-to-face interaction
between team members. A commonly used term in agile development is pair programming, where two expert
programmers work on the same piece of code to improve its quality. While the benefit of pair programming is
constant inspection of code quality, it can only succeed when there is understanding between programmers in terms
of accepting criticisms, suggestions, and ability to follow each other’s instructions. That is why some authors have
called the agile methods more people driven and less process driven [Nerur et al. 2005]. Another important feature
of the agile methods is refactoring where the programmers improve the internal structure of the code without
changing its outward appearance. The impact of these changes is usually small but they go a long way in improving
software quality. Figure 1 shows the different steps followed in the agile method of software development.

Volume 23 Article 15
621

Figure 1. Different Steps in the Agile Method of Software Development

In terms of testing and integration, the agile approach is very different from the plan driven approach [Talby et al.
2006]. The agile method often follows a test-driven approach. Once a portion of the code is written, it is released as
an early version to the customer, integrated with the customer’s existing system, and tested to identify the avenues
for improvement. This is known as continuous integration, and it makes the process of searching for bugs cheap and
efficient. Testing in agile methods usually occurs much earlier in the developmental life cycle. Early customer
feedback is a key feature that enables modification of requirements from time to time and provides a form of
acceptance testing. The key features of the agile methods of software development and the benefits of these
features are listed in Table 1.

Table 1. Key Features of Agile Methods and Their Benefits
Features Benefits

Continuous requirements gathering Customers delay decisions about crucial items; software remains flexible
Frequent face-to-face interaction Overcomes misunderstandings; builds trust among team members
Pair programming Easier teamwork; better ownership of code
Refactoring Gradual improvement of code without creating a shock wave
Continuous release and integration Detection and fixing of bugs earlier on in the project; higher software

quality
Early expert customer feedback Avoidance of costly overhauls in the end; lower cost of development
Minimum documentation Smaller development time; lower cost of documentation

III. AGILE METHODS OF DISTRIBUTED SOFTWARE DEVELOPMENT
Agile methods are well suited when customers and developers are collocated and there is frequent interaction
between the two groups [Boehm and Turner 2005]. However, there is increasing evidence from practice that
indicates that agile methods are being adopted by small as well as large organizations. For example, organizations
like ABB, Daimler Chrysler, Motorola, and Nokia have all adopted and recorded their positive experiences in using
agile methods [Lindvall et al. 2004]. Among offshore organizations embracing the agile methods Cognizant
Technology Solutions and ITC Infotech India are the most prominent. Vendors like ThoughtWorks and Valtech have
even paved the way for successful distributed agile development [Moore and Barnett 2004]. However, there is no
denying that incorporating agile methods in distributed software development requires considerable effort. This
section describes the various challenges involved in this adoption and some generic considerations and possible
strategies for addressing these challenges. The solution strategies suggested are not exhaustive by any means. In

Dynamic requirements specification

Iteration planning Iteration planning

Unit testing

Continuous
integration

Pair programming Pair programming

Small release Small release

Continuous
integration

Final release

Iteration 1 Iteration 2 Iteration n …

Unit testing

622
Volume 23 Article 15

the following section, 12 case studies are explored in more details to find out what specific solution strategies are
actually adopted by those companies to overcome the challenges.

Communication
Developers need to communicate frequently and teams located across time zones make this difficult. There is also
the need to have effective communication with active customers to get their feedback about the quality of the
product in progress and the changing requirements of the project. Onshore and offshore teams often use
unstructured wikis to communicate asynchronously about the status of the project [Fowler 2004; Sepulveda 2003].

Personnel Selection
Programmers who are used to the planned approach and adept at following orders of the project managers are not a
good choice for the agile team. Since some agile methods prefer pair programming it is essential to find coding
partners who have similar mindset. Also, as requirements keep changing in an agile project it becomes necessary to
have a cross-functional team consisting of analysts, developers, testers, and project managers. The members also
need to be able to communicate with customers and understand their needs.

Work Culture
Offshore teams often use plan driven development. It takes time and patience to change this culture. There is a
need to educate developers in offshore teams about agile methods through cross-team workshops and informal
meetings [Fowler 2004; Sepulveda 2003]. Also, in order to inculcate independent thinking and action, the traditional
incentive and rewarding schemes need to be modified. Onshore team members must be aware of prevalent work
practices and customs of offshore locations (e.g., absences during religious festivals) [Nisar and Hameed 2004].

Different Time Zones
Agile methods emphasize frequent face-to-face meetings that are often arranged at a short notice. This is
impossible for distributed teams as the hours of work are different. To overcome this it is important to instill a good
build discipline among developers so that the finished build of the software at the end of the day can be downloaded
and tested by the onshore team and even by participating customers [Fowler 2004; Nisar and Hameed 2004]. When
meetings are arranged it is imperative that both teams are allowed to set their preferred meeting times.

Trust
Trust is extremely difficult to achieve in a distributed setting [Sepulveda 2003]. Frequent meetings have to be
substituted by seeding (when initial requirements are conveyed) and maintenance visits (status checks) by members
of the onshore team and even by customers, if possible. These visits must be short and informal so that they are not
looked upon as policing visits. Also, project managers need to act more like facilitators than commanders-in-chief to
encourage independent thinking among offshore team members.

Knowledge Management
Agile methods’ emphasis on “just enough” documentation may not work for distributed environments where
developer turnover is high [Bowen and Maurer 2002]. If tacit knowledge of programmers is not documented, it won’t
be reused. Wikis, issue tracking tools, and remote screen capture methods may be used for documentation and
documentation templates must be reviewed from time to time to make sure they are working appropriately. Code
repositories are also an essential part of the knowledge management effort [Rees 2004].

IV. CASE ANALYSIS
Due to challenges facing the deployment of distributed agile software development, it is not surprising that only few
case studies exist that discuss the experiences faced by the onshore and the offshore teams. In order to learn from
the experience of others, a search was conducted for case studies that followed the definition proposed by Yin: “A
case study is an empirical inquiry that investigates a contemporary phenomenon within its real-life context” [Yin
2002]. This resulted in 12 case studies that claimed to be successful in agile software development in a distributed
setting. These cases are published as either journal or conference papers. They study the challenges faced in
implementation of software projects in the context of distributed agile development. Other case studies documented
in this area are not included because they either lack details or do not dwell on innovative solution strategies. Table
2 provides a list of the software companies that undertook distributed agile software projects with offshore teams
located in other countries. It is seen that among the 12 cases, 10 onshore companies were located in the U.S. and
seven offshore companies were located in India. A variety of software projects became candidates for distributed
agile development and no patterns were seen. XP and SCRUM were the agile methodology of choice for most
cases.

Volume 23 Article 15
623

Table 2: List of Examples of Successful Distributed Agile Projects
No. Onshore

Location
Offshore
Location

Client
Location

Software
Project Team Size Agile

Method Reference

1 Extol
International,
USA

Elegance
Technologies,
India

UCCnet,
USA

Domain-
specific front-
end for Extol
Business
Integrator

2-3 onshore
and 5-10
offshore

SCRUM
and FDD

[Kussmaul et al.
2004]

2 Iona
Technologies,
USA

Iona
Technologies,
Dublin, Ireland

Not specified Application
Server
Platform and
Web Services
Integration
Platform

130
engineers

XP [Poole 2004]

3 Valtech, USA Valtech, India Not specified Not specified Not specified SCRUM
and XP

[Danait 2005]

4 Telco, USA India USA Unspecified
pilot projects

16 Not
specified

[Balasubramaniam et
al. 2006]

5 Manco, USA India USA Extend
functionality of
complex
supply chain
system

14 Not
specified

[Balasubramaniam et
al. 2006]

6 Consult, USA India USA CRM system 15 SCRUM
like
process

[Balasubramaniam et
al. 2006]

7 Aginity LLC,
USA

Ukraine Not specified Business
intelligence
application

3 groups Not
specified

[Armour 2007]

8 BNP Paribas,
France

India Not specified Security
services

100 with 50
onshore and
50 offshore
members

Not
specified

[Massol 2004]

9 Finnish
company,
Finland

Not specified Several
customers

Not specified Teams of 6
developers
each

SCRUM [Paasivaara and
Lassenius 2006]

10 WDSGlobal, UK USA and
Singapore

Not specified Refinement of
mobile
configuration
platform

Not specified XP [Yap 2005]

11 CEInformant,
USA

India USA J2EE
compliant
solution
software for
insurance
business

2 offshore
teams of 6-8
members
each

SCRUM [Computer
Enterprises 2005]

12 SirsiDynix, USA Starsoft, Ukraine Not specified Integrated
library system

36 onshore
and 20
offshore
members

SCRUM [Sutherland et al.
2007]

The cases were analyzed to discover what steps were taken by the respective companies to overcome the six
challenges detailed in the earlier section. Although most cases were sufficiently detailed, they did not provide
information about innovative solutions for overcoming each of the challenges. Table 3 lists the various solutions that
served these companies well and contributed to the success of the projects.

Table 3: Solutions Adopted by Companies for Facing Challenges in Distributed Agile Development

No. Company Communication Personnel
Selection

Work
Culture

Different
Time Zones Trust Knowledge

Management
1 Extol

International
Status e-mail to
mailing list

Synchronous
(Web
conferencing)
and asynchronous

2-3 onshore
staff and 5-10
offshore staff

One consultant
spent several
days onsite

Avoid direct
questions that are
looked upon as
challenge to
authority

Tolerant to

15-30 minute
meetings via IM

Web
conferencing
and phone
meeting times

Exchange of staff
members between
two locations

Onshore team
more involved in
design and

CVS
repository to
store all
requirements,
designs,
source code,
and related

624
Volume 23 Article 15

(email)
communication

offshore team
accustomed to the
SW-CMM model

rotated for
convenience

Round the
clock cycles by
sending
requirements to
offshore team
at end of day

offshore team in
implementation

Frequent delivery
of software

documents

Small number
of documents

2 IONA
Technologies

Unstructured Wiki
pages used to
present
distributed story
board

Twice weekly
meetings replaced
daily standups

Conference call
during product
delivery

Disparate
group of
engineers
located across
the globe

Rotate one or two
developers across
sites

Attention paid to
differences in
perception of
authority and
body language

Daily
conference
calls to identify
who needs to
pair with whom

Automated
nightly build,
integration, and
testing

Access to common
build environment

Rotation of
engineers

Dissenting
members allowed
to compete or
asked to leave or
compromise sought

Common
source base
and multi-site
control system
used

3 Valtech India Twikis used

IM used between
developers in
overlapping time
zones

New team
member
introduced by
Web
conference

Cross-functional
kickoff meetings

Flat organizational
structure

Role swapping
allowed

Coffee and ice-
cream socials to
celebrate
milestones

Web
conferencing
frequently used

Web kickoff
meetings
recorded and
played back

Pair
programming
conducted
through Web
conferencing

Programmers
did not leave
office till last
code checked
did not break
build

Pair programming
used for initiation of
new members with
experienced
members acting as
mentors

Chocolates
distributed when
someone broke
build

Cross-location
visits implemented

Web
conferencing
used for
virtual white
boarding

Burn-down
charts used

Bugzilla bug
repository
used

Twiki used as
a central
repository

4 Telco Informal
communication
took place
through formal
channels

Short morning
meetings held for
status tracking,
ideas and
comments
generation

SMS and online
chats used for
communication

Videoconferencin
g used by senior
managers every
week for handling
critical issues

Project leads
played a major
role in co-
ordination

A cohesive
team was built
using members
who had prior
experience of
working with
each other

No particular
steps taken

Meetings took
place at early
mornings for
onshore team
and late
evenings for
offshore team

Customer
delegates spent
significant amount
of time with
developers

Senior members of
management
visited developer
sites to evaluate
progress of project

Short use
cases and
user stories
took the place
of detailed use
cases

A database
tracked
project status,
notified
issues, and
handled
priorities

5 Manco Project lead
responsible for
facilitating
communication
and reducing
miscommunicatio
n

Videoconferencin
g used by senior
managers every

Project leads
played a major
role in co-
ordination

No particular
steps taken

Meetings took
place early
mornings for
onshore team
and late
evenings for
offshore team

Frequent and long
visits to customer
sites by one or
more developers

Senior members of
management
visited developer
sites to evaluate
progress of project

Short use
cases and
user stories
took the place
of detailed use
cases

A database
tracked
project status,
notified

Volume 23 Article 15
625

week for handling
critical issues

issues, and
handled
priorities

6 Consult Project leads on
call via Blackberry

Project leads
played a major
role in co-
ordination

A high
performance
team was built
using members
who had prior
experience of
working with
each other

No particular
steps taken

Meetings took
place early
mornings for
onshore team
and late
evenings for
offshore team

A group of analysts
and developers
always present at
the customer site

Senior managers
visited developers
at the beginning of
the project to
finalize terms of
contract and set up
ground rules to be
followed

No particular
steps taken

7 Aginity LLC IM frequently
used

Open source
groupware used
to manage
development
space

Choice of
offshore
location
restricted to a
country with
similar culture

Chosen team
members are
creative and
intelligent

No particular
steps taken

Builds, tests,
and test results
made visible
due to lack of
social
communication
between teams

Presence of a
friendly contact
who acted as an
agent between the
offshore and
onshore team

Offshore team
given plenty of
freedom to develop
solution

Iterative
development using
common
development
language and
common
vocabulary

Use of
compelling
user stories
rather than dry
specifications
of
requirements

Project Web
pages created
to give an idea
of project
progress and
status

A variety of
tools used for
task and time
tracking,
issues control,
and code
management

8 BNP Paribas Weekly technical
and management
conference calls
with all teams

Establish
communication
channel at all
levels

E-mails, chats,
and Wikis
frequently used

Phone calls and
videoconferencing
moderately used

Mostly senior
members made
up the offshore
team

Project leads
played a major
role in business
conception and
detailed design

Good mediators
helped in solving
language and
cultural problems

A lot of visits
organized in
both directions

Same roles used at
both locations –
managers, project
leads, lead
developers,
developers

Dedicated offshore
support persons in
each team

No micro manage-
ment of teams

Sharing of activities
like business
conception,
detailed design,
and testing

Sharing of use
cases through
a repository

Use of a
shared quality
dashboard
showing
results of tests

Knowledge
sharing (both
software and
culture
related) at all
levels

9 Finnish
company

Electronic
communication
using mailing lists,
Wiki, IRC, IM,
Skype,
teleconferencing.

Sprint demos
through
videoconferencing
and desktop
sharing

System
architect played
the role of
proxy customer
to offshore
team since the
actual customer
was not
available

No particular
steps taken

Communication
is made using
tools so that
they remain
visible

Members of
offshore team
invited to work at
onshore location

Frequent
communication
between teams

Project
documents
stored in Wikis

10 WDSGlobal Video
conferencing used
during daily
handover and
during customer
requirements
gathering

An XP coach
hired at each
location to train
people on XP
and object
oriented
programming

Cultural
differences
created
misunderstanding
s and solved
using round-the-
world program

Daily
handovers took
place between
teams when
status updates
as well as
lessons learnt

Office space
reconfigured and
made cube-less in
order to put pairing
stations in place

Offshore workers

A new source
control system
put into place

A monthly
product
backlog called

626
Volume 23 Article 15

Coaches
communicated
with each other
after daily
handovers, once
per week via
teleconferencing
and also visited
each other for two
weeks every
quarter

with Java and
work closely
with business
managers

A rotating guru
from the
onshore team
helped in
setting up the
infrastructure
and initial
training

where members
visited each
location for 4-6
weeks

Some controlled
flexibility to adapt
processes
according to local
culture

were shared

Configuration
changes of the
shared control
system
synchronized
automatically
between
locations

spent several
weeks with
onshore team in a
programming boot
camp

Frequent pairing
used for solving
complex design
problems in a
collaborative
manner

If fixes could not be
completed on time
work passed to the
next region to “put
out fires together”

Company
Program Plan
created for
better
coordination
between
teams and
prioritization of
projects

11 CEInformant Daily focused
SCRUM meeting
lasting for at most
30 minutes

Weekly status
meetings to
understand risks
faced by offshore
teams

Wrap-up meetings
for demonstration
of sprints

People with a
diversity of
skills in various
activities
included in the
project

Product
manager
responsible for
keeping track of
and updating
project backlog

Team leads
responsible for
keeping track of
sprint backlog

No particular
steps taken

No particular
steps taken

Offshore team had
full authority to do
things that were
necessary for the
success of the
project

Onshore team
trained offshore
team in the use of
various tools and in
orientation of newly
recruited
developers

Offshore and
onshore
teams used
the same
StarTeam
repository for
issue tracking

Errors in
coding
recorded
using Bugzilla

Requirements
recorded in
terms of use
cases, user
interface
prototypes,
and standards
documents

Discussion
threads
documented

12 SirsiDynix Daily SCRUM
meeting by
teleconference
preceded by email
communication

Daily standup
meeting at
offshore locations
prior to SCRUM
meeting

Teams built
according to
functional areas
of systems

Product owner
responsible for
co-ordination of
requirements
and team
management

No particular
steps taken

Daily SCRUM
meetings held
at 7:45 a.m. for
onshore team
and 17:45 p.m.
for offshore
team for mutual
convenience

No particular steps
taken

Global build
repository
used

Issues
tracking and
project
management
software used
to generate
real-time view
of project
including bugs
report

V. AGILE MANIFESTO AND THE CASE STUDIES
One of the popular benchmarks for judgment of agile projects is the agile manifesto which aims to “uncover better
ways of developing software by doing it and helping others do it” [Fowler and Highsmith, 2001]. This manifesto was
put forward by a team of software development experts and laid down the values of the agile methodologies and the
principles to be followed to attain those values. It was important to analyze the twelve agile software development
cases in the light of the agile manifesto since this is a well accepted benchmark to judge agile projects. The following
paragraphs describe how the twelve case studies either conformed or deviated from the values and principles of the
agile manifesto.

The agile manifesto consists of four values that appear in the form of two part comparative phrases outlining in the
first segment what is emphasized in an agile development project and in the second segment what is important but
is of lesser priority. The values and principles of the agile manifesto are listed in Table 4 together with a check mark
() to indicate which of the case studies actually showed an evidence of the value or a principle. An x indicated that

Volume 23 Article 15
627

the case study did not support the value or the principle. It is easy to imagine that since the case studies are not
detailed enough, some of them did not provide enough or no information about whether the values or principles were
maintained or not. This is indicated by a -- in the corresponding column. All case studies emphasized that the
projects revolved around people rather than processes. The team selection was done carefully and leaders were
chosen who could coordinate the development activity. Various modes of electronic communication were adopted
for frequent interaction and exchange of ideas. In the same fashion, the focus on working software also could be
seen in most case studies. The agile manifesto prefers working software over detailed documentation but does not
negate documentation completely. In the case of Extol International, the developers stated the importance of
documentation and remarked that “key documents help to bootstrap the project by establishing a common
framework for stakeholders” [Kussmaul et al. 2004]. Four case studies emphasized the importance of customer
collaboration. A particularly interesting case in this regard is that of the Finnish company that was developing the
software for several customers and used the system architect from one of its customers to act as a proxy customer
who could talk about likely technical and business issues. The fourth value of the agile manifesto had the least
support from the case studies. Most case studies did not discuss in details whether the software development
process involved responding to changes requested by the customer even at the last moment. However, the case
studies on Extol, Manco, and Consult clearly stated that they deviated from the agile practice of not following a plan
in the early stages of the project and used a few iterations in the project to confirm the key requirements for the
project as well as an architecture for the project. In fact, it was stated that “instead of strictly following the agile
development practices as commonly defined, the companies continuously tweak them to fit the evolving needs of
their projects” [Balasubramaniam et al. 2006].

Table 4: Adherence to the Values and Principles of the Agile Manifesto
 Case studies

Characteristics promoted by the agile manifesto 1 2 3 4 5 6 7 8 9 10 11 12
Values
Individuals and interactions over processes and
tools

Working software over comprehensive
documentation -- --

Customer collaboration over contract negotiation -- -- -- -- -- -- -- --
Responding to change over following a plan x -- -- -- x x -- -- -- -- --
Principles
Early and continuous delivery of valuable software x x x -- -- -- --
Welcome changing requirements even late in
development -- -- -- -- -- -- -- -- -- -- -- --

Deliver working software frequently -- -- --
Business people and developers work together
throughout project -- -- -- -- -- -- --

Build projects around motivated individuals and
support and trust them -- -- -- -- -- -- -- --

Face-to-face conversation within the development
team

Working software is the primary measure of
progress -- --

Promote sustainable development to maintain
constant pace indefinitely -- -- -- -- -- -- --

Continuous attention to technical excellence and
good design -- -- -- -- -- -- --

Simplicity is essential -- -- -- -- -- -- -- -- -- -- --
Self-organizing teams -- -- -- -- -- -- -- --
Team regularly adjusts behavior to enhance
effectiveness -- -- -- -- -- -- -- -- -- --

The 12 principles laid down in the agile manifesto were observed to some extent in the case studies. All companies
enabled multiple forms of electronic communication between the offshore and onshore teams to simulate face-to-
face conversations. Although these were face-to-interface conversations using various electronic technologies but
they were found to be quite effective and were used on an as needed basis. Many case studies emphasized
availability of working software that was usually put in a shared repository. This working software also served as a
measure of progress made in the project. However, not all companies that valued working software went on to
deliver such software to their customers from time to time. Only five companies mentioned doing this. Another
common characteristic seen in five case studies was the strong emphasis on achieving good software quality with

628
Volume 23 Article 15

bug fixing taking place continuously and serious efforts being spent on not breaking the builds. A constant and
sustained pace for development with pre-specified times for deliveries of builds were seen in five case studies as
well. The collaboration between business people and developers took place in five case studies and only four case
studies identified key business people who played a crucial role in coordinating and directing the project. One of the
important principles of the agile manifesto is the availability of carefully selected teams that were mostly trusted to
follow their own procedures to develop the software in a way that they felt was most suitable. Existence of such self-
organizing teams was reported in only five case studies. Only two case studies indicated that efforts were spent on
regularly adjusting the working mode according to need and one case study discussed the importance of simplicity
of design. Finally, there were no case studies that provided details on the responsiveness of the development team
to the changing requirements of the customers. Although it is likely that given the small scope of description of the
case studies, they did not delve into the details of the values and principles of the agile manifesto, but still it can be
said that not all values and principles listed in the agile manifesto were considered to be important in the case
studies under consideration.

VI. LESSONS LEARNED
Some interesting lessons can be learnt from the commonality analysis of the 12 case studies. As suggested by the
literature, a variety of means of communication was used by the teams ranging from e-mail to chat to
teleconferencing. Videoconferencing seemed to be the most commonly used means of electronic communication
with five cases reporting the use of it. Since video conferencing is expensive it was mostly used for the most critical
parts of the project. An example is the use of videoconferencing for sprint demonstrations by the Finnish company.
In addition to videoconferencing, Wikis and IM were used in four cases. Another interesting feature was the
prevalence of daily focused Scrum meetings for many companies. All case studies emphasized frequent
communication between the developers using a variety of technologies. However, the lack of co-location often made
this communication face-to-interface rather than face-to-face. Also, the communication was not always continual in
order to save costs and was done on an as needed basis.

In terms of personnel selection for the project, it is observed that different companies adopted different policies with
success. Many cases acknowledged, either directly or indirectly, the importance of the presence of a strong project
lead who could coordinate the various activities of the project. When selecting team members, the stress was on
selecting programmers that were senior, creative, and had prior experience of working with each other. SirsiDynix
was quite unique because it formed teams according to the functionalities of the system that was being built. No
other company seemed to follow this practice. Also, it was observed that five companies chose to have self-
organizing teams that worked well with little supervision and enjoyed responsibilities of managing their own
business.

Although cultural issues are considered to be quite important a challenge, seven out of the 12 companies chose not
to address this challenge. For those cases where cultural differences turned out to be problematic, the presence of a
mediator was sought and more flexibility in the development was allowed. At least in two cases developers were
rotated across sites so that they could learn the social and work culture of all sites involved in the software
development.

Working across different time zones was acknowledged to be a major challenge by most companies. In order to take
advantage of the “follow-the-sun” philosophy, certain compromise had to be sought. In five cases, the meeting time
between the onshore and offshore teams was selected according to mutual convenience. The meetings were also
conducted using Web conferencing so that a record of the discussion could be kept and referred to by developers
who could not attend the meeting on time. The offshore team was also given flexibility in adopting the processes and
tools that they felt comfortable with. However, some control was still exercised by forcing them to abide by the global
standards.

On-site development ensures plenty of social interactions that ultimately lead to building of trust among developers.
Special efforts towards developing trust in offshore agile development included rotation of staff members between
onshore and offshore locations (used in five cases) and abundant flexibility allowed for the offshore development
team (used in three cases). Valtech India was unique in building trust by allowing new members to learn about the
project through pair programming with more experienced members in other locations.

There were several companies that used a global build repository that could be shared between locations. This
eased the development task to a great extent. At the same time project use cases were shared between developers
in some case studies and error tracking tools like Bugzilla was used in two cases. These leads us to believe that
although the emphasis was on minimum documentation for agile software development the teams resorted to
sharing the knowledge by electronic means as and when there was a necessity for doing so.

Volume 23 Article 15
629

The case analysis identified several common characteristics in distributed agile projects that would have been seen
in any distributed plan driven projects as well. For example, the need for communication via a variety of electronic
means is essential for all distributed projects. The same also holds for adjustment of meeting times according to the
mutual convenience of the development teams. Both these actions are essential for success of any distributed
software development project and it was not surprising that they made their appearance for distributed agile case
studies as well. So the agile case studies did not show any unique characteristics in terms of “communications” and
“different time zones” factors.

However, some unique characteristics were seen from these case studies in terms of “personnel selection,” “trust,”
and “knowledge management” that could be attributed to the agile nature of these projects. The strong focus of agile
projects on individuals and interactions, as discussed in the agile manifesto, could be evidenced in these case
studies as well. The offshore team was carefully chosen and preferences were given to the selection of developers
who had worked with each other on prior projects. The implicit understanding was that if they had worked
successfully on a prior project they understood each other’s working styles, trusted each other, and could again work
together to make the project successful. In some sense, it was assumed that prior co-workers will have good
interactions with each other. Also, some case studies also emphasized the need for a project leader who acted as a
pivot and coordinator for the project. (S)he traveled frequently between offshore and onshore locations and often
spent a significant amount of time at the customer premise. This was necessary to maintain the interaction between
the various teams and also to convey on a firsthand basis the clients’ changing needs to the development teams.
The project rotated around such a senior team lead that was also responsible for ensuring that there was no project
backlog. Another characteristic that was seen in five cases was the flexibility that was offered to the offshore teams.
This was probably done to make the teams self-organizing. There was little micro-management and teams were
trusted and allowed to work on their own. They were not told what processes were to be followed or what particular
tools were to be used. Also, the emphasis on working software was maintained in several cases. Usually global build
repositories were constructed where the latest form of the working software was always available to the
development teams. It should also be mentioned that some companies did not focus on early delivery of software
but delivered software only after a few rounds of development when they felt comfortable with the current version.
However, contrary to the popular belief that agile projects did not need any detailed documentation, most of these
case studies showed that developers opted for moderate documentation that kept track of progress status and
priorities for the projects. The focus was on working software for sure but documentation was not neglected
completely.

Some important lessons can be learned from the analysis of the case studies from the perspective of the values and
principles of the agile manifesto. It is observed that some values such as the importance of people and their
interactions and the availability of working software were clearly followed in most case studies. Agile software
development thrives on formal and informal interactions between people. This is necessary for building trust and for
understanding developers’ coding habits. Multiple forms of interactions through IMs to Wikis to videoconferencing
were used in these case studies. There were two components to these interactions—some were preplanned as
seen in the focused SCRUM meetings organized by CEInformant or SirsiDynix through teleconferencing and some
were instantaneous on an as needed basis as seen in the use of IM and chat by Aginity LLC and BNP Paribas.
Some companies like Valtech encouraged onshore and offshore developers when they came together to take part in
informal social gatherings like coffee and ice cream socials to build trust and friendship, while celebrating completion
of milestones. This practice was unique but in conformance with literature that stressed the importance of “renewing
social ties through bonding activities … both in the early stages of the team development and the later stages, when
social ties may fade and affect collaborative work” [Oshri 2008]. Further, some developers moved between onshore
and offshore locations to get to know their partners better and to know more about their software development
practices. This was seen in the case of Extol International, IONA Technologies, Telco, Manco, Consult, and BNP
Paribas. Also, project leads played a very important role in co-ordinating development efforts and this was
evidenced in three case studies. All these efforts were targeted to improving the interaction between the teams and
could be seen to conform to the first value of the agile manifesto. Although several tools were used by the
companies, it was clear that the importance given to people in the development effort was more than that given to
tools and processes. The second value of the agile manifesto that stressed the importance of working software over
documentation was also upheld in the case studies. Several companies instituted common build environments that
were easily accessible to onshore and offshore teams. This indicated the current progress with the software and
assigned responsibilities about the status of the software to certain developers or teams. Valtech India went to the
extent of stating that “the golden rule of thumb was not to leave the office premises until the last code that was
checked did not break the build” [Danait 2005]. As suggested by this value of the agile manifesto, documentation
was kept at a minimum and the focus was on the working software. Documentation mostly included use cases,
requirements, and burn-down charts. In case of Consult, it was reported that “often many documents were
developed after the actual work was completed” [Balasubramaniam et al. 2006]. Among the principles of the agile
manifesto, three received good support. Firstly, there was a strong emphasis in all case studies on communication.

630
Volume 23 Article 15

Due to the distributed environment, the conversations became face-to-interface rather than face-to-face but it
definitely took place on an as needed basis using a variety of electronic means. No exceptions were reported. Some
companies like Valtech recorded kickoff meetings that took place via Web conferencing for the benefit of those who
missed them and CEInformant even recorded discussion threads for subsequent reference if needed. Secondly, the
need to deliver working software frequently was evidenced in nine case studies. The delivery period varied from two
weeks (in case of SirsiDynix) to one month (in case of CEInformant). In the case of the Finnish company, the
working software was shared between participants using a sprint demo and desktop sharing. This was a unique
practice. Thirdly, the companies not only focused on delivering working software but they also measured progress in
terms of the working software. SirsiDynix and BNP Paribas used the Jira software for doing so.

While two of the values and three of the principles of the agile manifesto were evidenced in the 12 case studies,
some were prominently absent or at least there was no mention of any specific efforts made by the companies to
uphold such values and principles. For example, the agile methods are widely touted to be customer focused
because they take into account customers’ late breaking requirements into the process of development and do not
follow a plan. However, only one case study supported this value, eight did not say anything specific about it, and
three were even against it. Two of the companies Manco and Consult went against this value from the very
beginning and “devoted the first two or three iterations of a project to finalize critical requirements and develop a
high-level architecture” [Balasubramaniam et al. 2006]. Some companies involved customers in the development
process as suggested by the third value of the agile manifesto and the Finnish company followed a unique practice
of involving a particular customer company’s system architect as a proxy customer because they were planning to
sell the software to multiple customers. However, most companies did not do anything specific to involve the
customers in the development process and thus compromised the agile methodology to an extent. In terms of
principles of the agile manifesto, some were poorly supported by the case studies. Since the case studies said very
little about the involvement of the customers, it was not surprising that they did not say anything about whether any
changes in the requirements coming from the customer at the later stages of the development were supported or
not. Similarly, achieving simplicity in the design of the code was mentioned as a goal in only one case study and
only two case studies mentioned that changes in team behavior took place to accommodate the needs of the
process. Clearly, these principles were not given a lot of importance in the case studies. Project leads played an
important role in coordinating development efforts and often acted as rotating gurus and visited offshore locations to
liaise with the developers. Usually senior consultants were chosen for a responsible job like this. However, such a
practice of building projects around qualified and motivated leaders was only illustrated in four case studies. Even
more surprising was the finding that only five companies remarked that the offshore teams were self-organizing and
enjoyed plenty of independence in developing the software. This basically showed that due to the distributed nature
of the projects, it was important to bring in discipline to the process and so it was not always possible to give the
offshore teams a lot of flexibility to do things in the ways they thought were the best. This finding was supported by
literature on distributed agile development which reported that “for globally distributed projects, the conventional
agile methods must be adjusted and modified by embracing more rigor and discipline in software development” [Lee
et al. 2006]. Also, only five case studies showed support for the value of sustainable development and maintenance
of constant pace of work. Often the developer had to put in long hours of work to deliver the working software and
ensure customer satisfaction. It is interesting to note that, although the case studies showed strong emphasis on
individuals and interactions, no specific steps seemed to have been taken by the companies to protect the
developers from overwork and mental stress.

V. CONCLUSION
Increasingly companies are moving toward adoption of agile methods for distributed software development. Several
challenges need to be overcome if the full benefits of agile methods are to be realized in a distributed setting. It must
be remembered that not all projects can be handled using distributed agile methods. It is believed that for very
complex and strategic projects distributed agile methods may not be a good choice [Moore and Barnett 2004]. In
fact, most of the case studies that were studied in this paper were small in their scope. Also, it can be seen from the
knowledge gathered from the 12 case studies that different solution strategies work for different companies based
on available resources, intended outcome, and work culture. Several lessons were learnt from the case studies.
Some of them were similar to lessons learned from any distributed software development projects whereas some
were specific to the agile development. It was found that team selection, trust, and knowledge management were
quite important for the agile case studies. The case studies were analyzed from the point of view of the agile
manifesto and it was observed that some values and principles were adhered to in these case studies and some
were either not followed or were compromised to an extent. Most case studies emphasized values like the important
role played by the developers and the project leaders and their interactions and the need for regular delivery of
working software often with minimal documentation. The principle of face-to-interface communication was also
greatly championed by all case studies. A common build environment was commonly seen in the case studies that
helped to measure progress of the project in terms of the working software and was shared between developers.
The emphasis of agile methods on customer collaboration, responsiveness toward customers’ changing

Volume 23 Article 15
631

requirements at any point of the development cycle, building projects around motivated individuals, emphasizing
simplicity of design, creating self-organizing teams, and allowing flexibility and adjustment of team behavior
according to need are some of the values and principles of the agile manifesto that were least discussed in the case
studies. This indicated that some departure from the values and principles of the agile manifesto were needed.
However, such a non-conformance is not surprising. There is evidence in past literature that the agile methods need
to be carefully adjusted when applied to a distributed setting by embracing more rigor and discipline [Lee et al.
2006]. The same phenomenon was observed in the case studies that were studied in this paper. It must be noted at
this point that the entries in Table 4 were based on author’s interpretation of the 12 case studies and they made use
of author’s judgment. In future, a study can be done with more than one person filling out a similar table based on
the case studies. The resulting tables can then be reconciled to find a more objective evaluation of the case studies
and to determine to what extent the case studies followed the agile manifesto. The lessons learnt and the
summarized knowledge from the case studies in this paper should be useful for practitioners and companies that are
planning to venture in the world of distributed agile development and they will adopt these solutions and customize
them according to their needs, strengths, and limitations.

ACKNOWLEDGEMENT
Thanks are due to the anonymous associate editor and the editor in chief for their useful suggestions on the earlier
versions of the manuscript which has greatly improved the clarity, readability, and contribution of the paper.

REFERENCES
Editor’s Note: The following reference list contains hyperlinks to World Wide Web pages. Readers who have the
ability to access the Web directly from their word processor or are reading the paper on the Web, can gain direct
access to these linked references. Readers are warned, however, that:

1. These links existed as of the date of publication but are not guaranteed to be working thereafter.
2. The contents of Web pages may change over time. Where version information is provided in the References,
different versions may not contain the information or the conclusions referenced.
3. The author(s) of the Web pages, not AIS, is (are) responsible for the accuracy of their content.
4. The author(s) of this article, not AIS, is (are) responsible for the accuracy of the URL and version information.

Abrahamsson, P. et al. (2003). “New Directions on Agile Methods: A Comparative Analysis,” in Proceedings of the

25th International Conference on Software Engineering, ACM Press, pp. 244-254.

Armour, P. G. (January 2007). “Agile … and Offshore,” Communications of the ACM (50)1, pp. 13-16.

Austin, R. and D. Lee. (2003). “Beyond Requirements: Software Making as Art,” IEEE Software (20)1, pp. 93-95.

Balasubramaniam, R. et al. (October 2006). “Can Distributed Software Development be Agile?” Communications of
the ACM (49)10, pp. 41-46.

Boehm, B. and R. Turner. (September-October 2005). “Management Challenges to Implement Agile Processes in
Traditional Development Organizations,” IEEE Software (22)5, pp. 30-39.

Bowen, S. and F. Maurer. (2002). “Process Support and Knowledge Management for Virtual Teams Doing Agile
Software Development” in Proceedings of the 26th Annual International Computer Software and Applications
Conference, IEEE Computer Society Press, pp. 1118-1120.

Computer Enterprises. (2005). “Global Agile Development—CEI’s Approach to Successful IT Outsourcing,”
http://www.ceiamerica.com/cei/company/resources/ceinformant_09132004.pdf (current July 30, 2007).

Danait, A. (2005). “Agile Offshore Techniques—A Case Study” in Proceedings of the Agile Development
Conference, IEEE Press, pp. 214-217.

Fowler, M. (April 2004). “Using an Agile Software Process with Offshore Development,”
http://www.martinfowler.com/articles/agileOffshore.html (current March 26, 2008).

Fowler, M. and J. Highsmith. (August 2001). “The Agile Manifesto,” http://www.ddj.com/architect/184414755 (current
March 26, 2008).

Huo, M. et al. (2004). “Software Quality and Agile Methods” in Proceedings of the 28th Annual International
Computer Software and Applications Conference Vol. 1, IEEE Computer Society Press, pp. 520-525.

Kussmaul, C., R. Jack, and B. Sponsler. (August 2004). “Outsourcing and Offshoring with Agility: A Case Study” in
Zannier, C., H. Ergogmus, and L. Lindstrom (eds.) Proceedings of the 4th Conference on Extreme
Programming and Agile Methods, Berlin, Germany: Springer, pp.147-154.

632
Volume 23 Article 15

Lee, G., W. Delone, and J. A. Espinosa. (October 2006). “Ambidextrous Coping Strategies in Globally Distributed
Software Development Projects,” Communications of the ACM (49)10, pp. 35-40.

Lindvall, M. et al. (December 2004). “Agile Software Development in Large Organizations,” IEEE Computer (37)12,
pp. 26-34.

Massol, V. (2004). “Case Study: Distributed Agile Development,”
http://www.pivolis.com/pdf/Distributed_Agile_V1.0.pdf (current November 30, 2007).

Moore, S. and L. Barnett. (September 2004). “Offshore Outsourcing and Agile Development,” Forrester Research.

Nerur, S., R. Mahapatra, and G. Mangalaraj. (May 2005). “Challenges of Migrating to Agile Methodologies,”
Communications of the ACM (48)5, pp. 73-78.

Nisar, M. F. and T. Hameed. (2004). “Agile Methods Handling Offshore Software” in Proceedings of the 8th
International Multitopic Conference, IEEE Press, pp. 417-422.

Oshri, I., J. Kotlarsky, and L. Willcocks. (April 2008). “Building Critical Social Ties for Global Collaborative
Teamwork,” Communications of the ACM (51)4, pp. 76-81.

Paasivaara, M. and C. Lassenius. (October 2006). “Could Global Software Development Benefit from Agile
Methods?” in Proceedings of the IEEE International Conference on Global Software Engineering, IEEE
Computer Society Press, pp. 109-113.

Poole, C. J. (June 2004). “Distributed Product Development Using Extreme Programming” in Eckstein J. and H.
Baumeister (eds.) Proceedings of the 5th International Conference on Extreme Programming and Agile
Processes in Software Engineering, Berlin Germany: Springer, pp. 60-67.

Rees, D. (April 2004). “Distributed Agile Development,” http://www.itwales.com/998851.htm (current March 26,
2008).

Sepulveda, C. (2003). “Agile Development and Remote Teams: Learning to Love the Phone” in Proceedings of the
Agile Development Conference, IEEE Computer Society Press, pp. 140-145.

Sutherland, J. et al. (January 2007). “Distributed SCRUM: Agile Project Management with Outsourced Development
Teams” in Proceedings of the 40th Annual Hawaii International Conference on System Sciences, IEEE
Computer Society Press, pp. 274-284.

Talby, D. et al. (July-August 2006). “Agile Software Testing in a Large-scale Project,” IEEE Software, pp. 30-37.

Yap, M. (July 2005). “Follow the Sun: Distributed Extreme Programming Development” in Proceedings of the Agile
Development Conference, IEEE Press, pp. 218-224.

Yin, R. K. (2002). Case Study Research Design and Methods, 3rd Edition, Thousand Oaks, CA: Sage Publications.

ABOUT THE AUTHOR
Indranil Bose is associate professor of Information Systems at the School of Business, The University of Hong
Kong. His research interests are in the areas of telecommunication, data mining, software development, and supply
chain management. He holds a BTech from the Indian Institute of Technology, MS from the University of Iowa, MS
and PhD from Purdue University. His publications have appeared in Communications of AIS, Communications of the
ACM, Computers & Operations Research, Decision Support Systems, European Journal of Operational Research,
Expert Systems with Applications, Information & Management, Journal of the American Society for Information
Science and Technology, Journal of Organizational Computing and Electronic Commerce, Operations Research
Letters etc. His research has been supported by several grants from academia as well as industry. He is listed in
Marquis Who’s Who in the World, Marquis Who’s Who in Science and Engineering, Marquis Who’s Who in Asia, and
Marquis Who’s Who of Emerging Leaders. He acts as an associate editor of Communications of AIS and associate
editor and editorial review board member for several other journals in the area of information systems

Copyright © 2008 by the Association for Information Systems. Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for
components of this work owned by others than the Association for Information Systems must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O.
Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from ais@aisnet.org

Volume 23 Article 15

 .
 ISSN: 1529-3181

EDITOR-IN-CHIEF
Joey F. George

Florida State University
AIS SENIOR EDITORIAL BOARD
Guy Fitzgerald
Vice President Publications
Brunel University

Joey F. George
Editor, CAIS
Florida State University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Paul Gray
Founding Editor, CAIS
Claremont Graduate University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M. Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
University of Groningen

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Jane Fedorowicz
Bentley College

Jerry Luftman
Stevens Inst. of Tech.

CAIS EDITORIAL BOARD
Michel Avital
Univ of Amsterdam

Dinesh Batra
Florida International U.

Indranil Bose
University of Hong Kong

Ashley Bush
Florida State Univ.

Erran Carmel
American University

Fred Davis
U of Arkansas, Fayetteville

Gurpreet Dhillon
Virginia Commonwealth U

Evan Duggan
Univ of the West Indies

Ali Farhoomand
University of Hong Kong

Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Mary Granger
George Washington U.

Ake Gronlund
University of Umea

Ruth Guthrie
California State Univ.

Juhani Iivari
Univ. of Oulu

K.D. Joshi
Washington St Univ.

Chuck Kacmar
University of Alabama

Michel Kalika
U. of Paris Dauphine

Claudia Loebbecke
University of Cologne

Paul Benjamin Lowry
Brigham Young Univ.

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Fred Niederman
St. Louis University

Shan Ling Pan
Natl. U. of Singapore

Kelly Rainer
Auburn University

Paul Tallon
Loyola College, Maryland

Thompson Teo
Natl. U. of Singapore

Craig Tyran
W Washington Univ.

Chelley Vician
Michigan Tech Univ.

Rolf Wigand
U. Arkansas, Little Rock

Vance Wilson
University of Toledo

Peter Wolcott
U. of Nebraska-Omaha

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Sal March and Dinesh Batra

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
James P. Tinsley
AIS Executive Director

Robert Hooker
CAIS Managing Editor
Florida State Univ.

Copyediting by Carlisle
Publishing Services

	Communications of the Association for Information Systems
	12-2008

	Lessons Learned from Distributed Agile Software Projects: A Case-Based Analysis
	Indranil Bose
	Recommended Citation

	Microsoft Word - journal.doc

