
Communications of the Association for Information Systems

Volume 20 Article 21

October 2007

An Empirical Assessment of User Perceptions of
Feature versus Application Level Usage
Michael J. Harrison
Carnegie Mellon University

Pratim Datta
Louisiana State University, pdatta2@lsu.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Harrison, Michael J. and Datta, Pratim (2007) "An Empirical Assessment of User Perceptions of Feature versus Application Level
Usage," Communications of the Association for Information Systems: Vol. 20 , Article 21.
DOI: 10.17705/1CAIS.02021
Available at: https://aisel.aisnet.org/cais/vol20/iss1/21

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20/iss1/21?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20/iss1/21?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 300

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

AN EMPIRICAL ASSESSMENT OF USER PERCEPTIONS
OF FEATURE VERSUS APPLICATION LEVEL USAGE

Michael J. Harrison
Heinz School of Public Policy and Management
Carnegie Mellon University

Pratim Datta
Department of Management and Information Systems
Kent State University
pdatta@kent.edu

ABSTRACT

Users often use application software because of particular features. However, little remains
known on whether user perceptions of application use is merely feature-driven or whether users
perceive their application use as being more than an amalgamation of features. As the software
industry ushers trends such as Web services, it becomes evermore important for vendors and
users alike to clarify how users perceive features and applications. The paper is an attempt to
confirm whether users can perceptively unbundle application software features from the overall
applications themselves. Using a modified version of the repertory grid technique, this study
investigates user perceptions of application features using data collected from users in the design
and development departments across five firms. The results suggest that user perceptions of
overall applications overshadow their perceptions of independent features, suggesting
application-level lock-in effects and pointing out the difficulty in vendor attempts to unbundle
features from feature categories and applications. The study closes with a discussion of the
findings and offering cues for future research.

Keywords: application features, personal construct theory, modified repertory grid technique

 I. INTRODUCTION

The tremendous innovation in application software has primarily been feature-driven. Look at any
application portfolio in an organization, and you will find a variety of application suites (e.g.
graphics, development, desktop) containing multiple licenses of applications redundant in feature
categories and features. Applications contain features that offer users predefined functionality
and control in their use. Features are vendor-created software tools designed to complete tasks
on behalf of the user. In applications, features are grouped within feature categories. An
application, in turn, is a bundle of features compiled to provide users with the ability to complete a
set of specialized tasks. A feature, therefore, is a software tool enveloped as a function or routine
(e.g. debuggers in programming applications; data sorting in spreadsheet and database
applications; layers in image manipulation applications; search tools in browsers and processors).
However, for the purposes of this study, features do not include application characteristics such
as interface design and memory utilization. For example, the format feature category in the

mailto:pdatta@kent.edu

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 301

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Microsoft Word application consists of features related to the formatting of styles, fonts,
paragraphs, among others.

Regardless of the type of software application, inter-vendor competition as well as iterative
developments and upgrades have led to a considerable amount of feature overlap both within
and across applications. Moreover, organizations spend considerable sums of money investing in
similar types of applications, sometimes just for the sake of a meager set of features demanded
by certain users. Consequently, an organization’s application software portfolio often includes
multiple applications with considerable overlap of features. In fact, recent trends in software asset
management (SAM) stress on reducing “shelfware”- applications licensed (adopted) but not used
because of available alternatives sharing a set of “commonly used” “redundant” features. For
example, Adobe Photoshop Elements and Corel PhotoDraw share a host of common features;
Corel WordPerfect and Microsoft Word similarly share a high degree of application-level feature
overlap. Figure 1 shows the hierarchy within applications.

Figure 1. Nested Hierarchies in Applications

In software asset management, a common assumption made is that users are rational. As
rational beings, users are likely to be feature-driven. Using such a contention, users would
choose an application because of its inherent features and should be indifferent toward any other
application containing the similar feature set, unless, of course, users perceive an application as
more than a sum of its features. Interestingly, while overall technology acceptance has gained
prominence in IS research, [Davis 1989; Thompson et al. 1991; Moore and Benbasat 1991;
Compeau and Higgins 1995], an examination of feature-driven application usage has escaped
scrutiny [Zmud et al. 2004]. Little exists in previous literature regarding feature elicitation among
categories of applications, thus failing to address the issue of application dependence in feature
level usage. Indeed, “prior studies have invariably examined IT applications as a whole (i.e., as a
‘black box’) rather than focusing on the specific feature sets that comprise each application’s
functionality” [Zmud et al. 2004: 2].

While it is true that every application offers some unique features, customers have to pay a
considerable premium for buying the entire application software in order to use the few features
offered in a new version or as an upgrade. Unbundling features from an application, although
difficult, is being promoted by the next generation of application software. Microsoft .Net and
J2EE environments are promoting a new generation of application-independent features called
Web services that can be invoked and consumed (used) over the Web. For example, instead of

Application A

Common Feature
Categories

Feature
Categories in
Application C

Features common to
Applications A, B, C

Unique
Features in
Application C

Application B Application C

Features common to
Applications A & B

Features common to
Applications B & C

Unique
Features in

Application A

Feature
Categories in
Application B

Feature
Categories in

Application A

Applications

Feature
Categories

Features

Unique Features
in Application B

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 302

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

resorting to a resource-intensive application such as a Adobe Photoshop, a firm planning to
“batch resize” their images could instead search online for a “batch resizing” feature, listed as a
Web service, and use it on an ad hoc basis without being mired by issues of platform and
application dependencies. By finding and consuming openly available features, firms can add
significant efficiencies by moving away from application installation and maintenance. Google, for
instance, offers a variety of search and map APIs (Application Programming Interface) for
enterprise use of search and mapping features without having to install and maintain large stand-
alone GIS (Geographical Information Systems) and search applications.

The driving motivation behind understanding application and feature level use is a concerted
effort toward reducing application underutilization, a common problem where organizations end
up using less than 10 percent of an application’s entire set of features while paying site license
fees for the entire application. The issue becomes even more acute as users within an
organization request multiple “similar” applications, led by the choice of a very few features,
leading to non-value added costs from shelfware. For example, a user may want to use SPSS to
conduct missing data analysis, Minitab to chart the data, and SAS Base to run a regression
model. Noticeably, the user only utilizes a handful of features in each of the three types of
application software, leading to application underutilization. After all, organizations well realize
that consolidating popular features can offer considerable savings. Therefore, understanding
feature-driven application usage becomes an important aspect in IS planning: from feature-driven
application customization by developers to feature consolidation strategies by vendors and IS
management.

In the face of relevant organizational concerns, this research seeks to explain user perceptions
toward feature and application level usages, under conditions of feature overlaps and
redundancies in a common application portfolio. Until now, researchers have primarily
investigated applications from the context of systems adoption and use. However, such an
approach does not distinguish the hierarchy of usage: from applications to feature categories to
individual features. As such, this study investigates whether users can perceptively distinguish
features and feature categories from their parent applications, thus offering a relatively detailed
understanding of application and feature-level use among organizational users. Even if users use
all aspects of an application equally or just a few features, the question is, can users perceptively
unbundle specific features from the overarching feature categories and the application?
Specifically, we investigate whether user perceptions of application features are independent of
the application type and feature categories.

The paper makes three principal contributions: First, if it is found that users are indeed rational
and can separate underlying features from an application, firms can unbundle features from
applications to consolidate application features to reduce redundancies and feature overlaps,
leading to cost savings. In such a scenario, organizations would find considerable cost savings in
terms of licensing, competing software products, complementary hardware and software costs
required to support such applications, and user training. Alternatively, if not, trying to unbundle
features from the application may lead to unintended user behavior. If it is found that feature-level
usage is dependent on the application, then there is something intrinsic to the application that
users respond to in addition to its features. Logically this could be something as simple as the fact
that users have been using an application for some time and do not wish to change preferences.
It could be that users find certain features to be inherently a part of an application. It could also be
that users are captive to certain interfaces and layouts specific to the overall application.
Together, it is important to ascertain whether or not users can perceptively separate features from
the overarching feature categories and applications.

The second contribution lies in the field of requirements analysis. Understanding perceptions of
feature-level usage is likely to increase objectivity in software engineering [Chatzoglou and
Soteriou 1999]. Measures of feature usage can help identify value-added versus non-value-
added features in applications, allowing developers to concretely focus on delivering the most
value for money by accurately selecting application features that best fit the needs of a
prospective client. In addition, it can also throw light on how best features can be viably

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 303

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

consolidated for competitive advantage. Because application software consolidation seeks to
eliminate feature level overlap among applications, the smallest number of applications to
perform the necessary tasks becomes the most cost effective. For example, Microsoft Windows
XP is suggestive of feature consolidation, albeit at the operating level, of the power and stability
features of the NT platform and the user-friendly features of the 9x platforms. Even to date,
feature consolidation is commonly practiced by Microsoft, especially in its service packs that
consolidate a set of essential features as a bundled patch for existing operating systems.

Third, drawing on the experiences from five organizations, the paper generates an understanding
of how users construct their own perceptions surrounding feature level application usage. Here,
the use of Kelly’s [1955] personal construct theory is cogent particularly because it offers insight
into how individuals construe their perceptions of applications and features leading to their
selection and use.

The remainder of the paper is organized as follows: The next section outlines the supporting
literature research surrounding the topic of interest. Thereafter, we present our research
framework using personal construct theory and the modified repertory grid technique. Next, we
discuss the research design and methodology, followed by an examination of the results and a
discussion of the findings. Finally, we present the limitations of the study and, subsequently, offer
the conclusion.

II. LITERATURE REVIEW

Features are building blocks for any application [Zmud et al. 2004; Griffith 1999; Griffith and
Northcraft 1994]. Zmud et al. [2004: 2] goes on to state that “some features reflect the core of the
technology by collectively representing the identity or purpose of the technology.” Adversely,
other features are not key components of an application and their use may be optional [Zmud et
al. 2004; Griffith 1999]. There are two differing views regarding the conceptualization of features,
the emergent and the appropriation [DeSanctis and Poole 1994; Griffith 1999; Orlikowski 2000].
The emergent focuses on the structures that emerge from the user’s repetitive interaction with
some technology [Griffith 1999; Orlikowski 2000]. The appropriation conceptualization is defined
by the structures inherent in the features of a given technology and observes the appropriation of
these structures by its users [DeSanctis and Poole 1994; Orlikowski 2000]. It is probable that both
conceptualizations exist “with regard to different individuals in similar situation contexts and with
respect to the same individual at different points in time” [Zmud et al. 2004: 5]. Our attempt at
understanding the issue utilizes both conceptualizations to provide further insight into feature
level usage.

REPERTORY GRID AND PERSONAL CONSTRUCT THEORY

Application users construe and construct their perceptions of an application in alternative and
different ways. This philosophy of constructive alternativism argues for the existence of different
realities perceived by individuals and underpins Kelly’s [1955] personal construct theory (PCT).
PCT asserts that individuals create mental constructs to interpret the world around them through
interpreting contrasts and similarities [Kelly 1955; Marsden and Littler 2000]. This approach
seems particularly useful here given that there is little understanding of how a user construes or
mentally models application modularity in terms of features. Kelly’s personal construct theory
[1955] hypothesizes that individuals attempt to control and predict the events in their lives by
creating mental models, hence, the more accurate the mental model, the more predictable the
behavior.

The repertory grid technique is the most notable method among the different modes of
psychological inquiry generated from personal construct theory [Tan 1999]. Repertory grid
creates a focus grid matrix based on cluster analysis of ranked elements within a knowledge
domain. The repertory gird technique based on the personal construct theory, once captive to
clinical diagnoses, is gaining popularity in business research. For example, PCT was utilized in a

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 304

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

study that found smaller firms in the high technology industry to perceive risk in a fundamentally
different way than do their larger counterparts [Sparrow 1999]. In management, a PCT-based
repertory grid technique proved a successful method for mapping cognitive constructs of
individuals [Dutton et al. 1989; Tan 1999]. For example, Latta and Swagger [1992] used the
repertory grid technique as a viable method for modeling knowledge in the development of
software interfaces that facilitate human interaction. In this research, the repertory grid technique
is used to elicit and link elements and constructs in order to clarify how users perceive
applications features.

The repertory grid technique may be decomposed into three parts: elements, constructs, and
links. In its most simplistic sense a repertory grid is a table. The elements are the columns and
the constructs are the rows. Constructs, defined as polar opposites, reside on both sides of the
elements. Kelly [1955] argues that individual personal constructs are bipolar in nature. To clarify,
each row represents one construct defined by a pair of polar opposites. It is important to note that
it is acceptable for constructs to be rated on a scale allowing respondents to decide their position
on an element [Kelly 1955]. The three parts of the repertory grid technique are discussed in
further detail as follows.

Elements: An element is the topic or domain of interest under investigation. In this study,
elements are software applications currently used within the organizational sample frame. There
are two methods of eliciting elements, researcher and participant provided [Hunter 1997; Moyihan
1996]. Researcher-provided element elicitation is employed when the comparison of a standard
set of repertory grids among all participants is of primary concern. It is suitable to adopt
participant-driven element elicitation when researchers wish to ensure that the elements are
relevant and meaningful to a specific group of individuals [Tan and Hunter 2002; Sparrow 1999],
particularly because participant-driven elicitation not only offers greater relevance but also
mitigates researcher biases. Accordingly, this study uses a Delphi-based iteration technique for
elicitation of major elements by participants across five firms.

Constructs: The construct elicitation methods in this study were chosen based on their ability to
best predict the software functionality requirements. Similar to element elicitation, there are
several different methods of construct elicitation. More precisely, five variations and
combinations exist [Beail 1985; Easterby-Smith 1981; Reger 1990; Tan and Hunter 2002]. The
construct elicitation methods are researcher-supplied, triading, full-context form, group-construct
elicitation, pyramiding, and laddering. In the researcher-supplied method, the researcher supplies
predetermined constructs to participants. Previous studies [Latta and Swagger 1992; Phythian
and King 1992] have used this method when the primary objective is to measure individuals
across different groups. A more popular method, the triading method is a minimum-context
method considered to be the classical approach to generating constructs [Tan and Hunter 2002].
In triading, first three elements are randomly selected and participants are asked to state how two
of the elements are similar but different from the third. The similarities and differences noted by
participants then become constructs. This process of comparing similarities and differences is
continued until the researcher is convinced all relevant constructs have been elicited from the
participants. It has been suggested by Roger [1990] that seven to ten triads offer an adequate
representation of all possible constructs pertinent to most studies. In contrast to a minimum-
context method such as triading, the full-context method utilizes all elements simultaneously
requiring the participants to sort elements into unique categories and provide several words
describing each category. The only theoretical limit to the number of categories is the number of
elements. It is important to note that each element may be placed in only one category. The
group construct elicitation method [Stewart and Stewart 1981] requires that all participants
congregate together to arrive at a group consensus of each construct selected for the study. The
group-construct elicitation method is identical to that of triading except it is performed at the group
level instead of the individual level. Basically, group construct elicitation takes advantage of open
discussions among all participants in its use of the minimum-context method. One of the main
benefits of this method is that it allows participants the ability to hear multiple viewpoints on each
element [Tan and Hunter 2002]. Finally, laddering is a method that may be used in addition to the
methods described previously. Marsden and Littler [2000; pp. 819] describe the laddering method

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 305

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

as “designed to elicit the core values that underpin these bipolar constructs and involves asking
why each of the poles are (un)important to them.”

 Construct elicitation conducted in this study incorporated a modified version of the full-context
form and laddering. The full-context elicitation method gives individual participants, with different
wants and needs, the opportunity to create as many constructs as they see fit. The full-context
method was used as a brainstorm until the functionality characteristics of each category of
software applications were exhausted. The modification made in this study takes the lists created
by individuals and presents them to all participant groups for unanimous agreement on features,
feature categories, and the applications that best embody them.

In addition to the full-context method, laddering can be used to gain further insight on participants’
understanding of each construct. This process consists of additional questions in the individual
interview stage after full-context method is completed. Questions of how and why help obtain
meanings behind constructs created by the full-context method [Tan and Hunter 2002]. Previous
studies have shown that laddering assists in providing a better understanding of elicited
constructs [Phythian and King 1992]. This study used laddering as a technique to clarify
constructs elicited by respondent and move them closer to agreement. In this case, laddering was
used to both split and merge constructs based on their degree of semantic variance.

Linking: Once constructs and elements are determined, a technique called linking is used to map
constructs to elements in three ways [Tan and Hunter 2002]: dichotomizing, ranking, and rating.
Dichotomizing is a rather simple procedure that requires researchers to place a check against the
element closest to the left pole construct and a cross to the element closest to the right pole
construct. This method allows researchers to associate an element with the construct pole that
most represents it. A major disadvantage is that the participants must choose only one element
that represents a pole of a construct; the method does have the ability to select multiple elements
as equals. Another disadvantage is that the selection of only two elements per construct may lead
to a skewed distribution [Easterby-Smith 1980]. As a remedy to the skewed distributions of
dichotomizing, a ranking method was devised. Ranking requires that participants order the
elements as they see fit between the poles of each construct. The problem here is that
participants are forced to differentiate among elements on a scale that may not indicate their true
differences. The rating method is popular [Hunter 1997; Latta and Swagger 1992] and eliminates
the need to select only two elements that best represent each pole of a construct or rank
elements based on how well they fit between poles with the ability to assign the same ranking to
more than one element [Stewart and Stewart 1981; Tan and Hunter 2002]. Rating requires
participants to rate each element based on the given constructs. In this study, the rating method
is used to link elements and constructs. The primary reason for selecting this method is that it
allows elements to be rated equally on the same construct.

III. METHODOLOGY

The constructs used to populate the repertory grid were obtained by a Delphi-based iterative
technique to achieve consensus. The Delphi-based iterative technique was used in the construct
elicitation phase to add currency and relevance to the elicitation process. Dalkey and Helmer
[1963] state that the objective of the Delphi method is to obtain the most reliable consensus of
opinions of a group of participants achieved by a series of questionnaires with controlled opinion
feedback. In the current study, participants started with open-ended questionnaires to brainstorm
features and feature categories. This process continued until participants identified the same set
of features from the preceding round of questionnaires and/or did not ask for further information
[Brancheau and Wetherbe 1987]. After initial brainstorming, groups within firm met to finalize the
set of features for each category. This iterative modification based on the Delphi method appears
to be more conducive to independent thought on the part of the participants and to systematically
aid them in brainstorming and elicitation of factors. Delphi procedures are more receptive to
independent thought and allow a more gradual transition toward group consensus [Niederman et
al. 1991]. The process is designed for the participant to call out all possible issues related to the

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 306

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

problem so that he/she is confident that the question or problem is adequately solved [Dalkey and
Helmer 1963]. Niederman et al. [1991] state that the Delphi-based iterative technique is a
valuable tool for surfacing new issues and obtaining consensus among a group of experts. In
fact, the Delphi-based iterative technique has shown that even when initial participants’ views are
widely divergent the individual estimates will show a tendency to converge as the process
continues. Typically, but not always, the participants are subject-matter experts in a given domain
of knowledge.

The participants involved in the study were 29 employees from design and software development
departments from five different firms. The five firms in the sample used 59 different software
licenses, most of which were not decided by the firm but rather selected and budgeted by each
individual department. Licensing was supported by internally allocated funds and driven by
choices by managers, developers, or vendors. While the software portfolio was competitive with
the general industry, evaluations were focused mainly on overall usability, with little reference to
feature overlaps across applications. For example, the instructional design department had
recently upgraded a software application for the sake of a single feature (instant messaging) that
was already offered by another existing software license. Lacking a rational approach toward
determining and consolidating features across the existing application portfolio, it was found that
the departments in our sample had software with 35 percent common or redundant features.

Participants for this study included users from different firms: Content Design, Corporate
Education and Training, Retail, Software Design, and Transportation. Departments across the
firms comprised of the following: one interactive media department with six participants; one
instructional design department with seven participants, two application development
departments with nine participants, and one database department with seven participants.
Because managers promoted our data collection, all on-site departmental members participated.
Often more than not, the developers in the departments also played the role of users, consuming
internally developed solutions as testers or quality controllers.

Table 1. Participant Information

Department Interactive Media
Development

Instructional
Design
Development

Application
Development I

Application
Development II

Database
Development

Participants (n) 6 7 4 5 7

Firm Content Design Corporate
Education and
Training

Retail Software
Design

Transportation

Firm Size (no. of
employees on site)

>70 >150 >400 >150 >200

Titles (n) Digital Media
Producer (2)

Animation (3)

Project
Coordinator (1)

Designer/
Developer (3)

Technical

E-Training Lead
(2)

E-Learning
Specialist (2)

API Developer
(3)

Design Architect
(1)

Developer (2)

Testing (1)

Project
Management
Office (2)

Data Quality Analyst
(2)

Database
Administrator (1)

Database Design
and Programming
(4)

Participants who informed this study was comprised of developers and users with sufficient
expertise in their job functions. The sample included participants whose job functions include
graphic design, instructional design, application programming, and database design and
development. The diversity of the sample frame is intended to increase generalizability of our

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 307

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

findings across IS professionals. The average age of the participant sample was 35 years with an
average of 5.5 years of experience. The participants had an average of 3.3 years of college
education and was comprised of eight females (~27 percent).

Each participant essentially served as an IS professional and was classified as subject matter
expert (SME) for applications used within their departments. Subject matter experts were well
cognizant of the software used in their department, even if they were consistent users of one or
more types of application software and casual users of other application software within the
department. For example, while some developers used PHP/MySQL and others used a Microsoft
.NET framework, both were cognizant of feature availability across domains of expertise.

In Delphi studies, sample size is not a statistical but a quality assurance issue [Duffield 1988].
Because Delphi studies rely on informed experts, it has been suggested that, with a homogenous
group of experts, reasonable results can be obtained with small panels of 10 to 15 individuals
[Adler and Ziglio 1996; Turoff 1970; Meuleners et al. 2004]. In determining sample size for Delphi-
based studies, Duffield [1988] argued that the panel size is a matter of discretion for the
researcher. Instead, the sample size in Delphi studies is researcher and situation specific, and
more often than not, criterion sampling is chosen to assure quality of responses. The resulting
homogeneity allowed for the inclusion of a select body of domain experts as quality informants. In
that regard, a sample of 29 domain experts seems to be adequate for this study.

As noted earlier, the methodology adopted is a distinct modification of the repertory grid
technique aimed at reducing researcher biases for a more objective assessment, particularly
during elicitation. Elements were picked from the application portfolio used by the organizations
with careful attention toward making sure that the elements were homogeneous, unambiguous,
and representative. Instead of requesting participants to choose elements subjectively, the
modification objectively chose the entire application portfolio, thus reducing possibilities of bias
and groupthink. Additionally, particular focus was given to make sure that the elicitation of
elements used to build the application portfolio was objective with no chances of omissions and
blocking.

The key to construct elicitation was to elicit personal constructs though initial brainstorming and
then by concatenating semantically redundant themes to arrive at a clarified set of mutually
exclusive constructs without ambiguity. Departing from a construct-elicitation technique where the
refinement of constructs rests on the researcher, the modification employs a Delphi-based
technique for construct elicitation and refinement. Often, during construct elicitation, there is a
propensity for researchers to contaminate or bias the elicitation by suggesting constructs.
Moreover, because elicited constructs should be comprehensive, it is important to exercise effort
in reducing redundancies while making sure that all unique constructs are included.
Consequently, a Delphi-based technique was found to be apt for construct clarification and
refinement. The Delphi-based technique rests on the respondents and their concerted efforts in
iterative refinement of ideas (constructs) so that the final set of constructs are consensual and
comprehensive. Instead of relying on the researcher for reliable coding, consolidation, and
convergence of constructs, the use of the Delphi technique attests a participant driven process.

The Delphi-based construct elicitation for the repertory grid was iterative. In the first stage,
individual construct elicitation (iteration 1) required participants to brainstorm unique application
features that they commonly use and assign corresponding categories for every feature.
Participants were asked what feature categories, if any, distinguished one or more applications
from the rest. Furthermore, participants were requested to identify what specific features these
feature categories embodied that differentiated their use (often used for and rarely used for).

The initial brainstorm produced 74 categories and 286 category features. Following the initial
brainstorm, participants met as a group virtually (using corporate groupware and private chat
rooms) to merge and consolidate categories and respective features. In this second stage of
construct elicitation, participants communicated online to consolidate the initial set of categories
and features to a clarified list, with few redundant features. Departmental units acted as

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 308

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

independent groups to further merge the features and categories into a final exhaustive list by
reiteratively eliminating redundancies and building consensus among departmental participants.
In each firm, the final list of features was iteratively developed till consensus was achieved.

Throughout the process, participant anonymity was maintained for open brainstorming and
discussion. Group consensus generated a final list of 21 categories spanning 59 applications and
83 features defining the categories. Perceived functionality characteristics of applications were
constructs determined by the full context method. After collating all constructs, another virtual
meeting consisting of all participants was held to organize individual constructs into a final list.
Over subsequent iterations, some constructs remained unchanged, some merged into one or
more constructs, and others deleted. The final set of elicited constructs was created only when all
participants unanimously converged on the refined set of constructs. On average, it took 3.2
iterations to achieve construct elicitation. Appendix A tabulates the final set of major constructs
(features) and elements (applications).

Construct elicitation focused on inter-participant agreement on constructs. Although, the iterative
Delphi-based process used in the construct elicitation phase for brainstorming and creating
unanimity lessened the extent to which questions and problems needed further clarification,
laddering was utilized in instances where there was a degree of ambiguity among participants
during construct elicitation. Laddering allowed for an in-depth examination of constructs and was
extremely helpful in splitting and merging constructs in the process of iterative convergence of
personal constructs. Laddering allowed for a more granular investigation and clarification of
constructs to minimize confounds and redundancies during iterative convergence.

In the third stage, participants linked and rated application usage by voting on the degree of use
of a particular application for a particular feature. Instead of clustering applications by features as
commonly done in repertory grids, our modification asked users to link and rate the degree to
which applications were used in terms of specific features. We adopted this particular technique
because it offered distinct advantages over repertory grid linking techniques by commonalities
between elements by constructs. Primarily, because we are trying to investigate application
usage by feature, the difference in usage is that of degree. Because we are measuring
perceptions of use, it obviates the need to rank a participant’s likelihood of using an application by
virtue of its feature set. It would, however, be problematic asking a participant to cluster
applications by “often use” or “rarely use” [Hunter 1997; Tan 1999] primarily because users are
often captive to a single application although they may have other applications included in their
consideration set. They would be likely to use a candidate application and would find it more
prudent to rank their likelihood of use by feature. Using the refined list of elicited constructs
(nested) within each category, participants rated application usage by each application’s
respective features on a nine-point scale (linking). Because participants rated their perceived
usage of each application per feature, pair-wise comparisons of all features within categories
were conducted. The repertory grids are shown in Figure 2.

Finally, participant’s rating of application use by features and feature categories allowing for the
“linking” elements to constructs. The primary reason for selecting the rating method to link
elements to constructs was that it allowed elements to be rated equally on the same construct.
However, as shown in the repertory grid, the linking was clustered primarily because specific
applications met specific feature requirements. Applications not corresponding to specific features
and feature categories were considered irrelevant by participants and not referenced. These
applications were treated as “shelfware”- applications adopted but not used because users found
them missing required features.

In this study, it was necessary that perceived feature level usage be judged to trace feature
similarities across applications. User perceptions of applications sharing similar features under
each category were gathered from responses and are denoted in bold and underlined numbers.
Following Tan [1999], data from every single feature matrix was averaged for each feature
category. The overall perceived alignment between feature categories and applications is indexed
for similarity and distinctiveness. For example, participants perceived Fireworks and Flash as

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 309

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

being similar in terms of the features offered within the interactive media category. For feature
categories with more than one set of similar applications, the notations are appended with
separate color blocks (e.g., the design environment feature category for the instructional design
department shows four applications sharing two different sets of features).

Table 2. Advantages and Disadvantages of the Modified Repertory Grid

 Modified Repertory Grid Technique

Advantages Design Phase: Objective identification of Elements (e.g. from existing logs of
application categories)

 Construct Elicitation (Delphi-based: iterative brainstorming: participant led elicitation
and convergence (agreement)): Laddering (further clarification of assumptions).

 Multilevel elicitation and convergence (e.g. categories and features)

 Anchoring constructs for single point of reference

 Ranking to assess “likelihood of use” rather than “similarity in use”

 Analysis of nested design to assess hierarchy of use

Disadvantages Use of Delphi-based convergence a departure for “personal” constructs

 Requirement to achieve consensus may bias construct elicitation and “force”
convergence.

 Influence and bias due to power, hierarchy, and groupthink when lacking anonymity

Although the proposed modification to the repertory grid adds value by objective element
identification, construct elicitation, and iterative agreement, the weakness of this modification lies
in its departure from “personal” constructs. By emphasizing on iterative clarification and
agreement, the proposed modification may force participants towards achieving consensus.
Furthermore, the anchoring of constructs could possibly bias the process. Again, although due
care was taken toward maintaining participant anonymity, issues of achieving agreement and
consensus may have been unduly weighed upon by hierarchy, power, and groupthink.
Notwithstanding these cautions, we feel that the modification to the repertory grid was useful in
our context driven by objectivity and consensus. Table 3 shows the final set of feature categories
in bold and their underlying features numbered below.

Table 3. Categories and Feature Definitions (Feature Categories in bold; Application types within
parentheses)

Feature Category: Video Editing and
Compositing (Graphics Design)

Feature Category: Interactive Media Creation
(Graphics Design)

Timeline based work Web publishing

Post-production Create and edit presentations

Special effects Non-linear media creation and editing

Multiple image sequence editing User controlled media creation

Feature Category: Vector Based Graphics Software
(Graphics Design)

Feature Category: Desktop Publishing Software
(Graphics Design)

Edit vector based images Input data

Create vector based images Edit text documents

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 310

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Feature Category: Video Editing and
Compositing (Graphics Design)

Feature Category: Interactive Media Creation
(Graphics Design)

Feature Category: 3D Modeling and Animation
(Graphics Design) Edit spreadsheets

Create 3D objects Graphics capabilities

3D editing Simple daily tasks

Animate 3D objects
Feature Category: Raster Based Imaging Software
(Graphics Design)

Materials and lighting simulation Edit raster based images

Computer Aided Design (CAD) Create raster based images

Visualization tools
Feature Category: Conversion Software (Graphics
Design)

Feature Category: Viewing Data (Graphics
Design) Convert image based file formats

Viewing images and graphics Convert video based file formats

Save time in my work Convert sound based file formats

Streamline production Complete specialized tasks

Feature Category: Application Model Testing
(Application Development)

Feature Category: Model Compilation (Application
Development)

1. Forward Engineering 1. Open Archetypes

2. Reverse Engineer 2. Execution Engine

3. Mapping Function 3. Stored Instances

4. Mapping Reversibility 4. Call Generation

Feature Category: Development of Console
Applications (Application Development)

5. Traverse Capability

1. Database Connectivity 6. Semantic Repository

2. Class Development and Availability 7. Error Detection

3. Web Form Development Interface Feature Category: Application Development
Environment (Application Development)

4. Dynamic Testing 1. Predefined Classes and Objects

Feature Category: Code Execution (Application
Development)

2. Object and Code Reusability

1. Remote and Local Execution 3. Libraries

2. Object Naming 4. Validation

3. Portability and Executables Feature Category: Deployment Versioning
(Application Development)

4. Exception Handling 1. Independent Project Deployment

5. Assembly Verification and Binding 2. Data and Language Migration

Feature Category: Data Control (Database) 3. Security Deployment

1. Rollback Management 4. Version Control

2. Tablespace Management Feature Category: Common Language Runtime
(Application Development)

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 311

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Feature Category: Video Editing and
Compositing (Graphics Design)

Feature Category: Interactive Media Creation
(Graphics Design)

3. Tuning 1. Memory Management

4. Backup and Restoration 2. Thread Management

Feature Category: Database Management
(Database)

3. Cross-platform Usability

1. Workload Access and Control 4. Data-Definition

2. Enterprise Management Feature Category: Query Development (Database)

3. Auditing 1. Flashback Version Query

4. Performance Analysis 2. Query Control

Feature Category: Design Environment
(Instructional Design)

3. View Control

1. Synchronous Collaboration Feature Category: Standards-Based Development
(Instructional Design)

2. Monitoring 1. Automatic Accreditation Updates

3. Survey Development and Administration 2. Competence Analysis

4. Backend Administrative Integration 3. Course Quality Assessment

Feature Category: Report Development (Instructional
Design)

1. Student Assessment and Scoring

2. Reporting Options

3. Content Creation

DATA ANALYSIS

In the linking phase, participants rated their perceived level of use of each feature respective to
an application. Data from the repertory grid was analyzed for investigating user perceptions of
application level use. Due to the fact that the number of features within applications and
applications within categories are different, the design is unbalanced. For example, some
application categories have five nested applications each nesting four features within; other
application categories may have three applications, each consisting of six features. Since these
levels are not identical for applications and features within a particular category, we use a nested
design to analyze the unbalanced data. As noted earlier, participants within companies rate every
application at the feature level. Since 29 participants were used to rate 21 feature categories,
similar ratings had to be accounted for in the model. The list of variables used in the analysis is
summarized in Table 4 following.

In this design, categories, applications, and features are fixed for each feature usage score and
therefore tests for significance use the Type III sums of squares for fixed effects. Proc mixed
within SAS was used to analyze the data. Proc mixed uses a mixed linear model, a technique
similar to a generalization of the standard or general linear model, robust in face of some
correlation and non-constant variability (SAS Help V9.1). It is held that hierarchically structured
data often causes problems with model specification due to clustering effects, and can best be
addressed by a mixed linear model [Goldstein 1986]. Within the mixed linear model used for this
study, features were nested within applications that were further nested within categories.

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 312

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Often Used
for Illustrator Coreldraw

Rarely Used
for

Vector Based 2 7 Vector Based
Powerpoint Flash Swish Director Fireworks

Interactive
Media 6 4 6 7 4

Interactive
Media

Character3D Leveleditor Studio3d Imagemodel Viewpoint

3D Modeling
and Animation

3 5 3 4 6 3D Modeling
and Animation

Thumbsplus Micro Fastlook

Viewing Data 5 4 4 Viewing Data
MPEG2 Quicktime ClearerXL PDFcreator Trace

Conversion 6 4 5 6 6 Conversion
Mystical Paint Stitcher Photoshop

Raster Based 7 6 7 7 Raster Based
Matchmover Retimer Combustion Edit6 Premiere Titlemotion

Video Editing
and

Compositing
6 7 6 5 5 6

Video Editing
and

Compositing

Often Used
for Visio EA VP-UML Charter Diablo Borland

Oracle BPEL
(Remote)

Visual Studio
.NET ASP Express Websphere

Microsoft
SourceSafe J2EE Jrun VBA

Rarely Used
for

Application
Model Testing 7 7 4 1 1 1 1 1 1 1 1 1 1 Application

Model Testing

Model
Compilation 6 1 1 5 3 4 3 1 1 1 1 1 1 Model

Compilation
Deployment
Versioning

1 1 1 1 1 1 7 4 5 4 5 5 1 Deployment
Versioning

Common
Language
Runtime

1 1 1 1 1 1 1 1 1 7 3 1 3
Common
Language
Runtime

Development
Environment

1 1 1 1 1 1 1 1 1 5 7 1 5 Development
Environment

Often Used
for ID Expert CentraONE

Lotus
LearningSpace Blackboard

elluminate
Vclass

Mentargy
LearnLinc Web Surveyor Rarely Used for

Standards-
Based

Development
3 6 6 1 1 1 1 Standards-Based

Development

Report
Development

1 5 7 4 1 1 1 Report
Development

Design
Environment

1 6 4 1 2 2 5 Design
Environment

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 313

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Figure 2. Repertory Grid of Applications (Elements) and Constructs (Feature Categories)

Table 3 following contains the results of the mixed linear model analysis. The mixed model uses
the F test to assess the significance of the predictors in the model. The three predictor variables:
(1) features nested within applications that are nested within categories; (2) applications nested
within categories; and (3) standalone categories, were found to significant at an alpha of .05.
These results show that feature categories, applications, and features are important in assessing
usage. Moreover, it is interesting to note that users perceive feature categories and applications
to be relatively more important than features.

Table 4. Variables Used in the Study

Variable Scale Levels Type Interpretation

Category Nominal 21 Predictor This variable translates to the category of applications
the feature under measurement falls in

Application Nominal Varying Predictor This variable equates to the application the feature
under examination is a part of

Feature Nominal Varying Predictor This variable indicates the current feature under
measurement

Person Nominal 29 Repeated
measure

This variable corresponds to the participant responding
to his feature level usage

Usage Ordinal 7 Response This variable is the feature level rating scores of the
participants

Table 5. Significance of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Feature Categories 21 84 18.99 <.0001

Applications 59 236 9.01 <.0001

Features 83 332 1.41 <.05

IV. RESULTS AND DISCUSSION

Altogether, the results provide some interesting findings. First, the repertory grid reiterates the
concerns organizations have regarding redundant applications. Nearly all participants confirm the
adoption of multiple applications with redundant features. The issue is particularly acute in the
context of deployment versioning. Data from application developers suggested four applications
sharing the same set of features. On the other hand, the database group seemed relatively more
prudent in their choice of applications.

Differences in work outcomes may explain differences between these groups. Graphics designers
seem to be very discerning yet subjective with their choice of specific application features
(revealed by their large choice of feature categories) relative to database designers who look at
much more objective, data-driven characteristics in their application features, traits also shared by

Often Used
for Oracle MySQL SQL Server Apex SQL

J2EE
(ODBC)

Oracle
LogMiner

Rarely Used
for

Data Control 3 4 7 1 1 6 Data Control
Database

Management 5 1 6 2 5 1 Database
Management

Query
Development 6 1 5 1 1 4 Query

Development

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 314

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

the instructional design group. Application developers, on the other hand, indicated how
discriminating they were with particular features, preferring a set of programming software
applications for ad hoc feature use rather than “churn all deliverables through a single mill.”

Second, results show that participants regard both applications and feature categories as
important dimensions guiding their choice of software. This implies the problem users and
developers may undergo if asked to cognitively delineate features or feature categories from an
application. For example, features such as “control panel” and “regedit” are often associated with
Microsoft Windows operating system. Mentally, it may be difficult for users to disassociate these
features as being application, or in this case- operating system, independent. If so, the finding
implies two important facts. First, users perceive an application to be more than a sum of its
features. Such a position reduces feature independence, offering vendors to capitalize on user
dependence on interfaces or otherwise by bundling features to a popular application. If user
perceptions are largely application-centric, it becomes difficult for firms to rationalize feature-level
usage. Second, it supports vendor strategies of cognitive “lock-in,” where a particular feature is
automatically associated with a specific application or category. For example, a Microsoft
Windows operating system user who likes the feature of “right-clicking” a mouse to open up a set
of functions is likely to feel distanced by operating systems (e.g. pre OS X Macs) that do not
support that feature. Interestingly though, the data provides a slight but interesting departure.
While the perceived importance of feature categories and applications received significant
support (Pr>F < 0.0001), the importance of specific features only received marginal support (Pr>F
< 0.05). Such a finding could be suggestive of the fact that users may be gradually perceiving
features as being independent of an application vis-à-vis their perceived dependence afforded to
feature categories in applications.

The growing standardization of features under feature categories offers a case in point. For
example, in systems development and deployment, the feature category of deployment
versioning has evolved to encompass a standard set of features (functions). Users are more
interested in knowing whether an application includes the “deployment versioning” feature
category than what features comprise the feature category. There may be a growing assumption
that the existence of a feature category toolset will most likely encompass the necessary features.
Moreover, because a large part of an organizational portfolio consists of application software from
reputed vendors, developers and users are well aware of the toolset offered by different feature
categories. While the results show that developers and users significantly value applications, it
also points out that developers’ and users’ application choices may be driven by availability of
feature categories (note the large shift in F-value for feature categories over applications). It could
be argued that an attempt to reduce the set of applications used in current organizations could
result in a negative perception among users; in the same vein, it could likewise be argued that the
same users’ choice of applications are triggered by the availability of feature categories that they
require and deem fit for use. This element of rationality may be utilized by organizations to trigger
a reduction in its application portfolio based on feature level overlap. Vendors may capitalize on
the same rational streak by marketing the overall feature category for their applications rather
than individual features. For example, a programming platform vendor may find it more useful to
stress on the ease of use of the overall development environment rather than by explaining each
feature. Both organizations and vendors may have to recondition themselves by realizing that
software choices among developers and users are perhaps notionally linked to reducing
information overload.

Of the two differing views regarding the conceptualization of features—emergent and
appropriation [DeSanctis and Poole 1994; Griffith 1999; Orlikowski 2000]— we find support for
both. In accordance with the appropriation conceptualization, users operate within a bounded
structure of applications, constrained by their inherent features. During the laddering stage, both
developers and users noted that they used many of the features as designated by the specific
application. However, developers and users also noted that they often used features in a way not
only based solely on vendor specifications but also in ways that allowed them to best complete
their work, a condition matching emergent conceptualization. It is plausible that participants utilize

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 315

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

features in both existing and innovative ways by finding substitute and alternative modes of
operation to overcome and extend their learning curve to accomplish the task on hand.

The concepts of coupling and cohesion add considerable explanatory value. Coupling relates to
how closely tied a certain feature (as a program module) is to other features or other
environmental (e.g. application, platform) modules in general. Features are coupled into
applications, i.e., feature level modules are dependent on application level modules for
functioning. Cohesion, on the other hand, refers to the overall functionality and reusability of the
features within an application. In general, a loosely coupled module would have higher cohesion
because they can be reused for optimal return. How strong features are (or perceived as) coupled
in an application may well be the clue behind understanding whether users can perceptively
decouple features. An interesting and common example is that of Web applications. A typical
shopping cart application embeds a login feature and credit card verification feature. Although
these features are easily separable program modules (i.e. easy to decouple and thus more
cohesive), the tight and complex linkages (coupling) of these features within the application often
makes it perceptively difficult to decouple them. This strategy is perhaps the most fruitful for
vendors. Here, vendors, in reality, can create loosely coupled modules that are easily callable
(reusable) by other application modules to maintain a high level of cohesion. If the cohesion is
high enough, users are most likely to perceive these features as cognitively inseparable from an
application, thus increasing “lock-in” effects and user loyalty toward applications.

Similarly, parallel arguments may also explain user perceptions of feature use. In order to
maintain a relatively objective view of features within applications, this study is limited in its
primary assumption of homogeneity within features. However, in reality, feature quality is an
important aspect. Consider how the regression feature considerably varies across SAS versus
SPSS. Vendors that can enhance feature quality within an application are more likely to create
better lock-in effects for users, thus making the application an extension of the feature.
Furthermore, a competing argument can also be drawn from the overall application and platform
dependence of features. How open is the hardware and operating system environment for
supporting features? User perceptions of feature use are often a function of operating and
hardware platforms. For example, if an application is unsupported by a particular platform, users’
perceptions toward feature-level independence that allows them to use the features independent
of the application are more likely to be positive and significant.

V. CONCLUSION

Our research finds that users perceptively differentiate, albeit marginally, individual features from
overall applications but not to the same extent as they do feature categories. Among users
(including developers), perceptions of application-level use are more significant than feature-level
use, the importance of applications is still perceived to be greater than its specific features. Users
seem to view applications as personally “constructed convenient fictions for describing and
discussing particular constellations of features” [Griffith and Northcraft 1994:283]. Individual
features seem to be subsumed by the application itself and users do not place features as being
more important than applications. Instead, users and developers perceive that features are
captive to particular applications—it is difficult separating them. However, it is interesting to note
that users perceive feature category use to more important than individual features. Feature
categories remain core, suggestive of being critical to defining the choice of an application while
individual feature specifications become optional, intended to enhance the application beyond its
core features [Griffith 1999], but not guide the choice of application.

Inferentially, one can argue that user perceptions of use tend be married more to an application
environment than to a particular feature. If a feature were to be separated from that particular
(application) environment, users may feel distanced in the use of that particular feature. The
layout or interface of the application environment can perhaps impact usage more than
application features. For example, although statistical analysis features (e.g. ANOVA, cluster
analysis) are available across multiple applications (SAS Base, Minitab, SPSS…), users tend to

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 316

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

use different applications prompted by their perception of the core feature categories (e.g.,
Difference of Means, Multivariate Analysis) in the belief that availability and ease-of-use of core
categories are more important that individual features. This view could be strengthened by future
research using a larger sample to investigate whether the marginal support received by features
still held true.

In many cases, unbundling of an application from its features is inconceivable. Here, feature
overlaps may commonly be disregarded for a higher level of comfort with particular application
environments. From an adaptive theoretical standpoint, which posits how the interplay of user
and technology leads to different mutable realities [DeSanctis and Poole 1994], it could also be
argued that the interplay of users with technology (applications and features) allows structures
(equilibrium) to merge over time. The equilibrium is simultaneously rational and perceptual. It is
rational because users and developers require the availability of particular feature categories as a
toolbox of pertinent features. It is perceptual because the overall application is perceived to be
more important than individual functionalities or features. Although the equilibrium is fragile, user
action at our cross-sectional point of reference shows emergence of a structure that favors
feature categories and applications over individual features.

User cognition also provides a certain degree of clarification. At feature level, Griffith [1999]
notes, technology can be concrete or abstract: concrete features are objective and can be directly
specified and distinguished; abstract features are much more subjective and difficult to describe.
While triggers from concrete features (e.g. specific functions) are easier to capture and analyze,
abstract features are more complex to define (e.g. feeling about an application environment, the
way features are combined). This study found user and developer inclination more towards
abstract, rather than concrete. The choice of abstract nature of feature categories as driving
application choices vis-à-vis the concrete nature of individual features refers to a sense of
complexity surrounding user cognition and choices. Perhaps future attempts at capturing the
direct and indirect effects of concrete and abstract features may offer a richer and different
perspective on users’ and developers’ perception and sense making.

Another future direction for this study can stem from investigating moderating influences such as
organizational culture, management style, and organizational practices on feature usage. The
culture and volatility of policies, practices, and markets often prompt different user and developer
behavior. Particular industries are more susceptible to software innovations and upgrades than
others. Certain industries in fast-paced markets prompt user and developer demand for newer
software and upgrades to meet changing needs. In our particular study, the speed at which these
organizations phased software in and out was fast and the need for proficiency in software
applications thus high. For companies and industries where software turnover is high, it
sometimes becomes difficult keeping abreast of all feature level innovations, forcing in a new
mindset that examines features more at a category level than at specific technical levels. Also, as
one user suggested, “the vendors keep renaming the same features….one time or the other you
will end up losing track.” In such an instance, developers and users would most likely fall back on
particular feature categories and specific applications to reduce information overload and
complexity surrounding relearning and use. Perhaps the equation would shift in companies and
industries with a less volatile application portfolio. One could even contend that the shift in feature
dependence could also be a of developer and user proficiencies.

Again, there could also be considerable differences in individual thought processes between
those persons using highly technical and non-technical applications, such as Word Processing
versus Computer Aided Design (CAD). This study does not look into these issues. Further
research should investigate software selection practices based on complexity of the software
application and also between industries.

In summary, it is certain that organizations will keep on building their application portfolio and
applications will keep growing in complexity, adding more and more features to its current
portfolio. These features, both core and tangential, can be objective or abstract. We can glimpse
into how user interaction at an application and feature level allows a socio-technical system to

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 317

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

emerge. Organizations and vendors can better manage such socio-technical systems when they
have a better acumen toward what drives user choices and whether feature independence will
evolve as a credible trend. It is important to know if users are rational enough to driven by
objective feature-based criteria or are captive to particular application environments. Our study
finds partial support for both. While developers and users deem feature categories important,
they are yet to perceive a software application merely as a sum of its parts (features). Instead, a
gestalt perspective, suggesting that both applications and feature categories are perceptively
greater than just a sum of their underlying features, seems to be in vogue. Findings from this
study attest to such a gestalt perspective.

REFERENCES

Adler, M., and E. Ziglio. (1996). Gazing into the Oracle: The Delphi Method and Its Application to
Social Policy and Public Health, Jessica Kingsley Publishers, London.

Beail, N. (1985). “An Introduction to Repertory Grid Technique,” In N. Beail (Ed.), Repertory Grid
Technique and Personal Constructs. London: Croom Helm, pp. 1-24.

Brancheau, J. and J. Wetherbe. (1987). “Issues In Information Systems Management,” MIS
Quarterly, 11(1), 23-45.

Chatzoglou, P. and A. Soteriou. (1999). “A DEA Framework to Assess the Efficiency of the
Software Requirements Capture and Analysis Process,” Decision Sciences, 30 (1), pp. 503-
532.

Compeau, D. and C. Higgins. (1995). “Computer Self-Efficacy: Development of a Measure and
Initial Test,” MIS Quarterly, 19 (2), pp. 189-211.

Dalkey, N. C. and O. Helmer. (1963). “An Experimental Application of the Delphi Method to the
User of Experts,” Management Science, 9, 3, pp. 458-67

Davis, F. (1989). “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology,” MIS Quarterly, 13 (3), pp. 319-340.

DeSanctis, G. and M. Poole. (1994). “Capturing the Complexity in Advanced Technology Use:
Adaptive Structuration Theory,” Organization Science, 5, pp. 121-147.

Duffield, C. (1988). “The Delphi Technique,” The Australian Journal of Advanced Nursing Vol. 6,
pp.41-5.

Easterby-Smith, M. (1981). “The Design, Analysis and Interpretation of Repertory Grids,” in
Shaw, Ed. Recent Advances in Personal Construct Theory. Academic Press: New York, NY.

Goldstein, H (1986). “Multilevel Mixed Linear Model Analysis Using Iterative Generalized Least
Squares,” Biometrika, Vol. 73, No. 1 (April), pp. 43-56.

Griffith, T. (1999). “Technology Features as Triggers for Sensemaking,” Academy of Management
Review, 24, pp. 472-488.

Griffith, T. and G. Northcraft. (1994). “Distinguishing between the Forest and the Trees: Media,
Features, and Methodology in Electronic Communication Research,” Organization Science,
5, pp. 272-285.

Hunter, M. (1997). “The Use of Repgrids to Gather Interview Data about Information Systems
Analysts,” Information Systems Journal, 7, pp. 67-81.

Jasperson, J., P. Carter, and R. Zmud. (2004). “A Comprehensive Conceptualization of the Post-
Adoptive Behaviors Associated with IT-Enabled Work Systems,” MIS Quarterly, Vol. 29: 3,
pp. 525-557.

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 318

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Kelly, G. (1955). The Psychology of Personal Constructs, Vol. l. Norton: New York.

Latta, G. and K. Swagger. (1992). “Validation of the Repertory Grid for Use in Modeling
Knowledge,” Journal of the American Society for Information Science, 43 (2), pp. 115-129.

Marsden, D. and D. Littler. (2000). “Repertory Grid Technique: An Interpretive Research
Framework,” European Journal of Marketing, 34 (7), pp. 816.

Meuleners, L. B., R. Cercarelli, and A. Lee. (2004). “Issues Affecting Heavy Vehicle Drivers in
Western Australia: A Delphi Study,” Road and Transport Research, December, pp. 1-8.

Moore, G. and I. Benbasat. (1991). “Development of an Instrument to Measure Perceptions of
Adopting an Information Technology Innovation,” Information Systems Research, 2 (3), pp.
192-222.

Moyihan, T. (1996). “An Inventory of Personal Constructs for Information Systems Project Risk
Researchers,” Journal of Information Technology, 11, pp. 359-371.

Niederman, F., J. C. Brancheau, and J. C. Wetherbe. (1991). “Information Systems Management
Issues for the 1990s,” MIS Quarterly, 15(4), 475 - 500

Orlikowski, W. (2000). “Using Technology and Constituting Structures: A Practice Lens for
Studying Technology in Organizations," Organization Science, 11 (4), p.404-428.

Phythian, G. and M. King. (1992). “Developing an Expert System for Tender Enquiry Evaluation:
A Case Study,” European Journal of Operational Research, 56 (1), pp. 15-29.

Reger, R. (1990). “The Repertory Grid Technique for Eliciting the Content and Structure of
Cognitive Constructive Systems,” In Mapping Strategic Thought (Huff, Ed.), pp. 301-309.
Wiley: Chichester.

SAS Help V9.1 for Windows. Cary, NC: SAS Corporation.

Sparrow, J. (1999). “Using Qualitative Research to Establish SME Support Needs,” Qualitative
Market Research, Bradford 2 (2) pp. 121.

Stewart, V. and A. Stewart. (1981). A Business Application of Repertory Grid. McGraw Hill:
London.

Tan, C. (1999). “Exploring Business-IT Alignment Using the Repertory Grid,” Proceedings of the
10th Australasian Conference on Information Systems, pp. 931-942.

Tan, C. and M. Hunter. (2002). “The Repertory Grid Technique: A Method for the Study of
Cognition in Information Systems,” MIS Quarterly, 26 (1), pp. 39-57.

Thompson et al., (1991). “Personal Computing: Toward a Conceptual Model of Utilization,” MIS
Quarterly, 15 (1), pp. 125-143.

Turoff, M. (1970). “The Design of a Policy Delphi,” Journal of Technological Forecasting and
Social Change, Vol. 2, pp.149-172.

APPENDIX A: APPLICATION USAGE ON A PER FEATURE BASIS

Feature Application(s) (Rep Grid) Category

Web publishing Flash, Fireworks Interactive

Creating and editing presentations PowerPoint, Fireworks Interactive

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 319

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Feature Application(s) (Rep Grid) Category

Non-linear time-based media creation
& editing Flash, Fireworks Interactive

User-controlled media creation Swish, Fireworks, Director Interactive

Editing vector-based images Illustrator Vector-based

Creating vector-based images CorelDraw Vector-based

Input data Excel Desktop Publishing

Edit content Word, PageMaker Desktop Publishing

Edit spreadsheets Excel Desktop Publishing

Graphics capabilities Word, PageMaker, WordPerfect Desktop Publishing

Simple day-to-day tasks Word, PageMaker Desktop Publishing

3D editing Character 3D 3D Modeling

Animating 3D objects Image Modeler 3D Modeling

Materials and lighting simulation Level Editor 3D Modeling

Computer Aided Design (CAD) ViewPoint 3D Modeling

Visualization tools Viewpoint 3D Modeling

Creating 3D objects Character 3D, 3D Studio, ImageModeler 3D Modeling

Viewing images and graphics Thumbsplus, Fastlook Viewing Data

Save time in my work Micro Viewing Data

Streamline production Micro Viewing Data

Convert image based file formats PDF Creator Data Conversion

Convert video based file formats MPEG2, QuickTime Data Conversion

Convert sound based file formats QuickTime, CleanerXL Data Conversion

Complete specialized tasks Trace Data Conversion

Creating raster-based images Photoshop, Paint Raster-based

Editing raster-based images Mystical, Stitcher Raster-based

Timeline-based work Matchmover, Titlemotion, Edit6 Video Editing

Post-production Combustion, Edit6, Primiere Video Editing

Special effects Combustion Video Editing

Multiple image sequence editing Retimer, Combustion, Edit6 Video Editing

Forward Engineering Visio, VP-UML Application Model
Testing

Reverse Engineer Visio, VP-UML Application Model
Testing

Mapping Function Charter, Visio, VP-UML Application Model
Testing

Mapping Reversibility Charter, Visio Application Model
Testing

Open Archetypes Borland, Visio EA, Diablo Model Compilation

Execution Engine Borland, Visio EA, Visual Studio, Diablo Model Compilation

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 320

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Feature Application(s) (Rep Grid) Category

Stored Instances Visual Studio, Borland Model Compilation

Call Generation Visual Studio, Borland, Diablo Model Compilation

Traverse Capability Diablo, Visual Studio Model Compilation

Semantic Repository Oracle BPEL (Remote), Visual Studio Model Compilation

Error Detection Visual Studio, Borland, Diablo Model Compilation

Independent Project Deployment ASP Express, WebMatrix, Visual Studio
.NET, JRun Deployment Versioning

Data and Language Migration .NET SDK, Visual Studio .NET,
Websphere Deployment Versioning

Security Deployment Microsoft SourceSafe, TeamSource DSP,
J2EE Deployment Versioning

Version Control Microsoft SourceSafe, Team Source DSP Deployment Versioning

Assembly Verification and Binding Visual Studio .NET, Websphere Deployment Versioning

Memory Management Visual Studio .NET, J2EE Common Language
Runtime

Thread Management Visual Studio .NET, J2EE Common Language
Runtime

Cross-platform Usability Visual Studio .NET, J2EE Common Language
Runtime

Data-Definition Visual Studio .NET, J2EE Common Language
Runtime

Predefined Classes and Objects Visual Studio .NET, J2EE, VBA Development
Environment

Object and Code Reusability Visual Studio .NET, J2EE, VBA Development
Environment

Libraries Visual Studio .NET, J2EE Development
Environment

Validation Visual Studio .NET, J2EE Development
Environment

Workload Access and Control SQL Server, Oracle, J3EE (JDBC) Database Management

Enterprise Management SQL Server, Oracle Database Management

Auditing SQL Server, Apex SQL Database Management

Performance Analysis SQL Server, Oracle Database Management

Flashback Version Query Oracle LogMiner Query Development

Query Control SQL Server, Oracle Query Development

View Control SQL Server Query Development

Automatic Accreditation Updates ID Expert, CentraONE Standards-Based
Development

Competence Analysis CentraONE Standards-Based
Development

Course Quality Assessment Lotus LearningSpace Standards-Based
Development

Communications of the Association for Information Systems (Volume 20, 2007) 300-321 321

An Empirical Assessment of User Perceptions of Feature versus Application Level Usage by M.J. Harrison &
P. Datta

Feature Application(s) (Rep Grid) Category

Student Assessment and Scoring Lotus LearningSpace, CentraOne Report Development

Reporting Options Lotus LearningSpace Report Development

Content Creation Blackboard, CentraOne, Lotus
LearningSpace Report Development

Synchronous Collaboration Lotus LearningSpace, elluminate Vclass Design Environment

Monitoring Mentargy LearnLinc Design Environment

Survey Development and
Administration Web Surveyor, Blackboard, CentraOne Design Environment

Backend Administrative Integration Lotus LearningSpace Design Environment

ABOUT THE AUTHORS

Michael Harrison is a doctoral student in the Heinz School of Public Policy and Management at
Carnegie Mellon University. Michael has several years of experience as a consultant for
Deloitte and Touche and as an entrepreneur. He is interested in software development, use, and
reengineering and is currently involved in the computational analysis of organizational systems.

Pratim Datta is an Assistant Professor of Information Systems in the Department of Management
and Information Systems at Kent State University. Pratim has a PhD and MS from Louisiana
State University. Pratim has been involved in security, design, and reengineering of
organizational information systems. Pratim is also interested investigating the economics and
psychology of user behavior in a variety of technology settings. His research has been published
and presented in a variety of journals and conferences, notably the Journal of the Association of
Information Systems, IEEE Transactions, Communications of the Association of Information
Systems, Communications of the ACM, International Conference on Information Systems, and
the European Conference on Information Systems.

Copyright © 2007 by the Association for Information Systems. Permission to make digital or hard

copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and full citation
on the first page. Copyright for components of this work owned by others than the Association for
Information Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission
to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from ais@aisnet.org

mailto:ais@gsu.edu

 .

ISSN: 1529-3181
EDITOR-IN-CHIEF

Joey F. George
Florida State University

AIS SENIOR EDITORIAL BOARD
Guy Fitzgerald
Vice President Publications
Brunel University

Joey F. George
Editor, CAIS
Florida State University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Paul Gray
Founding Editor, CAIS
Claremont Graduate University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M. Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Jane Fedorowicz
Bentley College

Chris Holland
Manchester Bus. School

Jerry Luftman
Stevens Inst. of Tech.

CAIS EDITORIAL BOARD
Michel Avital
Univ of Amsterdam

Erran Carmel
American University

Fred Davis
Uof Arkansas, Fayetteville

Gurpreet Dhillon
Virginia Commonwealth U

Evan Duggan
Univ of the West Indies

Ali Farhoomand
University of Hong Kong

 Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Ake Gronlund
University of Umea

Ruth Guthrie
California State Univ.

Alan Hevner
Univ. of South Florida

Juhani Iivari
Univ. of Oulu

K.D. Joshi
Washington St Univ.

Michel Kalika
U. of Paris Dauphine

Jae-Nam Lee
Korea University

Claudia Loebbecke
University of Cologne

Paul Benjamin Lowry
Brigham Young Univ.

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Michael Myers
University of Auckland

Fred Niederman
St. Louis University

Shan Ling Pan
Natl. U. of Singapore

Kelley Rainer
Auburn University

Paul Tallon
Boston College

Thompson Teo
Natl. U. of Singapore

Craig Tyran
W Washington Univ.

Chelley Vician
Michigan Tech Univ.

Rolf Wigand
U. Arkansas, Little Rock

Vance Wilson
University of Toledo

Peter Wolcott
U. of Nebraska-Omaha

Ping Zhang
Syracuse University

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Alan Hevner and Sal March

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Chris Furner
CAIS Managing Editor
Florida State Univ.

Copyediting by Carlisle
Publishing Services

	Communications of the Association for Information Systems
	October 2007

	An Empirical Assessment of User Perceptions of Feature versus Application Level Usage
	Michael J. Harrison
	Pratim Datta
	Recommended Citation

	ABSTRACT
	 I. INTRODUCTION
	II. LITERATURE REVIEW
	REPERTORY GRID AND PERSONAL CONSTRUCT THEORY

	III. METHODOLOGY
	DATA ANALYSIS

	IV. RESULTS AND DISCUSSION
	V. CONCLUSION
	REFERENCES
	APPENDIX A: APPLICATION USAGE ON A PER FEATURE BASIS
	ABOUT THE AUTHORS

