
Communications of the Association for Information Systems

Volume 20 Article 25

October 2007

Waiting for Usable Open Source Software? Don't
Hold Your Breath!
Ravi Sen
Texas A&M University, rsen@mays.tamu.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Sen, Ravi (2007) "Waiting for Usable Open Source Software? Don't Hold Your Breath!," Communications of the Association for
Information Systems: Vol. 20 , Article 25.
DOI: 10.17705/1CAIS.02025
Available at: https://aisel.aisnet.org/cais/vol20/iss1/25

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20/iss1/25?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20/iss1/25?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 382

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

WAITING FOR USABLE OPEN SOURCE SOFTWARE?
DON’T HOLD YOUR BREATH!

Ravi Sen
Information and Operations Management Department
Mays Business School
Texas A&M University
rsen@mays.tamu.edu

ABSTRACT

There is a general consensus about the lack of usability in most open source software (OSS).
Academics and practitioners have offered several suggestions to improve the usability of such
software. However, a realistic assessment of OSS projects, specifically the motivations of OSS
developers and their attitude toward software usability, lack of user feedback, and absence of
usability experts in OSS projects, leads to the conclusion that strategies to improve OSS usability
are unlikely to succeed anytime soon. The only exceptions will be OSS which enjoy sufficient
financial support from individuals and organizations, and software that were developed by
commercial software producers and later released under an open source license.

.Keywords: software usability, OSS, FLOSS, usability

I. INTRODUCTION

An open source software (OSS) allows users to have access to the source code of the software,
the freedom to use the software as they see fit, improve it, fix its bugs, augment its functionality,
and redistribute the software under an OSI1 approved license to other users for free or at a
charge, who could themselves modify and/or use it according to their own needs.2 For those who
are interested in knowing more about OSS, AlMarzouq et al. [2005] offer an excellent tutorial on
the subject. The tutorial provides detailed discussions on OSS development, OSS licensing, and
benefits of OSS. In addition, there is a huge body of research on OSS, which focuses on
motivations of OSS developers, success of OSS, and the impact of OSS on software markets
[see Niederman et al. 2006a and 2006b; Sen 2007; Nelson et al. 2006 for OSS research
classification]. Interestingly, the success of OSS has been mostly confined to technically skilled or
“power” users, who use OSS in their own software development projects or as part of the larger
computing infrastructure. For example, Apache, Linux, and Sendmail, considered successful
OSS, are generally adopted by users with high software skills. An overwhelming majority among
average computer users, who have limited software skills, still rely on proprietary and commercial
software [Lerner and Tirole 2002]. One of the main reasons cited for the limited acceptance of
open source software among the average users is the lack of usability in OSS. For instance, in a

1 Open Source Initiative
2 http://opensource2.planetjava.org/docs/definition.php

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 383

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

survey conducted by EU on open source software, usability was not seen as an advantage of
open source software over proprietary software.3 For example, desktop versions of UNIX, an
open source operating system, have relatively poor usability in comparison to closed-source
commercial operating systems such as Windows XP. This poor usability of UNIX is best
illustrated by the following excerpt from an essay by one of the strongest proponents of OSS-

I've just gone through the experience of trying to configure CUPS, the Common UNIX
Printing System. It has proved a textbook lesson in why non-technical people run
screaming from UNIX. This is all the more frustrating because the developers of CUPS
have obviously tried hard to produce an accessible system - but the best intentions and
effort have led to a system which despite its superficial pseudo-friendliness is so
undiscoverable that it might as well have been written in ancient Sanskrit. [Eric Raymond
2004].

In response to this essay, Raymond received several letters from the open source community.
Many of the writers, who considered themselves to be skilled software users, had found
themselves in similar situations when using open source software. The problem, therefore, is not
just that an average non-technical user does not find open source software usable - the problem
is that even “expert users” such as Eric Raymond sometimes have trouble with OSS usability. In
short, while open source software has gained a reputation for reliability, efficiency, and
functionality, its poor usability forms a major obstacle in its widespread use. The significance of
OSS usability (or lack of it) can be gauged from the numerous studies and commentaries
addressing the issue [e.g. Behlendorf 1999; Raymond 2004; Manes 2002; Nichols et al. 2001;
Thomas 2002; Frishberg et al. 2002]. These studies offer several suggestions and strategies that
could lead to improvements in OSS usability. In this paper we analyze these suggestions and
strategies to determine if they can be successfully implemented in OSS development. The paper
is structured as follows. Section III summarizes the popular usability testing method, which are
then analyzed to determine their applicability for open source software. Section IV provides an
analysis of usability improvement strategies that have been proposed in the current literature,
followed by the conclusion in Section V.

II. SOFTWARE USABILITY TESTING METHODS

Before any improvements can be made to OSS usability, the OSS developers need to first test
their software for usability. Current usability testing techniques are generally classified into two
basic types: inspection and empirical [Holzinger 2005]. Inspection methods are conducted by
usability specialists such as HCI4 and the software design team, and are useful for identifying
major flaws in an interface before the software reaches the end users. Empirical tests can be
conducted with actual members of the target user population [Nielsen 1993]. It involves
understanding the potential non-developer users’ characteristics such as their computer skills,
work experience, educational levels, and ages. An understanding of these characteristics helps
the software developers to anticipate the users’ ability to learn and use the software, and then
modify the software complexity to make it usable for these potential users. Table 1 provides a
brief description of popular usability inspection methods that are currently in use.

CAN EXISTING USABILITY TESTING METHODS WORK FOR OSS?

Before we can address this question we need to determine the inherent requirements for
implementing the existing usability testing methods (Table 1). As we can see from Table 1, the
empirical methods for testing usability involve usability experts and end-users. Among inspection

3 http://flosspols.org/deliverables/D03HTML/FLOSSPOLS-D03 local governments survey
reportFINAL.html
4 Human Computer Interface

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 384

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

methods, some involve a representative sample of potential users (i.e. Pluralistic Walkthrough
and Feature Inspections), while most involve HCI experts (i.e. Heuristic Evaluation; Guideline
Review; Pluralistic Walkthrough; Standards Inspections; Cognitive Walkthroughs; Formal

Table 1. Summary of Software Usability Testing Methods [Holzinger 2005]

Empirical Methods

Method Name Brief Description Who is Involved?

Empirical Usability
Testing

Understanding the potential non-developer
users’ characteristics that can help the
developers to anticipate the users’ ability to
learn and use the software.

Usability Experts and
end-users

Inspection Methods

Method Name Brief Description Who Is Involved?

Heuristic
Evaluation

An informal way to determine whether the interface
conforms to established usability principles

Usability specialists,
e.g. HCI experts

Guideline
Review

A complex method in which the interface is tested
for conformance with a comprehensive list of
usability guidelines

Usability specialists,
e.g. HCI experts

Pluralistic
Walkthrough

This method involves following a scenario [e.g. a
possible software use], and the discussion of
potential usability issues.

Representative
users; Developers;
and HCI experts

Consistency
Inspections

Software developers meet to see whether an
interface’s behavior is consistent with their designs.

OSS Developers

Standards
Inspections

An expert inspects an interface for compliance with
industry standards. These evaluations are designed
to increase the usability of an interface in
comparison with other systems on the market that
follow the same set of standards

Usability specialists,
e.g. HCI experts

Cognitive
Walkthroughs

Simulate users’ problem-solving processes. This
test evaluates whether the simulated user’s goals
lead from one action to the next correctly.

Usability specialists,
e.g. HCI experts

Formal Usability
Inspections

A moderator is appointed to manage inspections
and the inspection meeting. A design owner [e.g.
project leader] is responsible for design and
redesigns. Inspectors find problems with the
interface; and a scribe records all issues identified
during the meeting. Formal inspections use the
following process: planning, a preliminary meeting,
a preparation phase where inspectors review the
interface, an inspection review where lists of
usability problems are merged, and a follow-up
phase where the effectiveness of the inspection
process itself is assessed.

Usability specialists,
e.g. HCI experts; and
OSS Developers

Feature
Inspections

These evaluations test the functionality delivered in
software, and assess whether it meets the needs of
the users.

Representative
users; and OSS
Developers

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 385

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

Usability Inspection). Some methods require the participation of both HCI experts and a
representative sample of potential software users. Therefore, it is logical to conclude that in order
for these usability testing methods to be applicable in the context of open source software, OSS
project administrators need to involve either users, or usability experts, or both in their projects.
However, at present most OSS projects lack both active non-developer user participation and
usability-experts’ participation.

Generally speaking most non-developer users5 are passive members of the open source
community. For example about 99 percent of people who use Apache are passive users
[Nakakoji 2002]. They make no contribution to the OSS code, and do not volunteer to support the
project in any way or manner. Even when they are dissatisfied by the software, they are more
likely to use the next available alternative rather than solve the problems that they have with the
software. In such circumstances, it would be unrealistic to expect user involvement in usability
testing exercise. Therefore, the usability testing methods involving users do not seem to be
suitable for OSS. Usability experts do not get involved in OSS projects for two reasons. First,
most OSS developers believe that usability is purely a technical issue and as such can be taken
care of by the developers themselves without any help from usability experts [Englich 2004].
Therefore, they are reluctant to involve usability experts in their OSS development projects.
Second, even when OSS developers are not against seeking the help of usability experts, they do
little to welcome these experts to their OSS projects, as is evident from the following quote by a
usability expert:

Raymond and his ilk have no respect for anyone but themselves. They have no respect
for the fact that UI design is a special talent. They have no respect for the fact the good
UI design requires a tremendous amount of time and effort. And, most importantly, they
have no respect at all for real users. [Ronco Spray 2004]

Third, the incentives in the OSS community are geared toward increasing developer participation,
i.e. they work better for improvement of functionality than of usability [e.g. Feller and Fitzgerald
2002; Hars and Ou 2001]. Since the usability experts do not add any feature to the OSS, their
contribution is ignored by the OSS developer community. Therefore, these experts have minimal
incentive to participate in open source projects [e.g. Nichols and Twidale 2003]. Therefore, it
would be unrealistic to expect help from usability experts in testing OSS usability.

In summary, in order to test OSS for usability, the OSS developers need active participation from
non-developer users and usability experts (i.e. HCI experts). However, for reasons discussed
earlier, both are most likely to abstain from active participation in OSS usability testing. Therefore,
the key challenge before OSS projects is to ensure active participation from non-developer users
and HCI experts before they can move on to the next step of actually improving the usability of
their software. Nichols and Twidale [2003] have suggested several strategies to involve users and
usability experts in OSS usability testing. Furthermore, initiatives to match OSS developers with
usability experts have been also been undertaken (e.g. see openusability.org). In the following
section we will analyze these strategies and initiatives to determine if would be successful.

III ANALYSIS OF STRATEGIES FOR INVOLVING USERS AND USABILITY EXPERTS IN OSS
PROJECTS

All software usability testing techniques involve the users of the software, usability experts (e.g.
HCI experts), or both. The current literature suggests that to encourage user-participation in
usability testing, OSS administrators need to provide tools that reduce the effort required on the
part of users to offer their suggestions and feedback on usability issues, and provide financial
incentives to the users who provide the feedback or participate in usability testing studies.
Usability experts can be encouraged to participate in OSS usability testing by offering them due

5 Non-developers Users- Users who use OSS but do not contribute any code to the OSS.

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 386

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

recognition and awarding their contributions to OSS projects. This section analyses these
strategies to determine the likelihood of their success.

GETTING NON-DEVELOPER USERS INVOLVED

Red Hat's Havoc Pennington and Novell's Jimmac suggest6 the following:

…users write an analysis and test cases of a feature request the user wants to see
implemented, because this way they might get the developer motivated to actually
implement it.

This is not an easy advice to implement, since even a small amount of extra effort is enough to
discourage users from providing any feedback or suggestion [Nielsen 1993]. Therefore, expecting
users to write detailed test cases is unrealistic. Furthermore, there are two problems with this
approach [Eugenia Loli-Queru 2005]:

1. Most non-developer users are not skilled enough to write a test case.
2. Average users do not use bug reporting tools such as bugzilla,7 mainly because they do not

like spending time to register in order to be able to use it.

Therefore, to encourage feedback from non-developer users, OSS developers need to ensure
that these users have to apply minimal effort to participate in usability testing [Nielsen 1993].
Nichols and Twidale [2003] draw on the existing work in the field of HCI (Human Computer
Interface) and offer several excellent suggestions to achieve this. For example, an OSS can have
features or tools that allow users to report any usability problems while they are using the OSS.
Existing HCI research [Hartson and Castillo 1998; Thompson and Williges 2000] has shown, on a
small scale, that user reporting is effective at identifying usability problems. In addition to these
user-initiated reports, applications can prompt users to offer feedback on the basis of their
experience with software [Ivory and Hearst 2001]. These feedbacks from individual users can be
combined and interpreted to provide critical usability information that can be used to improve the
software [Nielsen 1993]. OSS developers can also use the knowledge accumulated in the area of
remote usability [Hartson et al.,1996; Scholtz, 2001], to distribute the burden of providing usability
reports among several users. However, the OSS developers will need to ensure that they are
able to coordinate these studies and interpret the results. While all these suggestions are
noteworthy, I believe that there are challenges to implementing them in OSS projects.

Before these suggestions can be implemented, it would require the addition of new features to
the OSS [e.g. to coordinate the distributed usability reports; and to prompt the user to provide
feedback about the software’s usability] resulting in more software coding. However, OSS
developers generally avoid “code bloating.” These developers accept new features only if the
features are deemed absolutely necessary for the OSS. In fact “lean-and-mean” code is
considered one of the advantages of OSS over the closed-source commercial software.8
Furthermore, even if these additional features, that allow users to provide feedback on usability,
are implemented, there is no guarantee that software usability will improve because the
developers might not act on the information/ feedback/comment received from the users. This
inaction could be because of resource (e.g. time, developers) constraints, or because the OSS
developers are not interested in acting on them. There is some evidence to suggest that OSS
projects often ignore requests for new features from non-developer users [Eugenia Loli-Queru
2005]. For example, the key Gnome feature request, a usable menu editor, has yet to be offered
after so many years. In some cases (e.g. Red Hat Linux), the developers care only if the

6 http://www.osnews.com/story.php?news_id=9933
7 http://www.bugzilla.org/
8 http://www.tbs-sct.gc.ca/fap-paf/oss-ll/foss-llo/foss-llo10_e.asp

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 387

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

feedback comes from their marketing departments. This apathy toward the needs of the non-
developer user is best illustrated by the following quotations:

A feature will be implemented if and only if there is a developer who wants to implement
it. A Gnome developer [see Eugenia Loli-Queru, 2005].

KDE will be able to sustain itself just fine without users, while it will not last a single day
without developers. So when it comes to choosing between scaring away developers and
scaring away users, the choice is rather easy actually.. Waldo Bastian, SuSE Linux [one
of the replies to Eugenia Loli-Queru’s article [2005]9

Finally, there is the issue of incentive for users to provide feedback on OSS usability. Some
suggest that users who provide the feedback could be financially rewarded for such contributions,
such as discounts on future software purchases [e.g. Shneiderman 2002]. While this strategy
might work for commercial software projects, it will not work as well in case of OSS projects
because most of these projects (except those supported/sponsored by commercial organizations)
are already resource constrained, and therefore do not have the finances required to reward
users. In short, the suggestions to involve users in usability testing would be extremely difficult to
implement. What about involving usability experts?

INVOLVING USABILITY EXPERTS

Many of the usability inspection techniques can be implemented by involving usability (i.e. HCI)
experts. One way to do this is to partner with commercial software producers [Nichols and
Twidale 2003], and leverage their expertise in developing usable software. Furthermore, these
commercial partners can provide the resources necessary to carry out empirical usability studies.
However, there can be conflicts of interest and misunderstandings between the commercial
partners and the OSS developers about the direction of interface development [Trudelle 2002].
For example, if the commercial partner is interested in selling a bundle of OSS plus support-
service (e.g. Red Hat Linux), it is better off by ensuring that the freely available OSS remains less
usable in comparison to the commercial version of the same OSS [Sen 2006]. Therefore, OSS
developers involved with such projects have little incentive to seek help from commercial partners
to hire usability experts.

Another approach to get usability experts involved with OSS projects is to make the OSS projects
attractive to them so that they volunteer their services for free. However, for this to happen, these
usability experts will need to feel welcomed and valued. OSS developers will have to recognize
the fact that software usability is more than just a pretty user interface [e.g. Benjamin 2005]. They
will have to accept it as an important characteristic of software, and respect professionals who
specialize in the area, even if these experts lack the software development skills of the OSS
developers. References to clueless newbies and lusers, and some of the more offensive
language used to describe usability experts will need to be curtailed. In addition, these experts
can be made to feel welcome by [Nichols and Twidale 2003]: (a) recognizing the importance of
usability issues within the OSS community; (b) providing them with tools that they can use to offer
their input on usability,10 e.g. enabling them to be able to talk productively to each other [Crabtree
et al. 2000]; (c) putting in place a well-defined procedure to handle any problems arising from
conflicts between proposed usability improvements OSS functionality; and (d) recording the
contributions of usability experts in the evolution of the software. While these incentives might
attract usability experts to OSS projects, the success of this initiative in improving OSS usability
depends upon the actions taken by the OSS developers in response to the suggestions offered

9 http://osnews.com/story.php?news_id=9953

10 Hartson and Castillo [1998] review various graphical approaches to bug reporting including
video and screenshots, which can supplement the predominant text-based methods.

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 388

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

by these usability experts. At present the evidence suggests that the OSS developers are unlikely
to act on the suggestions received from the usability experts. For example, there are about
100,000 OSS projects registered at Sourceforge. However, as of 17 April 2007, only 200 projects
are registered at openusability.org, a site for projects looking for usability advice and interaction
designers who want to help. One interpretation of this statistics is that most OSS projects are not
yet interested in getting advice on usability. Therefore, one can safely conclude that that it would
be difficult to implement any usability inspection method that requires the involvement of usability
experts.

Given our conclusion that involving end-users and usability experts in usability testing is easier
said than done, what other options do we have to improve OSS usability? Nichols and Twidale
[2003] suggest the use of automated usability evaluation (AUE) techniques [e.g. Ivory and Hearst
2001], or use of “expectation agents” [Hilbert and Redmiles 2001] to understand potential user
behavior. Understanding of potential user behavior can help the OSS developers improve
software usability. However, this approach assumes: (a) that OSS developers understand the
significance of usability for non-developer users, (b) they are skilled in the use of these automatic
tools to evaluate usability, and they know the proper use if these tools. Let us address these
assumptions one by one.

OSS DEVELOPERS AND USABILITY

OSS developers are known to emphasize function over form. Most OSS projects start because
there is a need for some software and this need is not fulfilled by the existing software. As a
result, they go ahead and develop the software that meets these needs [Shah 2006]. Therefore,
the immediate priority of OSS developers is to get the functionality right. Thus, most OSS projects
are driven by functional requirements of developers.11 One could, in fact, argue that OSS is a
prime example of user-centric design (UCD): a framework which recognizes that a good
understanding of the needs of core users is integral to producing usable software [Benjamin
2001]. In case of OSS, since the developers are also the core users of the software [Mockus et
al. 2002], they tend to look at usability from their own perspective. For these developer-users the
OSS application is already usable because they know the software inside out, and can always
modify it as they choose fit. Given this narrow perspective about usability on the part of OSS
developers, it is unrealistic to assume that most OSS developers will understand the significance
of usability for non-developer users.

OSS DEVELOPERS AND AUTOMATED USABILITY EVALUATION (AUE) TECHNIQUES

As the name suggests, automated usability evaluation tools automate various aspects of usability
evaluation such as capture and measurement of usability features, their analysis, to identification
of usability problems, and suggestions to improve usability [Balbo 1995]. For a better
understanding of current AUE tools please refer to the survey of 128 AUE methods by Ivory and
Hearst [2001]. Given the fact that most OSS projects involve only a few developers
[Krishnamurthy 2002], who come together to develop a small piece of software that performs a
specific task, and then move on, it is unrealistic to expect these developers to spend time learning
about automated usability evaluation tools and techniques. Furthermore, most OSS projects
might not have the financial resources to use such tools. Finally, the use of these tools and
techniques will require OSS developers to act upon the feedback provided by these tools. As we
have argued earlier, OSS developers might be reluctant to do so because (a) they do not want to
add features that are not absolutely necessary, i.e., avoid code bloating; and (b) they do not have
the time to address issues that concern only non-developer users, which is often the case since
most OSS developers work on OSS projects as volunteers in their spare time.

11 We will refer to these individuals as either developers or developer-users in the remainder of
the paper. All other users will be referred to simply as users or non-developer users.

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 389

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

IV. CONCLUSION

Most of the suggestions offered for improving the usability of OSS are based on the assumption
that as long as they are “compatible” with the distributed methodology of developing OSS they
should be applicable to OSS development. However, a qualitative analysis of the behavioral
aspects of OSS development, more specifically those of OSS developers leads us to conclude
otherwise. Therefore, educating OSS developers about the importance of usability might be the
most important thing that needs to be accomplished [Nichols and Twidale 2003] before we can
expect any improvement in OSS usability. However, this would not be an easy task. Proponents
of better usability have tried to convince open source developers that a usability approach to their
development would be a good thing, but with little success. The responses are typically one of the
following: 12

• I've been a developer for x years and I think I know what I'm doing.
• I know what the users want.
• I'm doing this for myself [a valid response].
• If I ignore you, will you go away?
• Submit a coding change and we'll look at it.

Since usability is very important for non-developer users, OSS developer need to be convinced
that usability will increase the user-base of the software. With this strategy, at least those OSS
developers who are motivated by the size of the potential installation base of their OSS [e.g.
Nickell 2001] would be interested in improving the usability of their software. However, most OSS
developers might not be interested in a large installed base of their OSS. For instance, they may
consider their project a success if the OSS meets their unique functional requirements, if it is
used by other OSS projects, or if it attracts a large number of developers [e.g. Stuart et al. 2006;
Crowston et al. 2003]. These OSS developers are less likely to worry about the usability concerns
of non-developer users. In some cases where the OSS developers accept the significance of
usability they believe that they can take care of usability concerns without involving non-
developer users or usability experts. While an exceptional software developer can both design
and code usable software, the majority do not have the necessary skills to undertake such a
project. Most developers lack an understanding of interface types and interface design models,
and the application of these models [Smith 2002]. Finally, most OSS developers work under a
license that prevents them from selling the code, so they develop features that are important to
them and not necessarily to the market.

In short, though theoretically possible, a realistic assessment of OSS projects shows that
strategies to improve OSS usability are unlikely to succeed soon because usability expert have
little incentive to get involved with OSS projects; non-developer users find it easier to move on to
a more usable software instead of providing meaningful feedback to OSS developers; and most
OSS developers are yet to be convinced about the significance of usability for non-developer
users. The only exceptions will be (a) those OSS that enjoy sufficient financial support from
individuals and organizations to invest in the extra resources needed to carry out usability testing
and then implementing the results obtained from these testing (e.g. Red Hat Linux, SuSE Linux);
and (b) software that was developed by commercial software producers and later released under
an open source license (e.g. Firefox). Therefore, individuals and organizations who value usability
in their software should either opt for commercial versions of open source software or purchase
closed-source software from commercial software producers.

12
http://www.usabilityprofessionals.org/upa_publications/upa_voice/volumes/5/issue_1/open_sourc
e.htm

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 390

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

REFERENCES

AlMarzouq, M., L. Zheng, G. Rong, and V. Grover. (2005). “Open Source: Concepts, Benefits,
and Challenges,” Communications of AIS, (16)37, November, pp. 1-49.

Balbo, S. (1995). “Automatic Evaluation of User Interface Usability: Dream or Reality,” In S.
Balbo, Ed., Proceedings of the Queensland Computer- Human Interaction Symposium
(Queensland, Australia, August). Bond University.

Behlendorf, B. (1999). "Open Source as a Business Strategy," In: M. Stone, S. Ockman, and C.
DiBona (eds.) Open Sources: Voices from the Open Source Revolution. Sebastopol,
California: O'Reilly & Associates, pp. 149-170.

Benjamin, D. (2001). “Designing for Usability,” TEST FOCUS, (2)2,
http://www.testfocus.co.za/Feature%20articles/Feb2001.htm (current February 27th 2007).

Benjamin, R. (2005). “Usable GUI Design: A Quick Guide for F/OSS Developers,”
http://benroe.com/files/gui.html (current February 27 2007).

Crabtree, A., D. M. Nichols, J. O'Brien, M. Rouncefield, and M. B. Twidale. (2000).
"Ethnomethodologically Informed Ethnography and Information System Design," Journal of
the American Society for Information Science, (51) 7, pp. 666-682.

Crowston, K., H. Annabi, and J. Howison. (2003). “Defining Open Source Software Project
Success,” In Proceedings of the 24th International Conference on Information Systems (ICIS
2003), Seattle, WA.

Englich, F. (2004). “Open Source Usability Is a Technical Problem We Can Solve on Our Own,”
http://programming.newsforge.com/programming/
04/07/07/1640244.shtml (current Friday July 09, 2004).

Eugenia Loli-Queru. (2005). “OSS Software, Deaf Developers & Unsatisfied Users,”
http://www.osnews.com/story.php?news_id=9933 (current 10 March 2003).

Feller, J. and B. Fitzgerald. (2002). Understanding Open Source Software Development. London:
Addison-Wesley.

Frishberg, N., A. M. Dirks, C. Benson, S. Nickell, and S. Smith. (2002). "Getting to Know You:
Open Source Development Meets Usability," Extended Abstracts of the Conference on
Human Factors in Computer Systems (CHI 2002). New York: ACM Press, pp. 932-933.

Hars, A. and S. Ou. (2001). "Working for Free? — Motivations of Participating in Open Source
Projects," Proceedings of the 34th Annual Hawaii International Conference on System
Sciences. New York: IEEE Computer Society Press, pp. 2284-2292.

Hartson, H. R. and J. C. Castillo. (1998). "Remote Evaluation for Post-Deployment Usability
Improvement," Proceedings of the Conference on Advanced Visual Interfaces (AVI'98), New
York: ACM Press, pp. 22-29.

Hartson, H. R., J. C. Castillo, J. Kelso, W. C. Neale. (1996). "Remote Evaluation: The Network as
an Extension of the Usability Laboratory," Proceedings of the Conference on Human Factors
in Computing Systems (CHI'96), New York: ACM Press, pp. 228-235.

Hilbert, D. M. and D. F. Redmiles. (2001). "Large-Scale Collection of Usage Data to Inform
Design," In: M. Hirose (ed.). Human-Computer Interaction — INTERACT'01: Proceedings of
the Eighth IFIP Conference on Human-Computer Interaction, Tokyo, Japan, pp. 569-576.

Holzinger, A. (2005). “Usability Engineering Methods for Software Developers,” Communications
of the ACM, (48)1, pp 71-74.

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 391

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

Ivory, M. Y. and M. A. Hearst. (2001). "The State of the Art in Automated Usability Evaluation of
User Interfaces," ACM Computing Surveys, (33) 4, pp. 470-516.

Krishnamurthy, S. (2002). “Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects,” First Monday, (7) 6, http://firstmonday.org/issues/issue7_6/krishnamurthy/
(current 27 February 2007).

Lerner, J. and J. Tirole (2002). “Some Simple Economics of Open Source,” Journal of Industrial
Economics, (46)2, 125-156.

Manes, S. (2002). "Linux Gets Friendlier," Forbes (10 June), pp. 134-136.

Mockus, A., R. Fielding, and J. Herbsleb. (2002). “A Case Study of Open Source Software: The
Apache Server,” In Proceedings of 22nd International Conference on Software Engineering,
Limmerick, IR, pp 263-272.

Nakakoji, K., Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye. (2002). "Evolution Patterns of
Open-Source Software Systems and Communities," Proceedings of the Workshop on
Principles of Software Evolution, International Conference on Software Engineering. New
York: ACM Press, pp. 76-85.

Nelson, M., R. Sen, and C. Subramaniam. (2006). “Understanding Open Source Software
Development: A Research Classification Framework,” Communications of AIS, (17)12,
(February), pp. 266-287.

Nichols, D. M., K. Thomson, and S. A. Yeates. (2001). "Usability and Open Source Software
Development," In E. Kemp, C. Phillips, Kinshuck, and J. Haynes (eds.). Proceedings of the
Symposium on Computer Human Interaction. Palmerston North, New Zealand: SIGCHI New
Zealand, pp. 49-54.

Nichols, D. M. and M. B. Twidale. (2003). “The Usability of Open Source Software,” First Monday
8(1). http://www.firstmonday.org/
issues/issue8_1/nichols/ (current 27 February 2007).

Nickell, S. (2001). "Why GNOME Hackers Should Care about Usability," GNOME Usability
Project, http://developer.gnome.org/
projects/gup/articles/why_care/, (current 27 February 2007).

Niederman, F., A. Davis, M. E. Greiner, D. Wynn, and P. T. York. (2006a). “A Research Agenda
for Studying Open Source I: A Multi-level Framework,” Communications of AIS, (18)7,
August, pp.1-38.

Niederman, F., A. Davis, M. E. Greiner, D. Wynn, and P. T. York. (2006b) “A Research Agenda
for Studying Open Source II: View through the Lens of Referent Discipline Theories,”
Communications of AIS, 18, August, pp.150-175.

Nielsen, J. (1993). Usability Engineering, San Francisco, CA: Morgan Kaufmann Publishers, Inc.

Raymond E. (2004). “The Luxury of Ignorance: An Open-Source Horror Story,”
http://people.lis.uiuc.edu/~twidale/research/ossui/ (current 03 Jul 2004).

Raymond, E. S. (1999). "The Revenge of the Hackers," In M. Stone, S. Ockman, and C. DiBona
(eds.) Open Sources: Voices from the Open Source Revolution. Sebastopol, Calif.: O'Reilly &
Associates, pp. 207-219.

Scholtz, J. (2001). "Adaptation of Traditional Usability Testing Methods for Remote Testing,"
Proceedings of the 34th Annual Hawaii International Conference on System Sciences. New
York: IEEE Computer Society Press.

Communications of the Association for Information Systems (Volume 20, 2007) 382-392 392

Waiting For Usable Open Source Software? Don’t Hold Your Breath! By R. Sen

Sen, R. (2006). “A Strategic Analysis of Competition between Open Source and Proprietary
Software,” Forthcoming in Journal of Management Information Systems, 2007.

Shah, S. (2006). “Motivation, Governance, and the Viability of Hybrid Forms in Open Source
Software Development,” Management Science, (52) 7, pp 1000-1014.

Shneiderman, B. (2002). Leonardo's Laptop: Human Needs and New Computing Technologies,
Cambridge, Mass: MIT Press.

Smith, P. (2002). “Debunking the Myths of UI Design,” http://www-
128.ibm.com/developerworks/library/us-myth.html (current 27 February 2007).

Spray, R. (2004). “Ronco Spray on Usability,” http://daringfireball.net/2004/04/spray_on_usability
(current 27 February 2007).

Stewart, K. J., A. P. Ammeter, and L. M. Maruping. (2006). “Impact of License Choice and
Organizational Sponsorship on Success in Open Source Software Development Projects,”
Forthcoming in Information System Research.

Thomas, M. (2002). "Why Free Software Usability Tends to Suck,"
http://web.archive.org/web/20041117091141/http://mpt.phrasewise.com/discuss/msgReader$
173 (current February 2007).

Thompson, J. A. and R. C. Williges. (2000). "Web-Based Collection of Critical Incidents during
Remote Usability Evaluation," Proceedings of the 14th Triennial Congress of the International
Ergonomics Association and the 44th Annual Meeting of the Human Factors and Ergonomics
Society (IEA 2000/HFES 2000), Santa Monica: Human Factors and Ergonomics Society,
Volume 6, pp. 602-605.

Trudelle, P. (2002). "Shall We Dance? Ten Lessons Learned from Netscape's Flirtation with
Open Source UI Development," presented at the Open Source Meets Usability Workshop,
Conference on Human Factors in Computer Systems (CHI 2002), Minneapolis, Minn.,
http://www.iol.ie/~calum/chi2002/peter_trudelle.txt (current 27 February 2007)

ABOUT THE AUTHOR

Ravi Sen is an assistant professor in the Department of Information and Operations Management
at Mays Business School, Texas A&M University. He received his Ph.D in Business
Administration (Major: MIS) in 2003 from the College of Business, University of Illinois at Urbana-
Champaign. His research interests include open source software, electronic commerce, and
software security. He has published in Journal of Management Information Systems (JMIS),
International Journal of Electronic Commerce (IJEC), Communications of AIS (CAIS), and
Electronic Markets.

Copyright © 2007 by the Association for Information Systems. Permission to make digital or hard

copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and full citation
on the first page. Copyright for components of this work owned by others than the Association for
Information Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission
to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from ais@aisnet.org

 .

ISSN: 1529-3181
EDITOR-IN-CHIEF

Joey F. George
Florida State University

AIS SENIOR EDITORIAL BOARD
Guy Fitzgerald
Vice President Publications
Brunel University

Joey F. George
Editor, CAIS
Florida State University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Paul Gray
Founding Editor, CAIS
Claremont Graduate University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M. Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Jane Fedorowicz
Bentley College

Chris Holland
Manchester Bus. School

Jerry Luftman
Stevens Inst. of Tech.

CAIS EDITORIAL BOARD
Michel Avital
Univ of Amsterdam

Erran Carmel
American University

Fred Davis
Uof Arkansas, Fayetteville

Gurpreet Dhillon
Virginia Commonwealth U

Evan Duggan
Univ of the West Indies

Ali Farhoomand
University of Hong Kong

 Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Ake Gronlund
University of Umea

Ruth Guthrie
California State Univ.

Alan Hevner
Univ. of South Florida

Juhani Iivari
Univ. of Oulu

K.D. Joshi
Washington St Univ.

Michel Kalika
U. of Paris Dauphine

Jae-Nam Lee
Korea University

Claudia Loebbecke
University of Cologne

Paul Benjamin Lowry
Brigham Young Univ.

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Michael Myers
University of Auckland

Fred Niederman
St. Louis University

Shan Ling Pan
Natl. U. of Singapore

Kelley Rainer
Auburn University

Paul Tallon
Boston College

Thompson Teo
Natl. U. of Singapore

Craig Tyran
W Washington Univ.

Chelley Vician
Michigan Tech Univ.

Rolf Wigand
U. Arkansas, Little Rock

Vance Wilson
University of Toledo

Peter Wolcott
U. of Nebraska-Omaha

Ping Zhang
Syracuse University

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Alan Hevner and Sal March

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Chris Furner
CAIS Managing Editor
Florida State Univ.

Copyediting by Carlisle
Publishing Services

	Communications of the Association for Information Systems
	October 2007

	Waiting for Usable Open Source Software? Don't Hold Your Breath!
	Ravi Sen
	Recommended Citation

	Microsoft Word - Journal.doc

