
Communications of the Association for Information Systems

Volume 11 Article 30

April 2003

Web Services: Enabling Dynamic Business
Networks
Bala Iyer
Boston University, bala@bu.edu

Jim Freedman
Boston University, jfreedma@bu.edu

Mark Gaynor
Boston University, mgaynor@bu.edu

George Wyner
Boston University, gwyner@bu.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Iyer, Bala; Freedman, Jim; Gaynor, Mark; and Wyner, George (2003) "Web Services: Enabling Dynamic Business Networks,"
Communications of the Association for Information Systems: Vol. 11 , Article 30.
DOI: 10.17705/1CAIS.01130
Available at: https://aisel.aisnet.org/cais/vol11/iss1/30

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol11%2Fiss1%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol11?utm_source=aisel.aisnet.org%2Fcais%2Fvol11%2Fiss1%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol11/iss1/30?utm_source=aisel.aisnet.org%2Fcais%2Fvol11%2Fiss1%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol11%2Fiss1%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol11/iss1/30?utm_source=aisel.aisnet.org%2Fcais%2Fvol11%2Fiss1%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 525

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

WEB SERVICES: ENABLING DYNAMIC BUSINESS
NETWORKS

BALA IYER
JIM FREEDMAN
MARK GAYNOR
GEORGE WYNER
School of Management
Boston University
BALA@BU.EDU

ABSTRACT

A Dynamic Business Network is a distinct system of participants (customers, suppliers,
complimentors, competitors, service providers) that use the network to achieve customer
satisfaction and profitability and where participants and relationships evolve over time. However,
unpredictability and rapid change in a Dynamic Business Network creates a significant challenge
in implementing and supporting business application software. Traditional information systems
implementation methods require an a priori design and are built for a particular purpose for use
over an extended period of time. Loosely coupled business networks change interrelationships
between nodes both quickly and frequently, thus providing little or no notice for planning,
implementing, or changing the supporting applications. The dynamic sourcing capabilities of the
emerging Web Services framework provide a key to enabling these complex eco-systems. We
explore the strategic and technological dimensions of Web Services and describe how they can
be used to support dynamic business networks.

KEYWORDS:architecture, web services, dynamic business networks, modularity, stakeholders

I. INTRODUCTION

“Firms are embedded in networks of cooperative relationships that influence the
flow of resources among them.” [Gnyawali and Madhavan 2001].

The business landscape was once dominated by large hierarchical entities that are now being
replaced by loosely interconnected organizational components. These firms face the choice of
loose coupling or tight integration with all other entities involved in delivering goods or services.
To understand these organizational configurations we take a network perspective. The network
perspective of business is primarily concerned with inter-organizational relationships over time
rather than with single exchange transactions [Nohria and Eccles 1992]. The unpredictability and
pace of change in the relationships among nodes in the network make these systems extremely

526 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

complex. Increasingly, the logic of general systems modularity is used to understand these
networks [Langlois 1999; Schilling 2000]. Modularity provides a framework for understanding and
managing complexity [Baldwin and Clark 2000]. Web Services, an emerging technology,
provides a modular capability to combine, de-couple, and recombine software components to
create virtual business applications in an ad hoc, real-time manner.

The main objectives of this paper are:

• to educate the reader about the concept of Web Services,

• how to use Web Services to support dynamic business networks and

• to understand the role of enterprise architecture in achieving that goal.

Most current discussions of Web Services overly focus on the developer/technical perspective
without providing the business context. We provide a more comprehensive view by looking at
Web Services from the perspective of different stakeholders – owner, architect, builder and end-
user.

This article is organized as follows: In Section II, we describe a Web Service. In SectionIII, we
introduce the stakeholder model. In SectionIV, we present the concept from the owner
perspective. In SectionV, we discuss it from the designer perspective. The builder perspective,
(SectionVI), presents a primer on Web Services. End-user related issues are discussed in
Section VII. In Section VIII, we present conclusions and identify the limitations of Web Services.

II. WHAT ARE WEB SERVICES?

While the concept of Web Services was introduced several years ago, its definition is not agreed
upon. For purposes of this article we use a specific meaning of Web Services proposed by an
industry analyst:

Web Services refers to loosely coupled, reusable software components that semantically
encapsulate discrete functionality and are distributed and programmatically accessible over
standard Internet protocols” [Sleeper 2001].

Several key elements of this definition warrant further discussion.

Reusable Software Components

This concept is explained by the theory of modular design [Alexander 1964; Langlois 1999;
Simon 1996].

Semantic Encapsulation of Discrete Functionality

Web services applets semantically encapsulate discrete functionality in the same way that objects
encapsulate functionality in an object-oriented system. This notion of encapsulation is an
important element in research on modularity. For example, Parnas discusses the advantages of
designing a module "to reveal as little as possible about its inner workings" (Parnas 1972, p.
1056). Baldwin and Clark [1997] refer to Parnas’ concept of information hiding as hidden design
parameters. This concept of focusing on the specific needs of a particular application without
regard to other functions is a key element of achieving synergistic specificity [Schilling 2000].
Encapsulating specific process knowledge within a discrete object is also a key element of
sharing that capability within the framework of modular design.

ProgrammaticAccessibility

Web Services are programmatically accessible. Unlike web sites and desktop applications, Web
Services are not designed exclusively for direct human interaction, and do not necessarily include

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 527

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

a user interface. Rather, Web Services operate at the application level; they are called by and
exchange data with other software. An example of such data exchange is in the dynamic
processing of an order, where the line items are priced through one called module, and the tax is
assessed through another called module. The inner workings of the program are transparent to
the user of the system.

Standard Internet Protocols

Web Services are distributed over standard Internet protocols. They use the existing
infrastructure such as hypertext transfer protocol (HTTP), file transfer protocol (FTP), simple mail
transfer protocol (SMTP), and extensible markup language (XML), and conform to the standards
and procedures adopted for using the Internet. This element is important for the successful
adoption of Web Services. The success of the Internet is largely due to the simplicity and
flexibility of the layered architecture of the technology that supports the packaging and transport
of data and provides end-to-end services. Web Services are designed to use that packaging and
transportation mechanism already adopted by firms worldwide. Web Services become yet
another type of traffic on the Internet similar to the World Wide Web, e-mail, or voice over IP
traffic.

Both a technical and a conceptual meaning are associated with Web Services. From a technical
point of view, Web Services are a layered set of standards and protocols similar in nature to the
layered set of standards and protocols that support the Internet. However, the relationship
between the layers, in this case, is not a stack but a network as illustrated in Figures 1 and 2. The
abbreviations in Figure 2 are explained in the text that follows the figure.

Figure 1. Internet Layered Stack

Web Services provide a standard way for heterogeneous systems to share and exchange
information. Web Services are not a new idea, but the continued evolution of many older ideas.

Application Layer
Hyper Text Transfer Protocol

(HTTP)

Application Layer
Hyper Text Transfer Protocol

(HTTP)

Transport Layer
Transmission Control Protocol/User

Datagram Protocol
(TCP/UDP/SCTP)

Transport Layer
Transmission Control Protocol/User

Datagram Protocol
(TCP/UDP/SCTP)

Network Layer
Internet Protocol

(IP)

Network Layer
Internet Protocol

(IP)

Data Link Layer
Point to Point Protocol/Ethernet

(PPP)

Data Link Layer
Point to Point Protocol/Ethernet

(PPP)

Physical Layer
Physical Hardware

Modem/Network Interface Card

Physical Layer
Physical Hardware

Modem/Network Interface Card

SOAPSOAP

528 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

What is new is that Web Services are based on generally accepted open standards. These
standards include:

• Simple object access protocol (SOAP) for the message structure,

• Extensible markup language (XML) for data encoding,

• Web services description language (WSDL) to describe the application programming
interface (API) detailing the interface explaining how to use the service, and

• Universal description, discovery, and integration (UDDI) to register a service so others can
discover it.

Figure 2. Web Network Services

At the highest level, a web service is a resource on a computer invoked by sending it a message
using the SOAP protocol. This SOAP message contains the information needed to perform the
web service. For example, Figure 3 includes a simple web service to report the Manufacturer’s
Suggested Retail Price (MSRP) for an item. This pricing service is listed in a directory of Web
Services along with directions for its use. The client can look up the web service and call it to find
the price of a given item. Both the request and response are sent in a SOAP message. This
information is encoded in a standard way: XML. Since all Web Services agree to use XML, all
clients can access Web Services as long as they follow the standards. This arrangement is very
similar to how a web browser allows users access to web applications that follow the HTML
standards. Web Services are not a new idea, but rather, the next generation of Remote
Procedure Calls (RPC) [Birrell and Nelson 1984; Orfali et al. 1996]. Web Services promise the
Holy Grail for IT professionals: a standard way for linking any two systems so they can exchange
information.

WSFL UDDI WSDL

SOAP

XML

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 529

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

Figure3. Web Services Example

III. STAKEHOLDER MODEL FOR WEB SERVICES

To define, design, develop, and deploy Web Services applications, we first identify four different
stakeholders (owner, architect, builder, and end-user) and questions they should ask [Zachman
1987]. Figure 4 shows the views of each of these stakeholders.

Figure 4. Stakeholder Views of Web Services

Order service

Pricing service

Tax calculator

What is
the tax?

The tax is
$1.99

The
MSRP is
$19.99

How much
does it
cost?

The tax
is $1.99

Architect Builder End-user

Web Service
Architectures
Web Service
Architectures

Web Service
Products

Web Service
Products

Web Service
Applications

Web Service
Applications

Component
requirements

design
principles,component

requirements)
Requests

Design principles,
Component requirements

& interfaces

Application Build-out
& integration

Results

Owner

Web Service
Capabilities

Web Service
Capabilities

Business
model

Feasibility/
Business component

requirements

530 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

OWNER

This person must analyze the Web Services capabilities necessary to implement a business
model that they identified. A business model is a method by which a firm builds and uses its
resources to offer its customers better value than its competitors and to make money doing so.
The business model details a set of specific activities that a firm should perform or source from a
provider. These activities can be specified as a set of business components/ services. The major
assumption is that if these activities are performed well, the firm will make money. The owner
asks: “How can Web Services enable my business model?” The answer takes the form of a set of
business component requirements with associated budget allocations and performance metrics.

ARCHITECT

This person is responsible for defining the design principles, individual components and the
interfaces between them. The architect understands and uses the component requirements,
Web Services frameworks, and system design theories to create a set of architecture design
principles. The architect asks:

• “What principles and commitments will guide the design of the required components?”

• “Which of those business requirements could we provide using Web Services?”

• “What are the advantages/disadvantages of delivering the requirement using a Web
Service?”

• “Which components should be built and what functionality should they encapsulate?”

BUILDER

A builder implements and integrates components using the architecture design principles as
defined by the architect. To do so, the builder should identify registries that list the required
components, search for the components/services, and learn how to use them (inputs and
outputs) according to their advertised performance metrics. The builder asks:

• “What vendor provided solutions will I deploy to implement and integrate?

• “What granularity of components should I select?”

• “How long would it take, and what would it cost to develop each Web Service?”

• “What new skills would we need to acquire to develop these Web Services?”

• “What products/tools/technology should we purchase?”

END-USER.

This person is mainly interested in doing his or her work. The end-user makes requests to
applications and expects reasonable responses. The end-user asks:

• “How do I use this set of services to perform my business responsibilities or solve
business problems?”

• “What could I do with the new application that is currently difficult for me to do?”

In the next sections we present each perspective in greater detail.

IV. OWNER’S PERSPECTIVE

In many interconnected markets, business is changing rapidly. Firms face increasingly dynamic
market demands. The Internet increased both the speed of communication and geographic
reach. Firms that previously focused locally can now compete economically on a global basis.
The changes that impacted the personal computer industry exemplify the effect of dynamic
markets across organizational boundaries. The relationships among the PC manufacturer,

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 531

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

component suppliers, transportation firms, and the end customer change continually. When
buying a PC it is now expected that the specific configuration can be customized to any particular
need with ease. Visibility of the order is open to all of the stakeholders concerned with the
delivery of the end product to the customer.

The combination of rapidly changing market needs and new entrants in the marketplace make the
future more uncertain than ever before. At the same time, enterprising firms are beginning to
change their business models to manage the unknown. Flexible, “loosely coupled” network
organizational models are starting to replace rigid, “tightly coupled”, integrated organizational
models. This evolving strategy lowers the risk associated with a rapidly changing market by
modularizing the research, marketing, production, delivery and support/service processes. Web
Services allow information systems to support the flexible designs that a Dynamic Business
Network environment demands. In this environment, the interface requirements often are not
known a priori. Using Web Services architecture, applications may interface dynamically, sharing
data that was not determined in advance.

Maintaining competitive advantage in a dynamic marketplace continually demands new and
different capabilities, competencies, and resources. As the marketplace’s needs shift so do the
business models of marketplace leaders. Flexibility is needed to adjust quickly to changing
marketplace conditions, new competitive offerings, changes in supplier resources, and new
product design requirements. Dynamic business networks that easily and quickly change to meet
the ever-changing demands of the marketplace reap the greatest rewards in this unpredictable
environment. However, the advantages gained by flexibility also come with a cost in governance
mechanisms and performance (scalability, velocity of throughput), trade-offs that may be counter
productive in more traditional marketplaces. While dynamic marketplaces reward flexibility, other
highly regulated or less dynamic “traditional” marketplaces reward integration and systems with a
high degree of “synergistic specificity” [Schilling 2000]. This more traditional view [Chandler 1964]
of the marketplace measures market leadership by reduced cost of production and increased
quality. Marketplace leaders are often represented as monolithic integrated production
capabilities provided by a single firm. The flexibility provided by modularity provides little
advantage to these tightly coupled systems.

INFORMATION SYSTEM SOURCING

The owner’s perspective results in the selection of a sourcing strategy – build, buy, rent, or share
– for software. Appendix II describes the evolution of software development practices and the rise
of outsourcing.

A new paradigm is emerging where dynamic business networks evolve over short periods of time.
The boundaries between supplier, customer, competitor, and business partner are blurred and
dynamic. In one business situation two organizations may be competitors, while at the same time
the opportunity presented by another business situation leads these two organizations to behave
as partners. New “partnership” business relationships require the organizations to share
information in order to work closely. Systems designed to provide internal information may need
to share that information with other, unknown systems quickly.

For example, FEDEX, a business that specializes in the transportation of goods, may need to
share specific information about the location and status of a particular package sent by one of
their customers (XYZ Computers) with a third party (in this case XYZ Computer’s customer)
farther down the value chain. The package tracking information needs to be available seamlessly
on the XYZ Computer website. Since XYZ is in the business of selling computers, they may want
to provide their customers a variety of shipping options and may offer alternatives to FEDEX,
such as UPS. XYZ Computer therefore wants to provide the same access to shipping status
information for any vendor that ships the product to XYZ’s customer. This ability to link different
information dynamically from different organizations is an example of the flexibility that is
expected in the dynamic business network.

532 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

SIDEBAR I. DYNAMIC BUSINESS NETWORKS

The term business network is being used to describe many contemporary organizations in the
computer and biotech industries. It is argued that to be successful, organizations need to be part
of dynamic business networks that adapt and respond to changing business and technological
conditions. Business networks are characterized by lateral and horizontal linkages within and
among firms [Nohria and Eccles 1992]. Several premises underlie a network perspective of
organizations [Nohria and Eccles 1992]:

• All organizations are social networks in important respects and need to be addressed and
analyzed as such.

• An organization’s environment is properly seen as a network of other organizations.

• The actions of actors in an organization can be explained in terms of their position in
networks of relationships.

• Networks constrain actions, and in turn are shaped by them.

• The comparative analysis of organizations must take into account their network
characteristics.

Based on previous published work [Bovet and Martha 2000; Brandenburger and Nalebuff 1996;
Tapscott et al. 2000], we define a business network as a distinct system of participants –
(customers, suppliers, complementors, competitors, commerce service providers, and
infrastructure providers) that use a network to achieve superior customer satisfaction and
profitability. The business network is a clear value proposition. It is also a business platform that
defines the standards and rules for exchanging goods and services within the network.

• A customer not only receives value but also contributes to the business network.

• A commerce service provider enables the flow of business, including transactions and
management, security and privacy, information and knowledge management, logistics
and delivery, and regulatory services (Exchanges, SEC).

• Suppliers supply the primary inputs that go into the manufacture of the product or the
service.

• A complementor is a firm in the network that makes the product/service produced by the
network more valuable to the customer than if the product/service were offered alone
(e.g., Intel and Microsoft).

• Competitors are firms in the network that reduce the value of the product provided by the
network (e.g., Coca-Cola and Pepsi-Cola).

• Infrastructure providers deliver communications and computing, buildings, offices and
similar underlying services (e.g., DIGEX, Verizon).

We consider these networks dynamic because the participants and their relationships evolve over
time. For example, in the case of a supply chain management system, the e some of the changes
that may occur include: number of items produced, the type of item produced, the partners that
produce these items, and the standards used to exchange information. The linkages between the
entities are typically information based and are implemented using information systems.

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 533

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

Traditional applications are not designed to disaggregate and reaggregate. Rather, they are built
focused on a particular purpose and must be modified when the business requirements change.
The new generation of information systems must be created ad hoc to meet the particular
requirements created by the convergence of entities in the dynamic business network. This
method of sourcing information systems is what we refer to as “Dynamic Sourcing”. Web
Services, a type of dynamic sourcing, is specifically designed to provide more flexibility to support
unknown business requirements and business organizational structures. It also provides a new
option for choosing applications: sharing applications on a case-by-case basis to meet a
particular purpose.

V. DESIGNER’S PERSPECTIVE

Although the promise of dynamic business networks is compelling, to participate in such a
network a firm must leverage its internal resources. Many multi-divisional firms find it difficult to
manage disparate resources. Clark and Peruzzi [2002] found that, Web Services are seen as a
way to

1. integrate incompatible computer systems, and

2. share data, applications, and business process internally.

Their survey presented responses from 796 people in 50 enterprises with over $10 million in
annual revenue. The responses suggest that early adopters of Web Services

“get new ways to integrate applications internally. Integration helps unlock the
value of all their previous software installations by letting them leverage old
systems as they implement new ones. Connectivity creates value, and Web
Services provide a new, cheaper than EAI tool to link applications.” [Clark and
Peruzzi, 2002]

The business challenge addressed by enterprise-wide integration is the need to leverage
organizational capabilities, streamline internal processes and create a common, simplified
interface with external stakeholders. Many enterprises grew through mergers and acquisitions.
Historically, management would use financial measurements to judge each operating unit based
upon their individual performance. This approach of “each ship on it’s own bottom” provided little
incentive to consolidate systems or processes across the organization. With increasing use of
the Internet to communicate with external stakeholder (customers, suppliers, partners, or
investors) firms are under increasing pressure to simplify their interfaces. Customers want to use
one portal to access any product or service rather than use different methods to inquire into what
the firm can provide. Stovepipe systems preclude doing business in this way. A similar business
value can be derived in a multi-divisional enterprise by consolidating purchasing capacity and
leveraging relationships with vendors. Systems built to function separately require custom-
designed interfaces or need to be replaced by enterprise resource planning (ERP) systems. Web
Services promise to provide the required integration capability in a simple, inexpensive manner
and thereby become an attractive alternative to the more traditional means.

We next turn to modularity, an important characteristic that is central to the value that Web
Services provides.

MODULARITY AND VALUE
Many natural (organisms and ecosystems) and human constructed (mechanical, intellectual,
organizational and social systems) systems that we encounter on a daily basis are complex. A
complex system is

“one made up of a large number of parts that interact in non-simple ways. In such
systems, the whole is more than the sum of the parts, at least in the important
pragmatic sense that, given the properties of the parts and the laws of their
interaction, it is not a trivial matter to infer the properties of the whole.” [Simon,
1966]

534 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

Modularity, a general systems concept, is proposed as a way to handle and understand complex
systems. Schilling [2000] refers to modularity as a continuum that describes degree to which a
system’s components may be separated and recombined. Modularity refers both to the tightness
of coupling between components, and the degree to which the “rules” of the system architecture
enable (or prohibit) the mixing and matching of components. Langlois [1999] relates the value of
modularity to the need to understand and manage complex or dynamic systems. He refers to the
constructs of visible design rules as modularization and defines the constructs as follows:

• An Architecture specifies what modules will be part of the system and what their functions
will be

• Interfaces describe in detail how the modules will interact, including how they fit together
and communicate

• Standards test a module’s conformity to design rules and measure the module’s
performance relative to other modules.

Hidden design parameters are decisions that do not affect the design beyond the local module.
Hidden elements can be chosen late and do not have to be communicated to anyone beyond the
module design team.

In a stable, predictable environment, great advantage is derived from tightly coupling components
into a highly integrated system. This focus on streamlining systems is the essence of the
industrial revolution where competitive advantage was derived from lowering the cost of
production through designing and managing very narrowly focused production capability. In
contrast, the value that is derived from modularity lies in decomposing systems to cope with a
changing environment. “Modularity is a very general set of principles for managing complexity.”
[Langlois 1999] If the environment is static, and the system functions as expected, then there
would be no need to understand how it is constructed.

Software components that are designed to be loosely coupled, such as in Web Services allow for
much more flexibility than traditional methods for connecting components. The traditional
approach is to define the interfaces between software components clearly and to develop specific
Application Program Interfaces (API) to transfer information between the components. The
general notion is that the more closely coupled the components, the more efficient the
application. At the same time, the more tightly coupled the application the more inflexible is the
code to changes in structure. A good example of the inflexibility of tight coupling was seen in the
Year 2000 software problem.

The theory of modularity provides the enterprise a broad set of principles than can guide the
design of the software components within a system. These components, like ‘LEGO’ blocks,
provide the building blocks and the flexibility to mix and match components to meet unknown
future systems requirements. Web

Services, on the other hand, provides the technology to specify the components that were
designed using modularity theory, the interface to each component, and the ability to dynamically
mix and match components to implement future systems. In addition to this, Web Services allow
the enterprise to build custom ‘LEGO’ blocks to meet unique needs.

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 535

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

How does an enterprise put a value on modularity? Baldwin and Clark [2000] apply real option
theory to study modularization in the computer industry. They show how modularization in
computer systems (like the IBM 360) changed the industry. Modularized computers consist of
components that define interfaces. Because each component conforms to its interface rules,
modules that follow the defined interface are interchangeable. In contrast, an interconnected
system cannot swap components because only a single massive component exists. Baldwin and
Clark’s work shows how modularity increases value, and how increasing technological
uncertainty about the value of the modules increases this value of modularity.

Appendix III presents an example of how modular design provides value.

ENTERPRISE ARCHITECTURE FOR WEB SERVICES

In the previous section, we discussed the concept of modularity and its impact on an enterprise’s
flexibility. Web Services is the technology that can be used to design for this flexibility. However,
neither modularity theory nor the Web Services technology provides the designer with any
guidance on the list of things or entities that can be considered for modularization. In this section,
we present one such list of entities that we call enterprise architecture, based on the types of
knowledge or logic that an enterprise typically captures, and upon which we can apply the
principles of modularity.

We begin to identify the list of entities or enterprise architecture by considering a business
process. A business process is a complete coordinated thread of all the serial and parallel
activities needed to deliver value to the enterprise’s customers [BPMI 2002]. Traditionally,
enterprises used software applications to support coordination and execution of business
processes. Although these applications were reliable, they were not built to be very flexible, agile,
or transparent, because they combined and tightly couple the various assumptions about
processes, data, how the business functions and how the applications are designed. This makes
it very difficult to locate and make changes to any one of the assumptions. Recently, due to the
availability of technologies such as components and Web Services, enterprises are investigating
approaches to modeling business processes using more flexible application software
development strategies. One such approach -- the modular, object orientedapproach being
investigated is compared to “LEGO blocks,” combining, disassembling and recombining basic
business functions to create specific business processes to satisfy different business objectives.
This approach uses business processes to satisfy different business objectives. This approach
has resulted in tools that help separate a business application into four domains: process logic,
application logic, business rules and data (Figure 5).

Enterprise Process Logic Layer. This layer defines a standard method to exchange business
messages, conduct trading relationships, and define and register business processes.

Application Logic Layer. This layer defines the presentation logic, business engines and the
integration logic for an enterprise application. The presentation logic deals with client requests by
handling them directly or using a broker to deal with them, then sending the responses back to
the user. Business engines are the set of application services, from forecasting to credit card
processing, that automate particular business functions. Some of these applications are
proprietary and confidential to a particular company or group of allies, while others are public and
can be shared with chosen partners. In some cases, companies may develop their own
application services and then choose to sell them on a subscription basis to other enterprises,
creating new and potentially lucrative sources of revenue [Hagel III and Brown 2001].

536 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

FIGURE 5. The Enterprise Architecture

Business Logic. The next layer contains the workflow logic and the business rules. The Workflow
Management Coalition defines workflow as

the automation of a business process, in whole or part, during which documents,
information, or tasks are passed from one participant to another for action,
according to a set of procedural rules [WFMC 2002].

Modern enterprises store the workflow logic as business rules [Morgan 2002].

Data Layer. The data layer, shown in Figure 5 includes the metadata about the information
objects in each of the enterprise process logic, application logic, business rules, and data sub-
layers. It also includes the metadata that represents the inter-relationships and associations
between the information objects in each of these sub-layers. The last category of data in this
layer is the metadata repository that includes the following: metadata about the business data
captured in the system such as its source (person, role, business unit, location, and associated
process that captures it), date/time of capture, granularity (hourly, daily, etc.), and its storage
location in the system (which database/file, specific table(s), whether duplicated in case of
distributed data, etc.). A corresponding set of metadata that describes the models
(role/person/business unit responsible for maintaining it, storage location in the system, date/time
of creation/revision) as well the model components is also part of the metadata repository.

Enterprise Process
logic

Application logic

Business logic

Data logic

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 537

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

The logic behind each layer presented in Figure 5 can be captured in a standardized form using
XML. Furthermore, using the directory services provided by Web Services, this information can
be accessed by other applications within or outside the enterprise.

Dynamic business networks are held together by a set of information standards, which function
as the lingua franca, enabling network participants to exchange information about such factors as
business rules, customers, products, and applications. By separating the enterprise logic into the
layers defined in Figure 5, organizations can easily establish dynamic business networks with
other organizations by exposing the logic layers selectively. This approach enables a company to
“orchestrate” critical cross-company processes as though they are part of the company, while
specializing in their internal competencies.

For such networks to function smoothly, several conditions must be met [Hacki and Lighton
2001].

1. Business standards must emerge and be accepted in every layer – enterprise process
logic, application logic, business logic, and data logic. For example, to automate
connections between organizations, shared meaning for terms such as prices (per
pound, per kilo, etc.) and quality must be defined.

2. Rigorous performance standards must be met.

3. Sharing of benefits generated across all partners should be equitable.

4. All key business processes – (project management, order entry, HR administration, and
budgeting) should be online.

5. Development and testing of new opportunities within network partners should be online.

WHY ARE WEB SERVICES BETTER?

Previous generations of distributed computation environments did not display the flexibility that
Web Services do. Common Object Request Broker Architecture (CORBA), Distributed
Component Object Model (DCOM), and Remote Method Invocation (RMI) are based on the RPC
paradigm with tight coupling between what the client sends and what the server expects. The
type and order of passed parameters are rigorously enforced because the parameters are
marshaled and un-marshaled for the Web Service. This coupling is tighter than what is required
with Web Services because Web Services allow both a RPC and message paradigm. The RPC
style of Web Services is a mapping of the RPC paradigm: place the XML encoding of the
parameters into a SOAP envelope. The message passing model is far more flexible because of
its looser coupling between client and server.

Many big vendors in the pre-web service days are leading the push to Web Services. A vendor’s
Web Services development environment is aligned with their history regarding other distributed
environments they supported. Sun’s RMI and J2EE (Java 2 Platform, Enterprise Edition) are
both tightly coupled to Java. Microsoft’s DCOM favored the Windows platform, while their .NET
requires it. The design goals of CORBA and .NET are similar, but split the market so that big
Unix vendors, open source, and Microsoft never agreed about what the common language should
be between heterogeneous computers.

Web Services emerged as the best choice from the many different experiments in distributing
computing environments. For the first time, industry agrees to a common method to access
remote resources across heterogeneous networks and systems. This agreerment is a good
example of how learning from many generations eventually leads to a solution that is acceptable
to most of the vendors – not an easy feat.

538 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

One powerful attribute of Web Services that encourages innovation is the loose coupling between
clients and servers. By agreeing on standards such as SOAP and XML, transferring data
between all heterogeneous systems becomes easy. These standards explain how typed data is
exchanged between systems that disagree about how data is represented. This loose coupling
implies easy replacement of one web service with another, provided the defined interfaces of both
Web Services are identical. This loose coupling between the client and server with Web Services
gives consumers and developers flexibility in building and evolving these services because it
promotes experimentation.

The vendors agree on the big picture of Web Services, however, they have different ideas about
how Web Services should be implemented. The biggest players have business models that play
to their strategic business advantages: Microsoft believes in using the Windows platform, while
Sun is focused on the Java language. Some environments are less restrictive. such as Axis from
the Apache group [Apache 2002]. Each system offers advantages and disadvantages – the best
choice depends on the particular attributes of the individual organization, and what it wants to do.
Fortunately for users, the value of Web Services is independent of how they are built. The major
vendors agree about what counts the most – it’s not how you build Web Services, but rather, it iss
what users can do with these services that creates the most value for everyone.

The architect’s perspective results in the determination of the modularity for the enterprise logic.
The choice includes data, applications, business and enterprise logic. The architect can chose to
modularize one, several, or all of these logics.

VI. BUILDER’S PERSPECTIVE

Web Services provide a deployment framework for efficient development and
interoperability of information systems using industry standards.

Builders suggest that by using modular design concepts and a Web Service-oriented architecture,
applications can be assembled, disassembled and reassembled more easily, i.e., maintained. A
major theoretical advantage of using standards such as XML [XML 2002] and SOAP [Graham et
al. 2002] is that the original software application does not need to be rewritten to be shared.
Given the huge number of applications that are currently in production worldwide, the idea of
“wrapping” a functioning application using a standard language designed specifically to share
data and processes between computer systems sounds like the “silver bullet” that technology
innovators sought since the beginning of computing.. The concept of Web Services provides a
vehicle for applications to both describe their function and data but to also interface with other
applications dynamically.

INFORMATION SYSTEM INTEGRATION

Sharing information across the enterprise or between enterprises requires the detailed analysis
and design of application program interfaces or APIs. The three broad approaches to systems
integration are [Markus 2000; TechMetrix 2002]:

1. Data warehousing (DW). In this approach (Figure 6), an organization leaves its “source”
systems (those that need to be integrated) alone. Instead, extracts are taken from these
systems and loaded into a “warehouse” from which sophisticated analysis can be done
using analytical tools.

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 539

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

Figure 6. Data Warehousing

2. Point-to-point integration (P-to-P) (Figure7), involves developing a unique, customized
integration solution that can link existing applications. These solutions are generally
based on a client/server structure, and on various communication middleware
applications. The client/server concept facilitates the distribution of functions to the
application server that performs the task. This approach is inexpensive and is
implemented quickly. The most significant trade-off is the ever-increasing number of
point-to-point connections that must be created and maintained when a new system
needs to be integrated. In the case of the example shown in Figure 6, the addition of a
sixth component would potentially require the creation of five point-to-point connections.
This approach results in a higher risk of error and increased system lag times.

Figure 7 Point-to-Point Integration

DB1

DB2

DB3

Data
Warehouse

Data
Warehouse

Reports
&

Analysis

Data extracts

Source systems

DB=data base

Database

ERP

Application
program

SCM

CRM

540 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

3. Enterprise Application Integration (EAI) [Linthicum 2000], uses a central negotiator which
manages the interaction among applications (Figure8). The EAI provides a single
common connection between the applications.

Figure 8. Enterprise Application Integration (EAI) Approach

Using an intermediate communication format allows all integration to be accomplished at
a single node. Adding an additional application requires only that a single point-to- point
connection be created, between the application and the EAI node. These tools provide
useful features such as:

• Ready to use adaptors for connecting common applications to the central node,

• Advanced message routing between applications,

• Message transformation,

• Management of complex inter-application processes, and

• Administration of flows and processes.

With the increasing need for customer fulfillment, real time management and lean
management, some organizations want all the components across the business network
able to communicate in real time and to synchronize with one another. E-business often
requires that an enterprise’s processes be able to integrate extensively both with those of
its partners and with complementary applications. Meeting this requirement is no longer a
matter of simply connecting databases, and requires an integration platform that
communicates with all the applications in the information system.

4. These needs led to the development of a fourth approach to System Integration
Architecture, developing and implementing a Network Platform (NP). This platform
expands on the EAI approach by adding the ability to share data, applications, process,
and business rules to launch many new applications. The Network Platform (Figure 9)

Database

ERP

Application
program

SCM

CRM

EAI

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 541

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

divides the data, process, applications, and business rules elements into their logical and
operational layers. The logical layer contains the enterprise logic (as described in section
5) and the operational layer contains the actual components or services that implement
the required functionality. to customize the services for the various market segments, the
enterprise logic platform includes a set of APIs that can be called by the application
programs to customize the services for the various market segments, the enterprise logic
platform has a set of APIs that can be called by the application programs. These APIs
can help launch products for various segments or to meet a variety of needs within a
segment. Similarly, the operating platform provides a set of APIs that will provide each
enterprise with the option to use services provided by various business units from other
enterprises. Web Services is one form of Network Platform.

Figure 9. Network Platform (NP) Approach

To summarize, four options are available to source applications; Rent, Buy, Build or Share
(Dynamically Source)[McKeen et al. 2002]. To integrate applications, four options: data
warehousing, point-to-point, enterprise application integration and network technology platform
can be used. To summarize, four options are available to source applications; Rent, Buy, Build or
Share (Dynamically Source)[McKeen et al. 2002]. To integrate applications, four options: data
warehousing, point-to-point, enterprise application integration and network technology platform
can be used.

VII. END USER’S PERSPECTIVE

In the previous sections we defined what a web service is, and described how to use one. When
you are ready to make a Web Service available, you can publish its characteristics by providing
its description in an XML document using WSDL. To make it easy for developers and applications
to locate it, you can place these WSDL descriptions in a private or public UDDI registry1.

1 The acronyms are defined in Section one and in the List of Acronyms at the end of this article.

OP-API OP-API OP-API OP-API OP-API

Application a

Operating
Platform

Enterprise
logic platform

Segment A Segment B Segment C Segment D

High cost
High performance

Mid-range

Low cost
Low performance

Application d Products

Segmentation
Grid

API API API API API

Core processes

Core process logic Core data logicCore business logicCore application logic

Core data
(Customer, Product)

Core workflows and
Business rules

Core applications
(ERP,SCM, CRM)

Application b

542 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

A developer could “call” a Web Service by using a URL tag and WSDL description of a particular
service to use. They can find this information by querying a UDDI registry.

When a Web Service is ready to “call” another service, it sends a request as an XML document in
a SOAP envelope. This protocol can work across a variety of transport mechanism, either
synchronously or asynchronously.

Figures 10 and 11 illustrate how these pieces fit together.

Figure 10 High Level Web Services Architecture

1. First the user discovers all the possible Web Services from the UDDI registry
and how to use them,

2. Then the user picks the best web service for their particular need.

3. From WSDL, the user now has details of how to invoke the desired service
and can do so directly.

Note that, if particular modules occur together frequently, a user can select and group some
services into a new, composite service that can be called and reused.

Services
broker

Services
Requestor

Services
Provider

Publish
WSDL

Find
UDDI

Bind
SOAP

Service

Service
description

Service
description

Directory
Universal description,
Discover, and integration (UDDI):
“yellow pages” that enable users
to locate services

Interface

Web services description
language (WSDL):Defines
how to use the service.

Transport

Simple object access protocol
(SOAP): Mechanism for
connecting with applications
and data.

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 543

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

Figure11. How Web Services Works

VIII. CONCLUSIONS AND LIMITATIONS

In this paper we presented the concept of Web Services from a stakeholder perspective, i.e,
owner, architect, builder, and user. For each stakeholder, we present the salient issues and
current developments such as dynamic business network, enterprise logic and modularity. We
focused primarily on the promise of Web services and the particular value this approach holds for
the four stakeholder perspectives.

We must also consider some of the challenges and drawbacks Web Services may entail for each
of these stakeholders. In the following subsections, we discuss the limitations of Web Services.

OWNERS
From an owner’s perspective, organizations can be modeled as dynamic business networks.
Web Services add value by providing a framework suited for these dynamic networks. Note,
however, that not all organizations are equally dynamic. A move to Web Services may not be
cost-effective for organizations where tight system integration is more important than flexibility. In
particular, the cost of adding flexibility to legacy systems may be difficult to justify.

Owners also face the question of who is responsible for the architecture, the components, and
overall performance. Web Services alone cannot resolve these responsibility issues. Indeed, the
increasing number of actors and organizations responsible for components of a functioning
system under Web Services may actually exacerbate this problem.

DESIGNERS

From a designer’s perspective, Web Services provide a framework for modular systems
development. With Web services, however, designers must not only design the functionality to
be provided by each module but must treat each module as a “product” that can ensure delivery
of services to a wide range of clients across a wide range of circumstances. For example,
Arsanjani et al [2003] identify such "nonfunctional" issues as performance, reliability, and level of

Client

Use UDDI directory
to locate web service

Web service is translated
to XML, which acts as a
platform neutral wraper

Components communicate
Via SOAP

Web service is delivered back to client in XML

544 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

service. This means that in addition to the required functionality, these “products” must also
provide configuration toolkits that other designers can use to support their own unique
requirements [Von Hippel and Katz 2003].

Finally, while the promise of Web Services rests, at least in part, on the wide adoption of key
standards for interoperation, adopting such standards brings with it the risk that the market may
switch to a different standard. This risk is especially significant in the current climate in which
Web Services users are of necessity early adopters.

BUILDERS
From a builder’s perspective, Web Services provide a deployment framework for efficient
development and interoperability of information systems using industry standards. For early
adopters, however, there are significant performance and reliability issues to consider. For
example Arsanjani et al [2003] note that the overhead involved in representing data using XML
and text will result in "a data size explosion" and a significant processing overhead. In addition,
early adopters have to deal with early versions of tools, limited infrastructure, and shifting
standards. One may expect many of these issues to resolve themselves in the near future as
additional tools and infrastructure are brought into play and performance and reliability problems
are addressed. In the meantime however these are significant issues which builders should have
consider.

USERS
From an end user’s perspective, Web Services promise an architecture for users to find relevant
resources quickly and use them effectively. For the end user, however, facilities for the direct
composition and manipulation of Web Services are not yet available. Instead, the end user is
more likely to benefit from "trickle-down" flexibility that is enabled by designers and builders and
implemented in the code. Perhaps more to the point, the infrastructure is not yet in place to
provide a user with performance guarantees for specific Web Services. Finally, the search costs
for end-users seeking to identify relevant Web Services are still significant, although such search
costs will presumably continue to decline as the technology develops.

ACKNOWLEDGEMENT

Financial support from Boston University, School of Management, SMG Junior Faculty
Development Grant is gratefully acknowledged.
Editor’s Note. This article, which was received on October 14, 2002, was fully peer reviewed. It was with the
authors for approximately two months for two revisions and was published on April 23, 2003.

REFERENCES

Alexander, C. (1964) Notes on the Synthesis of Form, Boston: Harvard University Press.

Apache. (2002) "http://www.apache.org/," (current July 23, 2002).

Arsanjani, A., et al. (2003) "Web Services: Promises and Compromises," Queue (1) 1, pp 48-58.

Balasubramanian, P.R., G. Wyner, and N. Joglekar (2002)"The Role of Coordination and

Architecture in Supporting ASP Business Models," Proceedings of the 35th Annual Hawaii

International Conference on System Sciences

Baldwin, C.Y., and K.B. Clark (1997) "Managing in an Age of Modularity," Harvard Business

Review (68), pp 73--109.

Baldwin, C.Y., and K.B. Clark (2000) Design Rules: The Power of Modularity, Cambridge, MA:

The MIT Press, p. 471.

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 545

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

Birrell, A., and B. Nelson (1984) " Implementing Remote Procedure Calls," ACM Transactions on

Computer Systems (2) 1.

Bovet, D., and J. Martha (2000) Value Nets: Breaking the Supply Chain To Unlock Hidden Profits,

New York: Wiley p. 270.

BPMI. (2002) "http://www.bpmi.org/index.esp," (current July 24,2002).

Brandenburger, A., and B. Nalebuff (1996) Co-opetition, New York: Doubleday, p. 290.

Chandler, A.D. (1964) Strategy and Structure: Chapters in the History of the American Industrial

Enterprise, Cambridge, MA: The MIT Press, p. 463.

Gawer, A., and M.A. Cusumano (2002) Platform Leadership: How Intel, Microsoft, and Cisco

Drive Industry Innovation, Boston: Harvard Business School Press, p. 336.

Gaynor, M. (2002) Network Services Investment Guide: Maximizing ROI in Uncertain Times, New

York: Wiley.

Gaynor, M., and S. Bradner (2001) "Using Real Options to Value Modularity in Standards,"

Knowledge Technology & Policy (14) 2.

Gaynor, M., et al. (2001)"The Real Options Approach to Standards for Building Network-based

Services," IEEE conference on Standardization and Innovation, Boulder CO IEEE.

Gnyawali, D.R., and R. Madhavan (2001) "Cooperative Networks and Competitive Dynamics: A

Structural Embeddedness," Academy of Management Review (26) 3, pp 431-445.

Graham, S., et al. (2002) Building Web Services with Java: Making Sense of XML, SOAP, WSDL

and UDDI, Indianapolis, IN: Sams, p. 581.

Hacki, R., and J. Lighton (2001) "The Future of the Networked Company," The McKinsey

Quarterly (3), pp 26-39.

Hagel III, J., and J.S. Brown (2001) "Your Next IT Strategy," Harvard Business Review, (73:10)

October, pp 105--113.

Joglekar, N., and P.R. Balasubramanian (2001)"Dynamics of Application Service Provision

Business Models," Proceedings of the International Conference of the Systems Dynamics

Society, Atlanta, GA.

Langlois, R.N. (1999) "Modularity in Technology and Organization," Journal of Economic

Behavior & Organization (49)1, pp 19-37.

Linthicum, D. (2000) Enterprise Application Integration, Upper Saddle River, NJ: Addison-

Wesley,p. 377.

546 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

Markus, M.L. (2000) "Paradigm Shifts - E-Business and Business/Systems Integration,"

Communications of the Association for Information Systems (4)10, pp 1--44.

McKeen, J., et al. (2002) "IT Sourcing: Make, Buy or Market?," Communications of the

Association for Information Systems (9) 8 September.

Morgan, T. (2002) Business Rules and Information Systems, Pearson Education, Inc., Boston, p.

348.

Nohria, N., and R.G. Eccles (eds.) (1992) Networks and Organizations: Structure, Form and

Action. Boston: Harvard Business School Press.

Orfali, R., D. Harke, and J. Edwards (1996) The Essential Client/Server Survival Guide, New

York: Wiley .

Parnas, D.L. (1972) "On the Criteria To Be Used in Decomposing Systems Into Modules,"

Communications of the ACM (15) 12, pp 1053-1058.

Schilling, M.A. (2000) "Toward a General Modular Systems Theory and its Application To Inter-

Firm Product Modularity," Academy of Management Review (25), pp 312-334.

Simon, H.A. (1996) The Sciences of the Artificial, Cambridge, MA: The MIT Press,p. 231.

Sleeper, B. (2001) "Defining Web Services," San Francisco: The Stencil Group.

Tapscott, D., D. Ticoll, and A. Lowy (2000) Digital Capital: Harnessing the Power of Business

Webs, Boston: Harvard Business School Press, p. 320.

TechMetrix (2002) "Which Technology for Tomorrow's EAI?," http://e-

serv.ebizq.net/aps/techmetrix_2.html (current July 29, 2002).

Von Hippel, E., and R. Katz (2003) "Shifting Innovation to Users Via Toolkits," Management

Sciences (48)7, pp 821-835.

WFMC. (2002) "http://www.wfmc.org/," (current July 24, 2002).

XML. (2002) "www.xml.org," (current July 23, 2002).

Zachman, J.A. (1987) "A Framework for Information Systems Architecture," IBM Systems Journal

(26) 3, pp 276--292.

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 547

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

APPENDIX I. WEB SERVICE RESOURCES

GENERAL

www.webservices.org
www-106.ibm.com/developerworks/webservices
www.gotodotnet.com/team/XMLwebservices
www.w3.org/2001/01/WSWS
www.ws-i.org
www.ebizQ.net
www.eaiindustry.org

SOAP
www.w3.org/TR/SOAP
www.develop.com/soap/
www.soapware.org

XML
www.w3.org/XML/
www.xml.org
www.xmlrpc.com

WSDL
www.w3.org/TR/wsdl
xml.coverpages.org/wsdl.html

UDDI
www.ibm.com/services/uddi
www.uddi.org
www.uddicentral.com

COLLABORATION PROTOCOLS
www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf (WSFL)
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/ (XLANG)
http://ifr.sap.com/wsci/ (WSCI)

 http://www.bpmi.org/ (BPMI)

548 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

APPENDIX II. INFORMATION SYSTEM SOURCING

Regardless of the type of coupling between the entities in the network, information flows between
systems in the network. An important problem encountered by owners is whether to own the
information flows or outsource them [Lacity and Hirschheim,1993; Lacity and Willcocks, 1998;
Hirschheim and Lacity, 2000]. A key finding is that sizeable investments are required to create the
infrastructure necessary to integrate data and applications to sustain a viable network.
Furthermore, controlling and setting the architectural standards is seen as more important than
which applications a firm uses [Gawer and Cusumano 2002]

The owner’s perspective results in the selection of a sourcing strategy – build, buy, rent, or
share.To understand these alternatives, we must consider the evolution of software development
practices. For almost all firms, their inventory of information systems was developed at different
points in time and using resources both within and outside the boundary of the firm. IT service
provisioning evolved through several delivery models. Traditionally, firms could rent, buy or build
software applications to meet their business needs. Initially computers were an expensive, central
resource requiring programming specialists. These initial computers were affordable only by the
very largest corporations and were used primarily to support firm- specific, internally focused
business needs through a ‘dedicated services model’. Eventually, smaller organizations that
could not afford the overhead of their own centralized computer resource could rent computer use
from a third party. Renting applications was achieved through a ‘shared services model’ such as
‘time sharing’ or more recently through ‘Application Service Providers’ [Balasubramanian et al.
2002; Joglekar and Balasubramanian 2001]. Using the shared services model, individual firms
rent the use of the application from a vendor who is responsible for developing and maintaining
the hardware and software environment to support the user’s needs.

 The basis of this business model paradigm rests in sharing standard fixed costs (e.g., the data
center, standard software licenses, and technical support/operations staff). The economics of
sharing certain standard fixed costs across many customers provides advantage to both the
vendor and their customers.

With more widespread use and continual reduction in the cost of computers, the emergence of
generalized application software packages designed for specific industries or for specific
functions was introduced. These software packages were designed to provide 80 to 90 percent
of the user’s needs, greatly reducing the amount of custom programming required. Firms now
had the option of building custom applications or buying packaged applications. In addition, firms
could rent application use through shared services. Applications have moved from centralized
monolithic computing environments to distributed, multiprocessing and desktop computing.
Packaged applications became more sophisticated and configurable to individual customer
needs.

The computing software development paradigm however remained constant. Applications are
designed for specific purposes in an a priori manner. Any flexibility must be ‘in the design’ and
evoked through configurable switches or parameters. Typical application implementations
require support from application programming specialists to customize the packaged standard
code to meet the specific needs of an enterprise. The difficulty in this software development
paradigm is that the applications are inherently difficult to change rapidly. The software is
designed for a particular purpose. As a result, the typical enterprise will spend more money
maintaining the software than they spend on the original implementation. Software maintenance
and enhancement is typically the largest portion of an organization’s IT budget.

Whether the software is rented, bought, or built, applications are developed and used by
businesses for their particular customized purposes that are well defined in advance of their use.

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 549

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

Systems go through a careful design and acceptance process to assure compliance with an a
priori understanding. Contractual agreements specify the form and function of the application.
Given the development complexity, these applications are not designed to provide flexibility;
rather the software is designed and run to meet specific fixed requirements.

This traditional approach to software development has been consistent with the business
paradigm of the enterprise that the software was designed to support. Business focused on
gaining competitive advantage through economies of scale, driving cost per unit down, and by
increasing quality through the design and continual fine-tuning of very specific production
processes. This view of the world results in tightly integrated systems. Tightly integrated
systems sacrifice the ability to adapt rapidly to change (i.e., flexibility) for efficiency and/or
effectiveness towards a particular purpose.

APPENDIX III. MODULAR DESIGN

Consider the evolution of a computer system without a modular design. Figure A-1 illustrates
such a system: it performs 4 main tasks – storage, memory, I/O, and the CPU. Suppose that this
computer is being redesigned and both the memory and the CPU are changed. Now, assume
that this redesigned CPU worked well, and increased the value of the total system by +1,
however the new memory design did not work as expected. It decreased the value of the total
system by –2. When redesigning a computer whose functional pieces are interconnected, the
new artifact provides a single choice; the new system performs as a whole either better, worse, or
the same than its predecessor does. In this case, the value of the new system is less than the
original system. They system is a failed memory experiment that drags down the total system
value. The interconnected architecture of this computer does not allow the choice of only using
the improved CPU, without the inferior new memory design.

Figure A-1. Interconnected System

CPU Memory

Storage

I/O
OR

Value of experiments:
Memory = -2
CPU = +1

Value = 0 CPU Memory

Storage

I/O

Value = 0

CPU Memory

Storage

I/O

Value = -1

550 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

Figure A-2 illustrates a modular computer alternative. If the redesign is attempted with this
modular architecture, many more choices are available for the new system compared to the
interconnected system. The system with the most value only uses the new CPU, keeping the
older, but better performing memory design. The value of this new system is +1, As with all
options-like situations, increases in uncertainty increase the value of modularization. Modularity
allows the system designer to pick and choose the components of the new system, thus
maximizing the value. Uncertainty increases this value, because as it grows it increases the
potential of a better choice emerging. Modular design increases value by providing a portfolio of
options rather than a (less valuable) option on a single portfolio.

Figure A2. Value of Modular System

Modularization allows designers to experiment with the modules that have the most potential for
altering the value of a system. Each experiment is one design of the system. Performing many
experiments on the components most critical to overall system performance has the potential to
improve the overall value of the entire system. The greater the technical uncertainty, the greater
is the value for such focused experimentation. Because of the modular design, the designer can
pick the best outcome from many trials.

For example, suppose the designers of a new computer system need to increase the rate a CPU
module processes instructions (Figure A3) Three attempts are made to improve the CPU: the
worst experiment lowers the value of the total system by –2, and the best new design increases
the total system value by +2. By attempting several technically risky new technologies for a CPU,
the designer can improve the odds of obtaining faster instruction execution. Modularity allows
system designers to focus on components with the most potential to increase the value of the
whole system.

Value of experiments:
Memory = -2
CPU = +1

Value = 0

I/O
CPU Memory

Storage

Value = 0

I/O
CPU Memory

Storage

Value =-2

I/O
CPU Memory

Storage

Value =+1

I/O
CPU Memory

Storage

Value = -1

I/O
CPU Memory

Storage

OR

OR

OR

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 551

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

Figure A-3. Value of Experimentation

The value of picking the best module from the many choices that modularity allows is similar to
the value gained from a distributed management structure, because the experimentation it allows
enables users to select among many choices of network-based services. Interconnected
systems make experimentation difficult in a similar way that central management hampers the
ability to experiment. Modularity gives designers choices in the same way that distributed
management gives users choices. Both approaches have the most value when uncertainty is high
because of the increased value of experimentation enabled by the modular design, or the
distributed management structure. This theory was extended to model modularity in IT standards
[Gaynor and Bradner 2001] and general network services [Gaynor 2002, Gaynor et al. 2001].

LIST OF ACRONYMS AND THEIR MEANINGS

Acronym and Full
Form

Meaning

.NET both a business strategy from Microsoft and its collection of programming
support for what are known as Web services, the ability to use the Web rather
than your own computer for various services. Microsoft's goal is to provide
individual and business users with a seamlessly interoperable and Web-
enabled interface for applications and computing devices and to make
computing activities increasingly Web browser-oriented. The .NET platform
includes servers; building-block services, such as Web-based data storage;
and device software. It also includes Passport, Microsoft's fill-in-the-form-only-
once identity verification service.

Apache AXIS An implementation of the SOAP ("Simple Object Access Protocol") submission
to W3C.

Value = 0

Storage

CPU
I/O

Memory

CPU(1)
CPU(2)

Value = +2

Storage

CPU(2)
I/O

Memory

CPU(3)

Value = -2

Value = 2

Value = +1

552 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

API

Application program
interfaces

The specific method prescribed by a computer operating system or by an
application program by which a programmer writing an application program
can make requests of the operating system or another application.

Application “wrapping” An application which wraps itself around ClockWatch to intercept and handle
communication requests.

CORBA

Common Object Request
Broker Architecture

OMG's open, vendor-independent architecture and infrastructure that
computer applications use to work together over networks. Using the standard
protocol IIOP, a CORBA-based program from any vendor, on almost any
computer, operating system, programming language, and network, can
interoperate with a CORBA-based program from the same or another vendor,
on almost any other computer, operating system, programming language, and
network.

DCOM

Distributed Component
Object Model

a set of Microsoft concepts and program interfaces in which client program
objects can request services from server program objects on other computers
in a network. DCOM is based on the Component Object Model (COM), which
provides a set of interfaces allowing clients and servers to communicate within
the same computer (that is running Windows 95 or a later version

FTP

File Transfer Protocol

A protocol used to request and transmit files over the Internet or other
computer network

HTTP

Hypertext Transfer
Protocol

A protocol used to request and transmit files, especially webpages and
webpage components, over the Internet or other computer network.

J2EE

Java 2 Platform,
Enterprise Edition

a Java platform designed for the mainframe-scale computing typical of large
enterprises. Sun Microsystems (together with industry partners such as IBM)
designed J2EE to simplify application development in a thin client tiered
environment. J2EE simplifies application development and decreases the
need for programming and programmer training by creating standardized,
reusable modular components and by enabling the tier to handle many
aspects of programming automatically.

Java a programming language expressly designed for use in the distributed
environment of the Internet. It was designed to have the "look and feel" of the
C++ language, but it is simpler to use than C++ and enforces an object-
oriented programming model. Java can be used to create complete
applications that may run on a single computer or be distributed among
servers and clients in a network. It can also be used to build a small
application module or applet for use as part of a Web page. Applets make it
possible for a Web page user to interact with the page.

NP

Network Platform

A base of communication technologies on which other technologies,
applications or processes are built.

OMG

Object Management
Group

is an open membership, not-for-profit consortium that produces and maintains
computer industry specifications for interoperable enterprise applications.
Membership includes virtually every large company in the computer industry,
and hundreds of smaller ones. Most of the companies that shape enterprise
and Internet computing today are represented on the OMG Board of
Directors.

RMI

Remote Method
Invocation

is a way that a programmer, using the Java programming language and
development environment, can write object-oriented programming in which
objects on different computers can interact in a distributed network. RMI is the
Java version of what is generally known as a remote procedure call (RPC), but
with the ability to pass one or more objects along with the request. The object

Communications of the Association for Information Systems (Volume 11, 2003) 525-554 553

Web Services: Enabling Dynamic Business Networks by B. Iyer, J. Freedman, M. Gaynor, and G. Wyner

can include information that will change the service that is performed in the
remote computer.

RPC

Remote Procedure Calls

is a protocol that one program can use to request a service from a program
located in another computer in a network without having to understand
network details. (A procedure call is also sometimes known as a function call
or a subroutine call.)

SMTP

Simple Mail Transfer
Protocol

a protocol for requesting and transmitting mail documents

SOAP

Simple Object Access
Protocol

SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment. It is an XML based protocol that consists of three
parts: an envelope that defines a framework for describing what is in a
message and how to process it, a set of encoding rules for expressing
instances of application-defined datatypes, and a convention for representing
remote procedure calls and responses. SOAP can potentially be used in
combination with a variety of other protocols; however, the only bindings
defined in this document describe how to use SOAP in combination with HTTP
and HTTP Extension Framework

UDDI

Universal Description,
Discovery and Integration

a "meta service" for locating web services by enabling robust queries against
rich metadata

WSDL

Web Services
Description Language

WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described abstractly,
and then bound to a concrete network protocol and message format to define
an endpoint. Related concrete endpoints are combined into abstract endpoints
(services). WSDL is extensible to allow description of endpoints and their
messages regardless of what message formats or network protocols are used
to communicate

WSFL The Web Services Flow Language is an XML language for describing Web
Services compositions.

XML

Extensible Markup
Language

A metalanguage written in SGML that allows one to design a markup
language, used to allow for the easy interchange of documents on the World
Wide Web.

ABOUT THE AUTHORS

Bala Iyer is assistant professor of Information Systems in the department of information systems,
Boston University. Professor Iyer received his Ph.D. from New York University in MIS with a
minor in computer science. His research interests include architecture design, knowledge
management, query-driven simulation and its applications in manufacturing, and hypermedia
design and development. His papers appear in the Communications of the ACM, Decision
Support Systems, Annals of Operations Research, Journal of Strategic Information Systems,
Communications of AIS and in several proceeding of the Hawaii International Conference of
Systems Sciences. He serves on the editorial board of the Journal of Database Management.

Jim Freedman Jim has over 28 years experience as an information technology consultant and
educator. He worked with clients in the financial services, manufacturing, distribution, retail,
transportation and software industries. His experience spans a wide range of computing
platforms since he began as a programmer supporting applications running on mainframe
computers. He is currently on the faculty at Babson College, teaching graduate level courses in e-

554 Communications of the Association for Information Systems (Volume 11, 2003) 525-554

Web Services: Enabling Dynamic Business Networks by B. Iyer,, J. Freedman, M. Gaynor, and G. Wyner

business and information systems management and is a doctoral candidate at Boston University.
His research interests are in the adoption of emerging and disruptive technologies.

Mark Gaynor holds a Ph.D. in Computer Science from Harvard University and is Assistant
Professor in the Graduate School of Management at Boston University. His research interests
include ATM, TCP/IP over high speed ATM networks, packet classification for Quality of Service,
standardization in the IT area, designing network based-services, and wireless Internet services.
He is on the research board of Telecom City (a regional technology development project) and is a
Co-Principal Investigator on an NSF Grant studying virtual markets on a wireless grid. He is the
technical director and network architect at 10Blade. His book, Network Services Investment
Guide: Maximizing ROI in Uncertain Markets, is being published by Wiley this year.

George Wyner is Assistant Professor of Information Systems at the Boston University School of
Management. Professor Wyner received a Ph.D. in Management from the Sloan School of
Management at MIT. His research centers on the modeling, classification, and analysis of
organizational processes to achieve systematic technology-enabled organizational innovation.
His papers appear in Management Science, Information Systems, and in the proceedings of the
International Conference on Information Systems.

Copyright © 2003 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish
from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from
ais@gsu.edu .

 ISSN: 1529-3181

EDITOR-IN-CHIEF
Paul Gray

Claremont Graduate University
AIS SENIOR EDITORIAL BOARD
Cynthia Beath
Vice President Publications
University of Texas at Austin

Paul Gray
Editor, CAIS
Claremont Graduate University

Sirkka Jarvenpaa
Editor, JAIS
University of Texas at Austin

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of California at Irvine

Richard Mason
Southern Methodist University

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Chris Holland
Manchester Business
School, UK

Jaak Jurison
Fordham University

Jerry Luftman
Stevens Institute of
Technology

CAIS EDITORIAL BOARD
Tung Bui
University of Hawaii

H. Michael Chung
California State Univ.

Candace Deans
University of Richmond

Donna Dufner
U.of Nebraska -Omaha

Omar El Sawy
University of Southern
California

Ali Farhoomand
The University of Hong
Kong, China

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University, Canada

Robert L. Glass
Computing Trends

Sy Goodman
Georgia Institute of
Technology

Joze Gricar
University of Maribor
Slovenia

Ruth Guthrie
California State Univ.

Juhani Iivari
University of Oulu
Finland

Munir Mandviwalla
Temple University

M.Lynne Markus
Bentley College

Don McCubbrey
University of Denver

Michael Myers
University of Auckland,
New Zealand

Seev Neumann
Tel Aviv University, Israel

Hung Kook Park
Sangmyung University,
Korea

Dan Power
University of Northern Iowa

Nicolau Reinhardt
University of Sao Paulo,
Brazil

Maung Sein
Agder University College,
Norway

Carol Saunders
University of Central
Florida

Peter Seddon
University of Melbourne
Australia

Doug Vogel
City University of Hong
Kong, China

Hugh Watson
University of Georgia

Rolf Wigand
University of Arkansas

Peter Wolcott
University of Nebraska-
Omaha

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Samantha Spears
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

	Communications of the Association for Information Systems
	April 2003

	Web Services: Enabling Dynamic Business Networks
	Bala Iyer
	Jim Freedman
	Mark Gaynor
	George Wyner
	Recommended Citation

	Microsoft Word - Journal.doc

