
Communications of the Association for Information Systems

Volume 20 Article 31

October 2007

Analysis and Design in the IS Curriculum: Taking it
to the Next Level
John W. Satzinger
Southwest Missouri State University, jws086f@smsu.edu

Dinesh Batra
Florida International University, batra@fiu.edu

Heikki Topi
Bentley College, htopi@bentley.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Satzinger, John W.; Batra, Dinesh; and Topi, Heikki (2007) "Analysis and Design in the IS Curriculum: Taking it to the Next Level,"
Communications of the Association for Information Systems: Vol. 20 , Article 31.
DOI: 10.17705/1CAIS.02031
Available at: https://aisel.aisnet.org/cais/vol20/iss1/31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301376797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20/iss1/31?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol20/iss1/31?utm_source=aisel.aisnet.org%2Fcais%2Fvol20%2Fiss1%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 483

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

ANALYSIS AND DESIGN IN THE IS CURRICULUM:
TAKING IT TO THE NEXT LEVEL

John W. Satzinger
Missouri State University

Dinesh Batra
Florida International University
DineshBatra@business.fiu.edu

Heikki Topi
Bentley College

ABSTRACT

Recent surveys of methodologies and techniques currently used in organizations for developing
information systems indicate significant trends that call for a revision of the Information Systems
(IS) Systems Analysis and Design (SA&D) course to define what methodologies, techniques,
models, and tools need to be taught. Several course-related and environment governed trends
seem to impact the coverage, including the growing popularity of object-oriented techniques, the
shortening of the life cycle and the emergence of the iterative approach, the increasing adoption
of the agile approach, the rising importance of UML, the outsourcing trend leading to global
distribution of SA&D work, and the rate of change in the technical and business environments.
The scope of the SA&D course has increased. Yet, most MIS degree programs have just one
SA&D course. The typical SA&D instructor faces a number of difficult questions when trying to fit
the much larger range of topics into a single course. A panel at the Americas Conference on
Information Systems (AMCIS) 2007 conference evaluated how the trends impact the coverage of
the SA&D course and made recommendations on how these trends can be addressed. Based on
the panel discussion, this paper tackles the many challenges of teaching analysis and design in
the IS curriculum and taking it to the next level.

Keywords: Systems analysis, systems design, systems methodologies, systems techniques, IS
teaching

I. INTRODUCTION

The majority of system failures can be attributed to problems that arise during the systems
analysis and design phases [Iivari, Parsons, and Hevner, 2005]. One of the most significant
changes to the information systems (IS) field in recent years has involved system development
methodologies and system development practices [Bajaj et al, 2005]. Object-oriented techniques
and technologies have made significant inroads into business systems development [Johnson,
2002; Mahapatra, Nerur, and Slinkman, 2005], which has required rethinking many aspects of
analysis and design. Additionally, methodologies based on the use of the Unified Modeling
Language (UML) have emerged as dominant modeling approaches for analysis and design now
that UML has been accepted as a standard by the Object Management Group (OMG) [Kobryn,
1999; Batra, 2008]. Another important trend has been toward the use of adaptive, iterative life

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 484

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

cycle models to deal with the complexity of systems development, in place of the predictive
waterfall model [Larman, 2005]. These changes have required rethinking much of what has been
traditionally taught in systems analysis and design (SA&D) courses in the IS curriculum.

Other trends affecting system development involve project management, technology, and
sourcing options that affect how and where key SA&D concepts and techniques are taught. For
example, agile development as a general approach [Larman, 2004] and specific agile
development methodologies, such as eXtreme Programming [Beck, 2000], Scrum [Schwaber and
Beedle, 2002], and Crystal [Cockburn, 2005], present challenges and opportunities when
deciding how to manage a development project in SA&D. Web technologies and service oriented
architecture (SOA) greatly impact how system design is approached in SA&D courses, including
designing security and controls. For many years now, SA&D instructors have struggled to deal
with addressing issues related to software package selection and implementation, including
enterprise resource planning (ERP) solutions [Ragowsky, Somers, and Adams, 2005]. At the
same time, the variety of sourcing models for systems development have complicated managing
the development process and supporting the project team [Cullen and Willcocks, 2003]. Teams
and team members are increasingly geographically distributed, multicultural, and multi-lingual
[Olson and Olson, 2003]. At the same time, the rate of change in the business and technical
environments continues to increase [Reeves, 1999], adding even more pressure to SA&D
instructors to be sure they are teaching up to date and effective tools and techniques.

A panel session at the Americas Conference on Information Systems (AMCIS) 2007 conference
at Keystone, Colorado, was motivated by the need to examine the systems analysis and design
component in the IS curriculum to discuss what methodologies, techniques, models, and tools
need to be taught in the IS Systems Analysis and Design course. A number of issues seemed
pertinent. How does one fit the structured, the iterative, and the agile approaches in one course?
Should the life cycle notion be taught as iteration to reap the advantages of the structured and
iterative approaches? Can agile principles be included in the same course even though there are
some fundamental differences with the structured and the iterative? Is it time to drop data flow
diagram (DFD’s)? Should use cases be the basic approach to the specification of functional
requirements? Can use cases be employed in a structured approach? Can data modeling be
used along with object-oriented techniques? How many UML diagrams need to be covered?
How do we reconcile object-oriented development with relational systems? Should the focus of
the course be toward web-enabled systems or is the web yet another implementation platform?
Given the outsourcing environment, how much design and implementation should be covered as
compared to requirements specification, analysis, and project management? What is the role of
business process modeling and design in SA&D? Can SA&D be taught effectively without
considering the details of technical design? Should an IS program consider a second course in
SA&D to fit the topics? Or, should the SA&D instructor coordinate with the instructor who teaches
the project management (PM) course, which can incorporate the management principles of the
adaptive versus predictive and the disciplined versus agile approaches to development?

The panel attempted to address such questions. It was attended by about 50 people, who
actively participated in the discussion. The interest in such systems analysis and design topics is
corroborated by trends such as a steady increase in membership and activities by Association for
Information Systems Special Interest Group on Systems Analysis & Design (AIS SIGSAND), an
active European SIGSAND chapter, and interest in other regions in the world to open similar
chapters.

This paper surveys the topics addressed at the AMCIS 2007 panel. First, recent research is
reviewed that demonstrates the complex and diverse state of practice that makes it difficult to
define the current requirements for an effective SA&D course. The effect of past and proposed
curriculum models on the SA&D course is then discussed. Next, in order to discuss the SA&D
course systematically, four fundamental changes affecting analysis and design and the SA&D
course are identified and discussed. Specific questions and issues under each fundamental
change are raised. Additionally, there are some controversial issues in academe that potentially

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 485

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

affect the ability of IS researchers to properly teach the SA&D course. Finally, we make specific
recommendations for improving teaching practices in SA&D.

II. STATE OF PRACTICE

A recent survey of methodologies [Lang, 2006] currently used in organizations for developing
web-based systems shows that the notion of methodology in the traditional systematic sense
seems to have been largely displaced by hybrid aggregations of techniques and other method
fragments. These aggregations and fragments are selected on the basis of usefulness and
purposefully blended within the overarching framework of an in-house development process. The
survey reported that the use of methods is 23% for hybrid, 22% for structured, 15% for agile, 14%
around tools, 13% for iterative/incremental, and 8% for object-oriented, among others (see Table
1). Note that the adoption of object-oriented development is low because models and techniques
involving UML are not standalone methodologies. It might be better to view object-orientation in
the realm of techniques.

Table 1. Use of various methodologies in practice (Lang, 2006)

METHODOLOGY ADOPTION

Hybrid, customized, in-house 23%

Traditional “legacy”, Waterfall 22%

Agile development methods 15%

Tools based (e.g. PHP, J2EE, InterDev) 14%

Incremental (e.g., RUP, Spiral) 13%

Object-oriented (e.g. OOAD, UML) 8%

Ad Hoc 8%

Human Factors Engineering methods 5%

Technique-driven (e.g., Storyboarding) 6%

Specialized for Web/hypermedia 5%

The use of models/techniques is 95% for flowcharts, 74% for entity relationships models, 72% for
use case diagrams, 62% for class diagrams, and 50% for state machine diagrams, among others
(see Table 2). Dobing and Parsons [2008] show similar practices with class, use case, and
sequence as the most used among the UML diagrams. It appears likely that the use case and
class diagrams are employed beyond the iterative and object-oriented approaches, and the entity
relationship model is used beyond the structured approach. The overall trend is toward
employing techniques normally associated with object-oriented development (e.g., use case,
class, and state machine diagrams) while retaining certain key from legacy techniques (e.g.,
entity relationship and flowcharts).

III. CONSTRAINTS OF IS CURRICULUM MODELS

Some of the key factors affecting the SA&D course are the IS curriculum models at
undergraduate and graduate levels [Gorgone et al., 2002; Gorgone et al., 2006]. IS 2002, the
undergraduate model curriculum, is highly prescriptive in nature and offers little choice for schools
adopting it. The curriculum consists of 10 required courses and no electives. SA&D has, however,
a significant role within this model curriculum: various aspects of systems analysis and design are
covered in four courses included in the curriculum, and the IS 2002 document [Gorgone et al.,

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 486

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

2002] goes as far as stating that Information Systems is equal to Technology-enabled Business
Development (including Systems Analysis and Design, Business Process Design, Systems
Implementation, and IS Project Management).

Table 2. Use of various models and techniques in practice [Lang, 2006]

MODEL/TECHNIQUE ADOPTION

Screen prototypes / Mockups 97%

Flowcharts 95%

2-D site mapping techniques 91%

Storyboards 85%

Entity-Relationship Diagrams 74%

Use Case Diagrams 72%

Object-Oriented Class Diagrams 62%

3-D site mapping techniques 52%

Statecharts 50%

IS 2002.7 Analysis and Logical Design is a traditional SA&D course that focuses on the early
stages of the systems development life cycle. In addition, IS 2002 includes two “Physical Design
and Implementation” courses (IS 2002.8 Physical Design and Implementation with DBMS and IS
2002.9 Physical Design and Implementation in Emerging Environments) and the capstone IS
2002.10 on Project Management and Practice. IS 2002.8, .9, and .10 all include elements that are
within the broad umbrella of SA&D, particularly if we take the “D[esign]” in SA&D seriously. Some
of the topics in IS 2002.8 include “structured and object design approaches,” “design tools,” and
“database implementation including user interfaces and reports,” all topics associated with SA&D.
In 2002.9, relevant topics are “structured, event-driven, and object-oriented application design,”
“testing,” “software quality assurance,” and “multi-tiered architectures and client independent
design.” Finally, the topics in IS 2002.10 include “managing the system life cycle,” “requirements
determination,” “design,” “project tracking, metrics, and system performance evaluation.” Clearly,
IS 2002 acknowledges that SA&D is in the very core of the Information Systems profession and
has characteristics that demonstrate this in a very concrete way.

However, the trends listed at the beginning of this article suggest that IS 2002 needs to be
revised. The key ideas of the curriculum were developed in the mid-1990s, and thus, the time
elapsed since alone is a strong enough reason to review the curriculum. Both the technical and
the business environments have changed dramatically since the core architecture of IS 2002 was
developed, including fundamental changes such as the ubiquitous connectivity offered by the
Internet, the emergence of the Web as a platform for communication and applications, the highly
widespread use of ERP systems as the foundation for organizational information systems
solutions, and the transformation of the nature of IS/IT work to a fully global and distributed
model. The trends provide an opportunity for the Information Systems community to rethink and
potentially redefine its identity – at least for the external constituencies, the field is defined at least
as much through what we teach as it is through our research output. A new model curriculum is
clearly needed.

A joint Association for Computing Machinery (ACM)/AIS project to revise the Information Systems
undergraduate model curriculum was launched in early 2007, and the first round of results of the
committee’s work were discussed and made available to the public at the AMCIS 2007 meeting
[Topi et al, 2007]. One of the key changes included in the current proposal is the separation of the
core of the curriculum from electives, with the recognition that the core concepts and skills in

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 487

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

information systems may be integrated in a meaningful way with concepts and skills in a number
of technology specialties and domain areas. In addition, the proposal acknowledges that even the
core concepts and skills are not covered at the same level of detail in all programs.

From the perspective of the current discussion, a key question, of course, is the role of SA&D in
the revision. The positive news is that SA&D is included in the proposed core together with
Foundations of Information Systems, Data & Information, IT Infrastructure, Project Management,
and Application Development (see Table 3, also available at http://blogsandwikis.bentley.edu/
iscurriculum/index.php/New_Curriculum_Structure_and_Content). Note that the dark circles in
the table represent significant coverage, while the light circles represent some coverage. There
have been virtually no critical voices suggesting that SA&D should not be part of the core.
Because of the change in the nature of the curriculum, the extent to which SA&D will be covered
is not prescribed at the same level of detail as it was in the previous curriculum. At the same time,
a school that wants to develop a program that has a very strong emphasis on SA&D can do that
and still stay within the boundaries of the model curriculum. It is unlikely that the model curriculum
will specify at a detailed level a specific approach to teaching SA&D in terms of either pedagogy
or content. For example, it is likely to stay indifferent regarding the selection between object-
oriented or structured approaches to SA&D or the choice between different modeling grammars.

Table 3: SA&D within the proposed IS curriculum draft representation Fall 2007.

IV. FOUR FUNDAMENTAL CHANGES AFFECTING TEACHING SYSTEMS ANALYSIS AND
DESIGN

Given the state of current practice and constraints on the IS curriculum, four fundamental
changes affecting the practice and teaching of SA&D were proposed by the panel as a framework
for discussing the SA&D course. Although there is some overlap and some additional issues that
might fall outside of this framework, most of the key questions listed earlier fall within the
framework. The four fundamental changes include:

• The Change from Structured to Object Oriented Models/Techniques

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 488

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

• The Change from Waterfall (Predictive) to Iterative (Adaptive) Life Cycles

• The Change from Formal, Disciplined Process to a more Agile Process

• The Change from Internal SA&D Processes to Globally Distributed, Outsourced
Processes.

THE CHANGE FROM STRUCTURED TO OBJECT ORIENTED MODELS/ TECHNIQUES

Although not specifically object-oriented, use cases are often identified with SA&D courses that
cover UML and the object-oriented approach to analysis and design [Dobing and Parsons, 2008].
Covering use cases is often done at the expense of the time used for data flow diagrams (DFD’s)
and the data dictionary. The panelists proposed that use cases are effective for capturing
functional requirements, although other requirements such as usability, reliability, performance,
and security (the URPS in FURPS; see Larman, 2005) also need to be documented. A key
question raised by the audience was whether functional decomposition can be taught effectively
with use cases. Data flow diagrams provide a clear hierarchical decomposition that, even if not
used in practice, can be an effective approach to teaching decomposition. Another use case topic
is the emphasis on use case diagrams versus use case descriptions. Teaching use case
diagrams without use case descriptions provides little benefit, in the same way as using use case
diagrams without the descriptions provides few benefits in the systems development process.
Use case descriptions, written using one of the popular templates (e.g., Cockburn [2001]),
document important information regarding the interaction between the system and its users that
can be used throughout development but is not provided by DFD’s and supporting
documentation. In a use case driven project, use cases provide the foundation for functional
requirements and, through those, for user interface design, for implementation, for testing, for
training, and for deployment. The panelists argued for eliminating DFDs in favor of use cases and
UML activity diagrams for both traditional structured development and for OO development,
although several members of the audience found DFD’s still useful and important. It was
commonly accepted that use cases are not in any specific way restricted to object-oriented
analysis and design, even though their widespread use originated from the communities
advocating object-oriented SA&D.

The emergence of the Unified Modeling Language [Kobryn 1999, 2004] as the dominant grammar
for modeling diagrams also raises a series of questions about teaching SA&D. The panelists
proposed that instructors do not have much choice but to cover UML: it has become an essential
component of any IS professional’s toolset. A widely recognized problem is the complexity of
UML [Siau, Erickson, and Lee, 2005; Siau and Loo, 2006]. The specification includes thirteen
diagrams each with many options and potential levels of detail. Surveys on practice have
generally concluded that the class diagram, the use case diagram (together with the narrative
description), and the sequence diagram can serve as key system modeling artifacts. Not every
variation and detail of each model is necessary. The key point is to show how models fit together
and how models evolve from requirements to design to implementation while maintaining the
conceptual consistency.

One key issue is the use of entity relationship diagrams (ERD) and domain model class diagrams
to model the same system concepts. The panelists agreed these diagrams can be used
interchangeably, and because of the importance of the ERD to database analysts, today’s SA&D
student should be familiar with both. Students should also learn that the same diagram grammar
can be used for multiple purposes: the UML class diagram can be used for representing both a
high-level domain model and a very detailed system design description, or the UML sequence
diagram can be used for modeling both detailed user-system interaction and the communication
sequences between the internal objects. UML can be used at various levels of detail and
abstraction. In his popular book, Martin Fowler [2004] identified three possible modes of applying
UML in software development: sketch, blueprint, and programming language.

The audience was asked whether they had one or two courses available for covering SA&D in
their undergraduate programs. Many were limited to one course. Some with two courses covered

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 489

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

a traditional approach in the first course and an OO approach in the second course. Some were
forced to cover elements of both in one course. A few covered just OO in the one available
course, and some covered just traditional SA&D in the one available course. Several covered
introductory and then advanced OO SA&D over two courses. A key question to ask is whether it
is desirable to cover both traditional and OO approaches in a curriculum. The panel agreed that in
the recent past, covering both in some mix was desirable, with more and more emphasis on OO
over time. But now it was clear that a use case driven approach coupled with UML and OO
design was the best option. Audience comments addressed local realities faced when company
recruiters wanted more traditional background. Others commented that the job market overall
expected the latest models and techniques. Perhaps teaching some historical context describing
traditional models and techniques might be enough for many instructors and programs.

THE CHANGE FROM WATERFALL (PREDICTIVE) TO ITERATIVE (ADAPTIVE) LIFE
CYCLES

Another key change is the move from using a predictive, waterfall approach to the SDLC to the
newer adaptive, iterative approach to the SDLC. The panelists agreed that the question of which
approach to use is dependent on the nature of the project. The predictive, waterfall SDLC has
always been effective for projects that have well-defined requirements, well-understood
technology, and low overall risk. Scope, requirements, technology, required tasks, and staffing
levels are predictable enough to allow the project to be planned out in advance [Boehm and
Turner, 2003]. Many IS system development projects are still planned and managed this way.
Often team members plan and report the project as though it is waterfall, but in reality they define
work tasks and deliverables with overlap and iteration. However, many (perhaps most)
development projects today have vague and changing requirements, new less stable technology,
and diverse staff members with varying experience. In addition, most current projects are built on
the top of existing application and technology infrastructure currently in use, often utilizing
enterprise systems or other packaged systems as part of the systems architecture. These
projects require more flexibility in planning and management. Iterative SDLCs provide for
embracing change and adapting to change once the project is underway.

As with traditional versus OO, it is not clear the current SA&D course can cover both predictive
and adaptive in one course. If that is the case, which one should be emphasized? For teaching, it
makes sense to cover planning concepts, analysis/requirements concepts, design concepts, and
implementation concepts sequentially while simultaneously identifying them as conceptually
separate activities that can and often are performed iteratively. Audience members suggested it
might be better to start with the predictive approach and then also discuss the reality of iteration.
Others suggested that teaching an adaptive methodology from the start is a better solution,
including the life cycles from the Unified Process (UP) [Bergstrom and Raberg, 2004; Satzinger
and Jackson, 2003] and even agile development such as eXtreme Programming (XP) [Beck,
2000], and Scrum [Schwaber and Beedle, 2002]. The panelists raised the question of whether
teaching one life cycle for large projects (perhaps the traditional SDLC or the iterative UP) and a
different life cycle for small projects was a good approach. Again, those with only one available
SA&D course saw no clear solution. Finally, the panelists suggested a project management
course, separate from the SA&D course, might cover the predictive approach generally and as it
applies to some system development projects. Additionally, package selection and ERP projects
might fit into a project management course and be focused on predictive SDLCs.

The panel proposed that the Unified Process (UP) life cycle model might be a good model to use
when teaching SA&D because it can reduce complexity by separating the life cycle phases from
the development and support disciplines. The UP Phases shown in Figure 1—inception,
elaboration, construction, and transition—can be used to explain project planning and
management checkpoints. The UP Disciplines can be used to teach the models, tools, and
techniques used throughout the development project. Separation of the two helps students
understand the disciplines as activities that can be combined in a number of different ways into
development processes. Once the iterative UP life cycle is understood, the disciplines can be

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 490

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

discussed in depth sequentially even though they are typically used iteratively. Several audience
members objected to the UP life cycle as being overly complex and difficult to explain, arguing
against the panelist’s position. Perhaps much like OO concepts and techniques were confusing
and complex to experienced developers years ago, the UP life cycle and separate disciplines are
confusing and complex to experienced developers and many IS instructors at this point. The
paradox of apparent complexity for a framework thought to reduce complexity reveals some
important researchable issues.

Figure 1. The Unified Process Life Cycle Model (courtesy of Thompson Course Technology)

The panelists concluded that the UP life cycle can be used in a predictive project or an adaptive
project, even though iterations are explicitly included in the model. As such, one project can be
planned out more completely in advance, even if the primary use of the UP model is for adaptive
projects. The panelists also proposed that the UP life cycle can be used in a project that does not
follow the details of the Unified Process methodology.

THE CHANGE FROM FORMAL, DISCIPLINED PROCESS TO A MORE AGILE PROCESS

Related to the question about the choice between predictive (waterfall) and adaptive (iterative)
processes is the question about the impact of the recent popularity of agile development
methods, such as eXtreme Programming (XP) [Beck, 2000] and Scrum [Schwaber and Beedle,
2002]. These and similar methodologies, while different from each other, have many
characteristics in common: brief iterations with frequent releases, focus on functioning code,
developing tests before code, de-emphasizing documentation as a mechanism for
communication within the project, close cooperation between the project team and its customers,
and strong emphasis on continuous customer feedback.

The panel discussed the impact of applying agile principles within SA&D courses and,
specifically, for SA&D project work. In a truly agile approach, many of the cornerstones of
traditional SA&D courses are either put aside or significantly de-emphasized. The SDLC concept
is very different in the agile environment, which has a large number of small iterations and strong
emphasis on developing functional code. Many developers following agile practices do not use a

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 491

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

stage or phase concept for organizing their work, and they would detest using the term SDLC to
describe their work. Therefore, integrating traditional stage-based SDLC principles with a genuine
agile approach can be challenging. Whatever choices are made regarding the role of agile
development, it is important that the different approaches are not mixed in a way that prevents
the students from understanding their true nature.

The agile methods philosophically downplay the importance of comprehensive and detailed
models. This creates an interesting challenge for those faculty members for whom modeling is in
the very center of not only SA&D but the entire field of Information Systems. The Agile Manifesto
(http://agilemanifesto.org/principles.html) states that “Simplicity – the art of maximizing the
amount of work not done – is essential” and “Working software is the primary measure of
progress.” These two principles combined would lead one to believe that agile approaches
include no modeling work at all. This is not, however, the case; instead, in the agile world, models
are often used in the “sketch” mode, are not perfected beyond their use as a communication tool,
and are, in many cases, not updated unless the update is necessary for a specific purpose.
Moving to an agile approach in an SA&D course would not take away the need for covering
modeling techniques and languages (such as UML), but their centrality in the development
process could potentially be reduced significantly. Scott Ambler states this principle as follows:
“…a good rule of thumb to ensure that you’re traveling light [one of his Agile Modeling principles]
is that you shouldn’t create a model or document until you actually need it”
(http://www.agilemodeling.com/essays/agileModelingXP.htm).

There are, however, pedagogically interesting approaches that integrate agile principles with the
fundamental approach underlying the Unified Process. The panelists have found Craig Larman’s
Agile UP [Larman, 2005] an interesting and pedagogically useful approach that maintains the
integration between UML artifacts and the conceptual integrity of the models throughout the
project lifecycle while emphasizing the importance of keeping the project agile and light. Larman
directly recommends that we should “model and apply the UML for the smaller percentage of
unusual, difficult, tricky parts of the design space” instead of applying it to all of software design.
Based on our experience, Larman’s approach may be one of the better ways to include both UP
and agile thinking in the same course. Figure 2 includes a schematic representation of how a
limited set of UML artifacts can be effectively integrated in Larman’s version of Agile UP.

The panel did not address the question whether or not a single SA&D course could successfully
be built around agile principles using a pure agile approach. It appears that while it might be
possible to do, it is probably not pedagogically wise because for most students, it is important that
they gain skills in developing integrated models using a widely used modeling grammar (such as
UML). Using an approach that combines agile principles with a subset of UP (such as Larman’s
Agile UP) might, however, offer an interesting opportunity to bring together different perspectives.

THE CHANGE FROM INTERNAL SA&D PROCESSES TO GLOBALLY DISTRIBUTED,
OUTSOURCED PROCESSES

Since the discussion on the first three trends took most of the time allocated to the panel session,
the panelists were not able to get into any depth on the remaining issue of distributed
development and outsourcing. It seemed that the attendees have not even started thinking about
how to address this trend. So, we present our opinion of the issues involved, and whether these
can be covered in an SA&D course.

Suppose a US-based IS company embarks on a systems development project and decides to
outsource the coding and testing aspects to a company in India. Given that there will be
temporal, geographical, language, and cultural differences between the two countries, it is evident
that project management can become more complex. What kinds of problems do cultural
differences create and how can we resolve them? Given that the time zone difference between
the client and the vendor site is 10-12 hours, what are the requirements for maintaining effective
communication? Are all sites following the same methodology, or are their different mindsets?
How can changes requested by customers be transmitted by the outsourcing client to the

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 492

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

vendors? How can common problems with the accuracy of specifications be avoided in an
environment in which written specifications are often the primary method of communication?
These issues raise the question: should the project management issues of outsourced projects
be included in the systems analysis and design course?

Figure 2. Conceptual connections between modeling artifacts in Larman’s Agile Unified Process

The global aspects of systems development need to be addressed in some course, but based on
the breadth of the issues already slated to the SA&D course, we recommend that it is not the
likely candidate for covering outsourcing issues. Certainly, students need to learn the capabilities
of companies in key vendor countries. They also need to examine an abbreviated contract
between the client and the vendor company. Although most students are aware that coding is
commonly outsourced, the distribution of other life cycle activities among the client and the
vendors is rarely discussed. For example, can testing be outsourced? Can certain kind of design
be outsourced? Can certain elements of analysis be outsourced? These issues are complex, and
it does not seem that these can be covered in a regular SA&D course.

An interesting side effect is that global distributed development can run counter to agile
development [Batra, 2007]. For example, agile principles recommend face-to-face meetings and
tacit understanding among team members; these requirements are not practical in distributed
development. Agile principles prescribe satisfying customer requirements that are even
requested very late in the project, while distributed development is governed by well-documented
contracts. In summary, the SA&D course is not geared to handle the complex issues that arise in
a distributed development environment.

V. ELEPHANTS IN THE ROOM

The panel wanted to raise three questions regarding our collective capabilities and resources that
potentially have the status of the proverbial elephant in the room. The first question is related to
the number of IS faculty members who have strong enough software development capabilities to
teach systems design. The second question relates to the difficulty in teaching agile methods
without focusing on coding. The third question is the seemingly inherent conflict between the
increasing publishing pressures that are present at all universities at this point and the faculty

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 493

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

members’ need to stay technically up-to-date in order to be able to address all aspects of an
iterative life cycle.

First, the ”D” in SA&D refers to design, and although design can refer to activities at various
levels, ultimately “design” in SA&D has to include the internal design of software solutions, such
as the object/class structure and object responsibility design in object-oriented design. These
design activities are neither technically trivial nor something that can be ignored. No reliable
statistics known to us are available, but anecdotal evidence suggests that many IS faculty
members teaching SA&D courses are not comfortable with actual software design issues – in
many SA&D textbooks, “design” includes only user interface and database design, and it appears
that in many cases, faculty members are comfortable only with these two aspects of design.

Second, iterative lifecycle models (including UP, but particularly the agile models) by definition
include coding as one of the core activities during all iterations. The role of coding is valued even
in projects based on the structured approach (Kohli and Gupta, 2002). Therefore, it is improbable
to teach the iterative approach and particularly apply it to a project unless the instructor has
sufficient capabilities not only in modeling but also in guiding students’ coding work at a high
professional level. Again, evidence is scarce, but anecdotally, it appears that many IS professors
are intentionally staying away from activities close to the actual creation of a software artifact. If
that is the case, it is not clear to us how one can effectively move between different SA&D
activities as specified by the iterative models, particularly because learning from an actual
functional software artifact is a critically important part of any iterative model (whether UP-based
or a pure agile model).

Third, teaching any approach to SA&D that includes the creation of a functional artifact requires
that the faculty member teaching the course is capable of supervising all parts of the process and
guiding the students also in the process of actually creating the artifact. Do our reward
mechanisms and promotion and tenure processes sufficiently acknowledge the fact that
maintaining one’s capabilities in software development is a highly time-consuming activity, which
is not necessarily compatible with the type of research expected by the journals with the highest
stature in our field? Is it, in practice, a feasible idea to expect a faculty member to publish at the
highest level and teach SA&D courses using approaches that include software design in its true
sense and with a strong focus on a functional software artifact?

It is very important that we acknowledge possible limitations of our field if they are a reality. If IS
faculty members are not being trained in design and technical architecture of software solutions,
and if it is not possible for an average IS faculty member to maintain his or her technical
capabilities while producing scholarly output at an acceptable level, maybe we should limit our
focus on SA&D activities that do not address aspects of the design of the software solution. If,
however, we believe that the “D” in SA&D is important, we have to both ensure that all faculty
members teaching SA&D courses have a sufficient proficiency in design and that the time spent
to maintains one’s proficiency in this area is recognized. The affected SA&D faculty need to
inform their chairpersons about this challenge, but we doubt an exception will easily be made.
However, some of the other IS areas (e.g., information security, data communications, data
mining) are likely to face similar issues, and we hope the increased awareness of the issue may
lead to an acceptable solution.

VI. CONCLUSIONS

This paper discussed the need to reexamine the SA&D course in the IS curriculum to better
address the trends affecting analysis and design. One of the clearest messages from the
audience at the end of the panel was the need to identify and focus on the core immutable
principles and skills of SA&D. There was not enough time to discover whether or not there was
consensus among the audience members regarding the nature of these principles or skills, but
there was a clear call for us as a field to identify these and advocate them as the core intellectual
content of the SA&D course(s).

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 494

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

We are prepared to make ten specific recommendations based on our analyses and on the input
from the panel participants. Although there is still room for debate, each member of the IS
community involved with teaching SA&D or coordinating the curriculum with the SA&D course
should consider these recommendations:

1. Only include traditional structured analysis techniques (e.g., data flow diagrams) for
historical context if desired, but not in any depth. Instead, establish use case modeling as
the new functional requirements standard.

2. Focus on UML as the primary modeling grammar.

3. Cover only a subset of UML in the SA&D course. Activity diagrams, use case
descriptions and diagrams, class diagrams, and sequence diagrams are typically
sufficient.

4. Help students understand how a modeling grammar (such as UML class diagrams) can
be used for multiple purposes. For example, UML class diagrams can be used for
modeling both the problem domain and the internal structure of the software solution.

5. Use the core Unified Process life cycle model (including the separation of Disciplines and
Phases) or a variant as the organizing framework for SA&D concepts. Use this
framework to help students understand that the disciplines can be configured into a
variety of different processes.

6. Cover agile values and principles in the course, but don’t use radical versions as the
philosophy underlying the course project.

7. Emphasize the internal consistency of the modeling artifacts, showing, for example, how
a use case is designed using a sequence diagram and a sequence diagram establishes
the methods added to the class diagrams.

8. If possible, integrate the SA&D course closely with a software project management
course with a global focus. Assign the issues related to distributed development in the
project management course.

9. Acknowledge the fact that the design of the internal structure of software is a complex
activity that requires in-depth understanding of software development.

10. As an academic field, we have to help department chairs and deans understand that
teaching SA&D with an approach that includes design and implementation is difficult and
very resource intensive.

ACKNOWLEDGEMENTS

The authors wish to thank the participants at the AMCIS 2007 Panel for their interest and
contributions to the discussion and to this paper.

REFERENCES

Bajaj, A., Batra, D., Hevner, A., Parsons, J., and Siau, K. (2005) “Systems Analysis and Design:
Should we be researching what we are teaching,” Communications of the AIS, Volume 15,
pp. 478-493.

Bergstrom, S. and Raberg, L. (2004). Adopting the Rational Unified Process. Boston, MA:
Pearson Education.

Batra, D. (2007) “Modified Agile Practices for Outsourced Software Projects,” forthcoming in the
Communications of the ACM.

Batra, D. (2008) “Unified Modeling Language (UML) Topics: The Past, the Problems, and the
Prospects,” forthcoming in the Journal of Database Management.

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 495

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-
Wesley.

Boehm, B. W., & Turner, R. (2003). Balancing agility and discipline: A guide for the perplexed.
Boston: Addison-Wesley.

Cockburn, A. (2001). Writing effective use cases. Reading, MA: Addison-Wesley.

Cockburn, A. (2005). Crystal clear: A human-powered methodology for small teams. Boston:
Addison-Wesley.

Cullen, S. and Wilcocks, L. (2003). Intelligent IT Sourcing: Eight Building Blocks to Success.
Burlington, MA: Elsevier Butterworth-Heinemann.

Dobing, B. & Parsons, J. (2008). “Dimensions of UML diagram use: A survey of practitioners,”
Journal of Database Management, 19(1) (forthcoming).

Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd
ed.). Boston, MA: Addison-Wesley.

Gorgone, J. T., Gordon B. Davis, Joseph S. Valacich, Heikki Topi, David L. Feinstein, and
Herbert E. Longnecker. (2002). “IS 2002 Model Curriculum and Guidelines for Undergraduate
Degree Programs in Information Systems,” The Data Base for Advances in Information
Systems, Volume 34, Number 1, pp. 1-52.

Gorgone, J. T., P. Gray, T. Stohr, Joseph S. Valacich, and R.T. Wigand. (2006). “MSIS 2006:
Model Curriculum and Guidelines for Graduate Degree Program in Information Systems,”
Communications of the AIS, Volume 17, pp. 1-56.

Iivari, J., Parsons, J., and Hevner, A.R. (2005) “Research in Information Systems Analysis and
Design: Introduction to the Special Theme Papers,” Communications of the AIS, Volume 16,
810-813.

Johnson, R. (2002) “Object-Oriented Systems Development: A Review of Empirical Research,”
Communications of the AIS, Volume 8, 65-81.

Kobryn, C. (1999) “UML 2001: A standardization odyssey,” Communications of the ACM, 42(10),
29-37.

Kobryn, C. (2004). “UML 3.0 and the future of modeling,” Software & Systems Modeling, 3(1), 4-
8.

Kohli, R. and J.R.D. Gupta (2002). “Effectiveness of the Systems Analysis and Design Education:
An Exploratory Study,” Journal of End User Computing, 14(3), 16-31.

Lang, M. (2006). “New branches, old roots: A study of methods and techniques in Web /
hypermedia systems design,” Information Systems Management, 23(3), 62-74.

Larman, C. (2004) Agile & Iterative Development: A Manager’s Guide, Boston, MA: Addison-
Wesley.

Larman, C. (2005). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development (3rd ed.). Upper Saddle River, NJ: Prentice Hall PTR.

Mahapatra, R., Nerur, S., and Slinkman, C. (2005) “Teaching Systems Analysis and Design – A
Case for the Object Oriented Approach,” Communications of the AIS, Volume 16, 848-859

Olson, J. S., & Olson, G. M. (2003). “Culture surprises in remote software development teams,”
ACM Queue, 1(9), 52-59.

Communications of the Association for Information Systems (Volume 20, 2007) 483-496 496

Analysis and Design in the IS Curriculum: Taking it to the Next Level by J.W. Satzinger, D. Batra & H. Topi

Ragowsky, A., Somers, T.M., and Adams, D.A. (2005) “Assessing the Value Provided by ERP
Applications through Organizational Activties,” Communications of the AIS, Volume 16, 381-
406.

Reeves, W. W. (1999). Learner-Centered Design: A Cognitive View of Managing Complexity in
Product, Information, and Environmental Design. Thousand Oaks, CA: Sage Publications.

Satzinger, J.W. and Jackson, R.B. (2003) “Making the Transition from OO Analysis to OO Design
with the Unified Process,” Communications of the AIS, Volume 12, 659-683.

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum. Upper Saddle River,
NJ: Prentice Hall.

Siau, K., Erickson, J., & Lee, L. Y. (2005). “Theoretical vs. Practical complexity: The case of
UML,” Journal of Database Management, 16(3), 40-57.

Siau, K. & Loo, P.-P. (2006). “Identifying difficulties in learning UML,” Information Systems
Management, 23(3), 43-51.

 Topi, H., Valacich, J., Nunamaker, J., Sipior, J. (2007) “Undergraduate Information Systems
Model Curriculum Revision: Rethinking the Approach and the Process,” Proceedings of the
AMCIS 2007, Keystone, Colorado.

ABOUT THE AUTHORS

John W. Satzinger is Professor of Computer Information Systems at Missouri State University.
He is co-author of five system development book titles published by Thomson Course
Technology, including Systems Analysis and Design in a Changing World, 4th Edition (2007) and
Object-Oriented Analysis and Design with the Unified Process (2005). He has also published
numerous articles about analysis and design and human-computer interaction in journals such as
Information Systems Research, Journal of MIS, Database, and Communications of the AIS.

Dinesh Batra is a Knight-Ridder Research Professor of MIS in the College of Business
Administration at the Florida International University. He is a co-author of the book Object-
Oriented Systems Analysis and Design published by Pearson Prentice-Hall. His publications have
appeared in Communications of the ACM, Management Science, Journal of MIS, European
Journal of Information Systems, Communications of the AIS, International Journal of Human
Computer Studies, Computers and Operations Research, Data Base, Information and
Management, Journal of Database Management, Decision Support Systems, Requirements
Engineering Journal, and others. He has served as the President of the AIS SIG on Systems
Analysis and Design.

Heikki Topi is Associate Dean of Graduate and Executive Programs at Bentley College. His
research has been published in journals such as European Journal of Information Systems,
JASIST, Information Processing & Management, International Journal of Human-Computer
Studies, Journal of Database Management, Small Group Research, and others. He has been
actively involved in national computing curriculum development and evaluation efforts (including
IS2002 and CC2005 Overview Report), and he is a member of the ACM Education Board and co-
chair of the current IS curriculum revision project.

Copyright © 2007 by the Association for Information Systems. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and full citation
on the first page. Copyright for components of this work owned by others than the Association for
Information Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission
to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from ais@aisnet.org

 .

ISSN: 1529-3181
EDITOR-IN-CHIEF

Joey F. George
Florida State University

AIS SENIOR EDITORIAL BOARD
Guy Fitzgerald
Vice President Publications
Brunel University

Joey F. George
Editor, CAIS
Florida State University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Paul Gray
Founding Editor, CAIS
Claremont Graduate University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M. Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Jane Fedorowicz
Bentley College

Chris Holland
Manchester Bus. School

Jerry Luftman
Stevens Inst. of Tech.

CAIS EDITORIAL BOARD
Michel Avital
Univ of Amsterdam

Erran Carmel
American University

Fred Davis
Uof Arkansas, Fayetteville

Gurpreet Dhillon
Virginia Commonwealth U

Evan Duggan
Univ of the West Indies

Ali Farhoomand
University of Hong Kong

 Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Ake Gronlund
University of Umea

Ruth Guthrie
California State Univ.

Alan Hevner
Univ. of South Florida

Juhani Iivari
Univ. of Oulu

K.D. Joshi
Washington St Univ.

Michel Kalika
U. of Paris Dauphine

Jae-Nam Lee
Korea University

Claudia Loebbecke
University of Cologne

Paul Benjamin Lowry
Brigham Young Univ.

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Michael Myers
University of Auckland

Fred Niederman
St. Louis University

Shan Ling Pan
Natl. U. of Singapore

Kelley Rainer
Auburn University

Paul Tallon
Boston College

Thompson Teo
Natl. U. of Singapore

Craig Tyran
W Washington Univ.

Chelley Vician
Michigan Tech Univ.

Rolf Wigand
U. Arkansas, Little Rock

Vance Wilson
University of Toledo

Peter Wolcott
U. of Nebraska-Omaha

Ping Zhang
Syracuse University

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Alan Hevner and Sal March

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Chris Furner
CAIS Managing Editor
Florida State Univ.

Copyediting by Carlisle
Publishing Services

	Communications of the Association for Information Systems
	October 2007

	Analysis and Design in the IS Curriculum: Taking it to the Next Level
	John W. Satzinger
	Dinesh Batra
	Heikki Topi
	Recommended Citation

	Microsoft Word - journal.doc

