
Communications of the Association for Information Systems

Volume 41 Article 21

11-2017

A Guide to Text Analysis with Latent Semantic
Analysis in R with Annotated Code: Studying
Online Reviews and the Stack Exchange
Community
David Gefen
Drexel University, gefend@drexel.edu

James E. Endicott
University of Colorado Boulder

Jorge E. Fresneda
Drexel University

Jacob Miller
Drexel University

Kai R. Larsen
University of Colorado Boulder

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Gefen, David; Endicott, James E.; Fresneda, Jorge E.; Miller, Jacob; and Larsen, Kai R. (2017) "A Guide to Text Analysis with Latent
Semantic Analysis in R with Annotated Code: Studying Online Reviews and the Stack Exchange Community," Communications of the
Association for Information Systems: Vol. 41 , Article 21.
DOI: 10.17705/1CAIS.04121
Available at: https://aisel.aisnet.org/cais/vol41/iss1/21

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol41%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol41?utm_source=aisel.aisnet.org%2Fcais%2Fvol41%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol41/iss1/21?utm_source=aisel.aisnet.org%2Fcais%2Fvol41%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol41%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol41/iss1/21?utm_source=aisel.aisnet.org%2Fcais%2Fvol41%2Fiss1%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

C

ommunications of the

A

I

S

 ssociation for nformation ystems

Tutorial ISSN: 1529-3181

Volume 41 Paper 21 pp. 450 – 496 November 2017

A Guide to Text Analysis with Latent Semantic
Analysis in R with Annotated Code: Studying Online
Reviews and the Stack Exchange Community

David Gefen
LeBow College of Business

Drexel University

gefend@drexel.edu

James E. Endicott
Leeds School of Business

University of Colorado Boulder

 Jorge E. Fresneda
LeBow College of Business

Drexel University

Jacob Miller
LeBow College of Business

Drexel University

 Kai R. Larsen1
Leeds School of Business

University of Colorado Boulder

Abstract:

In this guide, we introduce researchers in the behavioral sciences in general and MIS in particular to text analysis as
done with latent semantic analysis (LSA). The guide contains hands-on annotated code samples in R that walk the
reader through a typical process of acquiring relevant texts, creating a semantic space out of them, and then
projecting words, phrase, or documents onto that semantic space to calculate their lexical similarities. R is an open
source, popular programming language with extensive statistical libraries. We introduce LSA as a concept, discuss
the process of preparing the data, and note its potential and limitations. We demonstrate this process through a
sequence of annotated code examples: we start with a study of online reviews that extracts lexical insight about trust.
That R code applies singular value decomposition (SVD). The guide next demonstrates a realistically large data
analysis of Stack Exchange, a popular Q&A site for programmers. That R code applies an alternative sparse SVD
method. All the code and data are available on github.com.

Keywords: Text Analysis, Latent Semantic Analysis (LSA), IS Research Methods, Measurement, Metrics, SVD,
Sparse SVD.

This manuscript underwent editorial review. It was received 11/01/2016 and was with the authors for 5 months for 2 revisions. Oliver
Müller served as Associate Editor.

1 David Gefen was the lead author with Kai Larsen. The three PhD students contributed approximately the same to the tutorial. Their
names appear alphabetically.

451
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

Disclaimer
In this annotated code guide, we provide readers with enough functional knowledge to be able to run and
understand text analysis using LSA in R. This annotated code contains functions and the parameters to
them that our teams at Drexel University and at Colorado University, Boulder, found most applicable. We
encourage readers to refer to the CRAN R LSA Package1 and to the CRAN R LSAfun Package2 for
additional functions and additional parameters to the functions the annotated code discusses. In the case
of analyzing large semantic spaces, other packages may be necessary, including the basic framework for
text analysis packages in R, tm, and RSpectra (a wrapper for the Spectra library that can perform
truncated SVD as well as use sparse matrices).

Code and Data

Readers can find the code and corpora used in this guide at: https://github.com/jakemiller3/LSATutorial

1 LSA

1.1 Context and Opportunities

At the philosophical core underlying LSA (and, indeed, many other text-analysis methods) is that text
embeds knowledge not only by conveying information explicitly through sentences but also implicitly
through how words co-occur with each other. That implicit knowledge can be extracted and revealed, at
least in part, through text analysis. That is, the very tendency of specific words to occur together or to
occur in the context of another specific word may reveal some relationship such as a synonym or an idea
between those words that the language enshrines. The words “mate” and “companion” are examples of
the type of synonym one might discover through text analysis. But, there is more to text analysis than just
revealing synonyms. Sometimes, the co-occurrence of words may also reveal ideas. As an example, think
of the words “black” and “white”. These two words often occur together across documents. One of the
many ideas embedded in that pair of words is one of a dichotomous distinction in a shared context.
Another is racism, which demonstrates how ambiguous this implied knowledge is and how difficult and
subjective its interpretation can be. We show another case, more in the MIS context, in the code snippet in
Section 4.3 where we demonstrate, based on Q&A in Stack Exchange, that one might apply different
programming languages to different coding contexts.

As Gefen and Larsen (Forthcoming) note, it is possible to partly replicate the technology acceptance
model (TAM) (Davis, 1989) based on newspaper articles alone (even though none of the TAM items
actually appeared in either of the two corpora that they examined) because ideas are embedded into
language through word co-occurrences. Those co-occurrences are enough to statistically reconstruct the
measurement model that factors together the perceived ease-of-use items into one factor, perceived
usefulness into another, and use into a third. Moreover, apparently, the words associated with
“usefulness” and “use” are so frequently tied together in English that even the expected path in TAM from
the perceived usefulness of an IT to its acceptance or use becomes a matter of the English language and
not only experience with a particular IT. (That being said, Gefen and Larsen show that surveys that relate
to actual experience with an IT do provide significantly better fit indices and results. A key point in that
paper was that the lexical closeness influence of words on questionnaire responses could be controlled
for statistically.)

This paper proceeds as follows: in Sections 1 and 2 we discuss what LSA is, what is does mathematically,
what has been and can be done with LSA. We also look at how LSA relates to other text analysis methods
and review the LSA process. In Section 3, we introduce annotated code that walks the reader through the
LSA process with three detailed examples. In Section 4, we discuss the potential and limitation of LSA,
including issues of validity and reliability. Finally, in Section 5, we conclude the paper.

1 https://cran.r-project.org/web/packages/lsa/lsa.pdf
2 https://cran.r-project.org/web/packages/LSAfun/LSAfun.pdf

Communications of the Association for Information Systems 452

Volume 41 Paper 21

1.2 Text Analysis in LSA in a Nutshell

The underlying idea behind latent semantic analysis (LSA) is that co-occurrences of terms (e.g., words) 3
across many documents (e.g., book chapters or paragraphs) suggest that those terms are somehow
related in that they are either synonymous or reflect a shared latent concept. Terms can be related to one
another in LSA even if they do not co-occur in the same document as long as both terms co-occur with
shared other terms. LSA represents terms internally as vectors of a given rank (number of dimensions)
based on a transformation of the co-occurrence matrix. The co-occurrences of terms across the
documents may also indicate that the documents too, and not only the terms within them, can be factored
into groups based on those co-occurrences. Observing the co-occurrence of one set of terms in one group
of documents and the co-occurrence of another set of terms in another group of documents may suggest
the existence of two distinct groups of documents. Note that LSA applies a “bag-of-words” approach: it
typically analyzes words regardless of their part of speech (such as noun, verb, adjective, adverb) or their
position in the sentence4. As such, it fails to capture some of the text’s meaning; nonetheless, what
remains can still be very informative.

As an illustrative example consider the words “cat”, “dog”, “mouse”, “green”, “blue”, and “red”. If one were
to compare the co-occurrences of these words in typical language usage in English as they appear in
newspaper articles then it is likely that “cat”, “dog”, and “mouse” would co-occur highly with each other,
and less so with “green”, “blue”, and “red”, while “green”, “blue”, and “red” would co-occur highly with each
other but less so with “cat”, “dog”, and “mouse”. This could be interpreted as “cat”, “dog”, and “mouse”
relating to one category of words, and “green”, “blue”, and “red” to another. One could then project one’s
own worldly knowledge to assume that “cat”, “dog”, and “mouse” are animals while “green”, “blue”, and
“red” might be colors or political parties. Moreover, it is likely that also the documents in which those 6
words appear could be classified into two groups based on those where “cat”, “dog”, and “mouse” mostly
co-occur and those in which “green”, “blue”, and “red” mostly co-occur. One could then project worldly
knowledge to assume that the first group of documents deals perhaps with animals, and the second group
of documents with colors or politics. Of course, things are not that simple. As an alternative example,
think of the terms “red”, “pink”, “ruby”, “wine”, “burgundy”, and “bordeaux”. (Note that LSA treats
uppercase and lowercase the same.) The six terms may be thought of as reflecting a shared latent
concept of “hues of red”, which they do. However, notice that “wine”, “Burgundy”, and “Bordeaux” may
additionally have their own shared latent concept (i.e., “wines”) and that “Burgundy” and “Bordeaux” might
also co-occur as places in France.

As those examples imply, analyzing word co-occurrences can provide powerful insight—even if it requires
adding outside worldviews to interpret. But LSA does more than that. It may be that two words (or terms)
are related through a third word (or term) only. Consider the words “red” and “merlot”. These words would
likely appear together frequently in a corpus constructed from a series of wine blogs, and their common
use in documents could then be used to identify that they are related. However, merely looking for words
that appear together directly would never identify “Cheval Blanc” and “Franzia” as being related since they
would not frequently appear together within the same document. LSA, on the other hand, could identify
that the two terms are related through their frequent shared co-occurrence alongside other terms such as
“producer” or “merlot”. So, despite the fact that Château Cheval Blanc produced the most expensive
merlot ever sold and that the Franzia brothers package wine in cardboard boxes, LSA could identify that
they are related. Mathematically, this is done by running a singular value decomposition (SVD) on the
term-document [frequency] matrix (TDM)5. This matrix contains the number of times any term of interest
(or to be exact, any term not excluded) appears in any of the documents being analyzed. SVD is a two-
mode data reduction analysis that transforms the TDM into three matrices: (1) terms, (2) documents, and
(3) a matrix that multiplied by the other two will reconstruct the original TDM matrix. In terms perhaps
better known in behavioral sciences, running an SVD is conceptually equivalent to the data reduction a
principal component analysis (PCA) does in identifying underlying factors in a matrix. SVD and PCA are
closely related mathematically except that a PCA creates one transformed matrix of interest while SVD
creates two. In both SVD and PCA, underlying factors are assumed to carry some higher-level abstract

3 Terms can also be abbreviated words such as “ru” for “run”, “running”, “ran”, or combinations such as “information technology”.
4 The part of speech can be assigned to a word, allowing each different part-of-speech usage of a word to be treated as a unique
term. .
5 To be consistent with the R function TermDocumentMatrix and with Debortoli et al. (2016), this guide shall refer to this matrix as
the term-document matrix. The reader should be aware that some applications, such as JMP, use the term DTM, for document-term
matrix. See http://www.jmp.com/support/help/13/Latent_Semantic_Analysis_SVD.shtml

453
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

meaning that is common across the items that compose that factor. As in PCA, determining the number of
factors and their meaning can be challenging and controversial, revealing different results and meanings
depending on the number of factors. LSA allows the application of SVD also to combinations of terms.
Running SVD on the TDM is what defines LSA and makes it more than mere word co-occurrences
analysis.

1.3 How Does LSA Work?

SVD and PCA are closely related mathematically except that a PCA creates one transformed matrix of
interest while SVD creates two. In both SVD and PCA underlying factors are assumed to carry some
higher-level abstract meaning that is common across the items that compose that factor. As in PCA,
determining the number of factors and their meaning can be challenging and controversial, revealing
different results and meanings depending on the number of factors. LSA allows the application of SVD
also to combinations of terms. Running SVD on the TDM is what defines LSA and makes it more than
mere word co-occurrences analysis.

Σ (1)

The original M matrix could, therefore, be reconstructed by multiplying the U, Σ, and V matrices. However,
in LSA, a truncated SVD is used wherein only a portion of the Σ matrix is calculated or retained6 and the
remaining singular values are replaced with zeroes. If the matrices were multiplied back together, as in
formula 2, it would create an approximation of the original matrix where the number of singular values
used determines how close the approximation is. The reconstructed matrix is known as the rank k
approximation, Ak, where k is the number of singular values used. That multiplying the reduced rank
matrices only creates an approximation of the original matrix may seem to be a problem but is actually
one of the most powerful features of LSA. Because SVD seeks to minimize error, it combines vectors that
are closest to each another, thus preserving as much of the original information as possible in fewer
dimensions. As a result, selecting an appropriate rank is critically important in LSA. If k is too small, then
the result may be combining vectors that are not related conceptually but are just the most related among
those remaining. If k is too large, vectors that are related conceptually may not be combined because the
algorithm stopped at k. In the case of large text corpora, as in the code example in section 3.4, k is often
set at 100, 200, or 300. There is no rule on how best to select k a priori. The SVD transformation creates a
semantic space out of the TDM.

Σ (2)

While an SVD can be run on the TDM of the raw text of the documents, performance is often improved
when external knowledge is applied to the documents before the SVD is run. This pre-processing often
transforms the original text by turning words into their base forms, excluding words that carry little
meaning, and giving more importance to words that are uncommon. Details on some common
implementations of these are included in the Overview in section 2. The advantage of applying these
transformations is that the number of terms can be greatly reduced, which may also improve the quality of
the results because LSA is designed to function on the semantic meanings of the words, not their
particular usage.

1.4 What Can One Do with LSA?

Once the semantic space has been created, much can be done with the term and document matrices
created within that space. One common analysis is to compare vectors of terms by applying cosine
similarity. This kind of analysis can be applied to find which terms are related to one another by calculating
the cosine similarity between vectors in the Σ×U matrix. Likewise, such an analysis can be applied to
determine which documents are related to one another by calculating cosine similarity between vectors in
the Σ×VT matrix. Using this relatedness information, it is possible to run a cluster analysis or a PCA to
organize terms or documents into groups. Additionally, because both terms and documents are in the
same vector space, it is possible to create a list of terms that are most related to a given document,

6 Older implementations of LSA often had to perform this entire process manually and then select the top k dimensions—which in
effect replaced singular values after the kth with zeroes in the Σ matrix. Modern implementations often use probabilistic
approximations of SVD that can take advantage of parallelism and the fact that TDM are often extremely sparse (i.e., most words do
not appear in most documents, so their respective TDM include many zeroes).

Communications of the Association for Information Systems 454

Volume 41 Paper 21

thereby providing document labels, and documents that are most related to a given term, thereby allowing
the grouping of documents into clusters of interest.

One type of analysis that is often performed with LSA is projecting new content into an existing semantic
space. This new content takes the form of pseudo-documents. These pseudo-documents can be as short
as only a few words. The pseudo-documents are compared to terms or documents in the existing space
or to each other. Pseudo-documents can also be applied to identify the most related documents to a set of
terms7. Pseudo-documents can also be compared across contexts, such as comparing the meaning of the
word “mail” as used in history books about the Middle Ages, where it relates to armor, as opposed to its
current use, which often relates to post. LSA can also be a preliminary step for other algorithms, using its
vectors as input to those steps. The applicability of LSA to add insight is demonstrated in brief in Sections
3.3 and 3.4 in the contexts of analyzing consumer complaints and in the context of analyzing software
Q&A.

1.5 Examples of Current LSA Application

Researchers have applied LSA to identify synonyms based on word co-occurrences (Gomez, Boiy, &
Moens, 2012, Islam, Milios, & Keselj, 2012, Valle-Lisboa & Mizraji, 2007). Apparently, LSA’s ability to
identify word co-occurrences is such that some researchers claim that it can even simulate some aspect
of human thought as evidenced by its ability to answer multiple choice questions in introduction to
psychology exams and do as well as students do (Landauer, Foltz, & Laham, 1998). Likewise, LSA can
score on TOFEL exams comparably to non-native speakers (Landauer & Dumais, 1997). Going beyond
synonyms, one can apply LSA to analyze medical journal papers to identify expected co-occurrences of
terms (Landauer, Laham, & Derr, 2004).

In the realm of IS, LSA has mostly been used as a tool to aid in text categorization. By 2012, according to
Evangelopoulos, Zhang, and Prybutok (2012), IS research has mostly applied LSA to: 1) create
quantitative analyses of literature reviews, 2) the analysis of textual data in computer-mediated
communication, 3) the analysis of customer feedback, interviews, and free text surveys; and 4) the
management of knowledge repositories. See details in the Appendix. LSA has been applied to the IS
discipline to examine the conceptual scope of the discipline as in Sidorova et al. (2008), Larsen et al.
(2008a), and Larsen et al. (2008b). In those papers, a semantic space was created from document
vectors based on the text of papers in IS journals using either abstracts (Sidorova, Evangelopoulos,
Valacich, & Ramakrishnan, 2008) or the full text of the paper (Larsen, Monarchi, Hovorka, & Bailey, 2008a
Larsen, Nevo, & Rich, 2008b). Sidorova et al. (2008) analyzed this sematic space by rotating and
examining the most significant eigenvectors. Larsen, instead, performed cluster analysis (Larsen et al.,
2008a) and compared distances (Larsen et al., 2008b) on document vectors extracted from the sematic
space. In addition to the applications identified by Evangelopoulos et al. (2012), recent papers in the
Appendix applied LSA in pursuit of grounded research.

Another typical application of LSA in IS research, as elsewhere, is to “project” pseudo-documents onto an
existing semantic space. Those pseudo-documents were often questionnaire items. Examples of that
approach include questionnaire item analyses in Arnulf, Larsen, Martinsen, and Bong (2014) and Larsen
and Bong (2016). Such analyses enable nearest neighbor word analysis, as used in thesaurus creation,
and nearest neighbor document analysis, as used in k-nearest neighbor analysis in predictive analytics.
As in related research, such as Landauer et al. (2004) who demonstrated lexical closeness of terms in
medical data in PNAS paper, this method can allow researchers to derive insight from lexical closeness
even if only keywords appear in the corpora (Landauer et al., 2004). That has been also shown by Larsen
and Bong (2016) who used LSA to study the theoretical similarity of constructs, and by Cao, Duan, and
Gan (2011) and by Ahmad and Laroche (2017) who showed what factors influence reviews.
Demonstrating the potential of such methodology, Gefen and Larsen (Forthcoming) showed that the
semantic distances among the original TAM (Davis, 1989) items could be constructed, and TAM
replicated accordingly in covariance based structured equation modeling (CBSEM), even though the
original TAM items never appeared in any of the newspaper corpora they entered into LSA (only scattered
keywords did). The Appendix contains a summary of IS related research that applied LSA or equivalent
methods.

7 When LSA was created, this ability to use pseudo-documents as a query function was its primary use. That is why it is sometimes
referred to as Latent Semantic Indexing or LSI.

455
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

1.6 How Does LSA Differ from other Text-analysis Methods?

Since its introduction, several other text analysis methods have attempted to improve on LSA. Chief
among those alternatives include LSA evolutions such as the probabilistic LSA (pLSA) and the latent
Dirichlet allocation (LDA) families of algorithms. Probabilistic LSA focuses on addressing the concern that
LSA does not have a normalized probability distribution and that negative values may occur in the
matrices. To address those issues, pLSA replaced the SVD step in LSA with an expectation-maximization
(EM) method that calculates the weights of the vectors.

LDA was the next evolutionary step after pLSA. LDA applies an equivalent algorithm to pLSA except that
it beings by calculating Dirichlet priors of term weights, which allows LDA to reduce over-fitting and to turn
the analysis into a generative model. LDA emerged as an evolution of pLSA and uses different
assumptions about the distribution of words in documents. Specifically, LDA creates probability
distributions of the likelihood of a topic (associated with a collection of words), spontaneously emitting a
word or a document. While similar to LSA, LDA is claimed by Debortoli, Müller, Junglas, and vom Brocke
(2016) to be easier to interpret because terms (e.g., “color”) have words that clearly stand out as the most
representative of that term (in the case of “color” this may be the three basic colors “red”, “green”, and
“blue” that a human eye sees). Accordingly, one advantage of LDA, and to a lesser extent also pLSA, is
that the vectors generated by those methods tend to be easier to interpret. For an excellent tutorial on
topic modeling which focuses on LDA, see Debortoli et al. (2016).

Despite these advantages, there are some appealing aspects to LSA that are not present in those other
algorithms. One major advantage is that LSA is significantly faster with modern code libraries. While
trading speed for quality may not seem desirable, the increased speed means that it is easier to try LSA
with a large number of different options in order to tweak it to perform at its best by making choices such
as changing stop words, altering the number of dimensions, or changing documents in the corpus. A
properly tuned version of a less powerful algorithm can show significantly improved results over a more
powerful algorithm with less tuning. Another advantage of LSA over LDA is that there is consensus as to
the appropriate function that should be used to compare words or documents, namely cosine similarity.
Conversely, the literature on LDA is mixed with a number of different similarity algorithms—such as cosine
similarity, Jaccard distance, Information Radius, and Jensen-Shannon Divergence—being proposed
without a clear best similarity measure. While LDA is conceptually similar to LSA, there are some tasks in
text analysis that neither LSA nor LDA are well suited for. Among those tasks is information extraction
(IE). IE is the process of transforming unstructured data into a structured form. This includes
comparatively simpler tasks such as named entity recognition (NER) that identifies multi-word expressions
that constitute a single real world object, to more complex tasks, which include event and relationship
extraction. Finally, it is worth noting that a new class of algorithm has received recent literature attention:
neural network based algorithms such as word2vec and GloVe. Those algorithms share some underlying
assumptions with LSA (they all include a conception of a vector space which translates words into
numeric representations, for example) but depart in very significant ways. While these algorithms offer
promise for the future, their newness means that rules of thumb and guidelines still need to be established
and that the algorithms still need to be validated in specialized domains such as IS.

1.7 Possible Directions of Interest in Applying LSA in IS

Apart from the examples about current LSA applications we discuss in Section 1.5, LSA could potentially
open the door to a host of other types of avenues of research, some of which could provide new insight
and maybe even redirect IS research into new pastures. We briefly discuss some of these new avenues.
By no means is the list comprehensive.

1. Identifying ontologies: Larsen et al. (2016) investigated whether they could use LSA to
create ontogenies that could unify behavioral medicine research in the interest of creating a
unified body of knowledge by aggregating results across studies—even when they use
different terminologies. Mixed labels, which Larsen et al. use to refer to different terminologies,
is arguably not uncommon in IS research either. Creating a unified ontology of IS research
terms could greatly benefit also IS research projects by allowing researchers to compare
results across studies. One such example that Larsen et al. give is self-efficacy and perceived
behavioral control. Ontologies might provide a partial solution to such terminology overlaps by
creating a “knowledge base” to provide a standardized set of keywords for commonly used
terms. As Larsen et al. point out, integrating the results of many studies through a shared
unifying ontology could also suggest new hypotheses and create insights.

Communications of the Association for Information Systems 456

Volume 41 Paper 21

2. Ontologies need not apply only to key terms that define theories’ key constructs:
ontologies, or “semantic neighborhoods” as Kintsch (2001, p. 177) refers to them, could also
define groupings of words of various degrees of overlapping meaning based on context across
user groups. Ontologies could provide a relative standardized automated way to identify
different ways in which IT are used and how IT, such as email and social networks, are used
differently by different groups. A case in mind is Gefen and Straub (1997) who showed that
female employees in the airline industry perceived more social presence in their email usage
than male employees did. Gefen and Straub built their hypotheses on previous qualitative
research into how men and women communicate differently (e.g., Tannen, 1994; Tannen,
1995), but they collected surveys data to support their hypotheses. Extending that research by
looking into the actual ontologies of words used by men and of words used by women could
add important insight into how exactly men and women communicate differently, and verify if
this depends on the type of IT usage. As gender does affect IT usage (Gefen & Straub, 1997),
understanding in depth how the specific words are used differently by men and by women
could provide valuable insight into further developing theories of IT adoption. Such better
understanding of constructs of interest could, as Coussement, Benoit, and Antioco (2015)
showed, also improve experts’ analysis of consumer reviews.

3. Scale building: is another domain where LSA and methods like it could come in handy. LSA
could allow researchers to build research scales by consulting context specific synonyms and
then verify those scale items by projecting them back onto those and other semantic spaces.
LSA is a powerful tool for identifying alternative terms to use in scale building and learning
hidden context-specific meanings (Kintsch, 2001). As Gefen and Larsen (Forthcoming)
recently suggested, LSA could to some extent even replace the need for pretesting surveys
through Q sorts and interviews to verify how people understand and aggregate key terms8.

4. Moreover, LSA can provide a method for pretesting surveys by projecting questionnaire
items on a semantic space of interest. As Gefen and Larsen (Forthcoming) show, the results of
such a projection can as of itself support the expected research model of TAM even if real data
do so better.

5. Such an exploratory projection of questionnaire items could also provide a powerful theory-
building tool by allowing researchers to “inquire” how a corpus (and, by implication, maybe
also how the people who wrote its content) aggregates questionnaire items or just key terms of
interest. Researchers could use such aggregation, given by cosine and other lexical closeness
measures, to initially test instruments and theory. Possibly, such questionnaire item
aggregation could even serve to partly replace the need to interview experts.

2 Overview of the LSA Process
Figure 1 overviews the text-analysis process in LSA. It has four major steps: preparing documents,
creating a semantic space, projecting pseudo-documents onto that semantic space, and comparing
vectors.

8 As Kintsch (2001, pp. 192-193) note, assessing how similar one word is to another through LSA has limitations in that the cosines
are context (i.e., corpus) dependent. Moreover, these measures may not be symmetric, which means that the order of the terms in
the sentence may make a difference if the vector lengths of the terms are grossly mismatched. For example, Kintsch (p. 193)
compares “Korea is like China” to “China is like Korea”. In the former comparison, “Korea” is the argument term being assessed,
while “China” is the predicate. In that case, the projection compares “Korea” (about which their corpus contains little information as
its shorter vector length indicates) to the context of “China” (about which the vector is much longer). In the latter comparison, “China”
as the argument is compared to “Korea” as the predicate context. The cosines of those two sentences were .98 and .77,
respectively, which suggests that the greater amount of knowledge (vector lengths) about China modifies what is known about Korea
more than the other way around.

457
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

Figure 1. Typical Steps Taken in LSA Text Analysis

2.1 Preparing Documents

In the preparation stage, one first collects a corpus of relevant documents. When selecting documents to
include in the corpus, one must consider the context in which the phenomena of interest reside. The
adage “garbage in, garbage out” applies here, too. Even including a large collection of high-quality
documents could fail if the context of those documents is not aligned with the phenomena of interest. This
context must match factors such as the intended audience (e.g., CEO vs. floor manager vs. reporter),
professionalism (e.g., formal report vs. personal emails), domain (e.g., advertising vs. human resources),
and other features that may impact language (e.g., language proficiency or use of abbreviations).
However, one does not always have to create a novel semantic space for each task: re-using standard
corpora such as those from TASA9 or the Business News Corpus (Larsen & Bong, 2016) might also
enable comparisons. Furthermore, even in narrowly focused domains, jargon represents a relatively small
portion of the language people use in documents, which means the jargon terms will likely stand out and
have a greater impact if one uses global weighting. Also, for LSA to function well, one needs to use a
relatively large corpus (on the order of thousands of documents at the lower end). A large corpus is
necessary in order to create a representative sample and to increase the probability that any word that
may be compared to that corpus does appear in it. If new documents are compared to an existing corpus
and those documents contain words that do not appear in the corpus, then the analysis will exclude those
words, skewing the results. As a result, it may be better to use a standardized corpus or to cast a wider
net when collecting documents because of the importance of size. Like in all research, one must consider
the trade-off between quality and availability.

Another consideration is what exactly is meant by “document”. A document in the context of LSA is ideally
a portion of text that relates to a single topic. In many cases this is more akin to how a paragraph is used
(in English at least) rather than to a whole document that is composed of many paragraphs. As a result,
segments of text that are a paragraph long might be a better choice for a “document” in LSA. However,
this is certainly not always the case; some documents are very short and narrowly focused, such as press
releases. In such cases, breaking the document into paragraphs may create unwarranted distances
between terms if each paragraph is considered independently.

Another consideration when selecting documents for a corpus is the accessibility of the documents. There
are many available sources: classical literature is available online through sources such as Project
Gutenberg, open source projects such as Wikipedia and Wiktionary are available through Wiki Source,
and archives of public websites are available on the Internet Archive. There are also tools available to
automate downloading content from more recent websites, but one needs to be careful about terms of

9 TASA is perhaps better known as the “General Reading up to 1st Year of College” at http://lsa.colorado.edu. In our experience, it
has withstood the test of time for evaluating general concepts but has limited value for special-purpose problem solving.

Preparing	
Documents

Considering	
Existing	
Spaces

Selecting	
Relevant	Texts

Breaking	Texts	
into	

Documents

Creating	the	
Semantic	
Space

Pre‐processing	
Text

Creating	the	
TDM

Weighting	the	
TDM

Calculating	
SVD

Projecting	
Pseudo‐

Documents

Pre‐processing	
pseudo‐

documents

Weighting	
pseudo‐

documents

Projecting	into	
semantic	
space

Comparing	
Vectors

Calculating	
cosine	

similarities	or	
other	methods

Communications of the Association for Information Systems 458

Volume 41 Paper 21

service. Accessing those texts may require an extensive investment in time and money to access or to
buy the rights to the documents. In some cases we have been involved in, accessing and analyzing the
documents, such as medical records, also required IRB approval and oversight. Akin to typical data
collection in behavioral research, building the sample could be the most expensive and perplexing part in
the research.

2.2 Creating the Semantic Space

Once the corpus has been created, its documents are often pre-processed. This pre-processing is where
words are normalized into a form that, depending on research objectives, could be better suited for
grouping terms. Such transformations reduce the risk that words with context equivalent meaning, such as
“run” and “running”, may be misinterpreted as not carrying equivalent contextual meaning. Common
transformations are:

1. Stemming: involves creating a single representation of the word regardless of its tense (past,
present, present continuous, future, singular, plural, etc.). Stemming is language dependent. In
this guide we shall rely on the default English stemming functionality in R. There are existing
functions in R that stem data in other languages, too. Stemming turns words into a base form
such as turning “cats” into “cat” and “jumped” into “jump”.

2. Removing stop words: involves discarding words that are common in a language but do not
carry significant semantic meaning such as “a”, “the”, and “and”. There are standard lists of stop
words in English and other languages.

3. Orthographic transformations: involves removing accents, expanding contractions or handling
possessives, casting the text into lower case, and standardizing formatting.

4. Stripping punctuation: involves replacing punctuation signs with spaces.

5. Identifying named entities: involves combining words that commonly appear together and likely
represent a single concept into one word, such as replacing “New York” with “New_York”.

6. Lemmatization: involves replacing words with their base form as it appears in a special
dictionary. (Stemming does an equivalent operation based on predefined rules. 10.)

7. Substitution: involves replacing words with a string that indicates their class, such as replacing
names of people in a document with [NAME].

A word of caution. Adding or removing words from consideration will as a matter of math change the SVD
results and, through it, how other words and documents might relate to each other even beyond the words
that were removed. As an example, deciding to remove all the words that are not in the Queen’s English
may avoid slang and misspelled words from being included in the analysis, which might reduce the risk of
introducing bias into the SVD results, and so may plausibly be a desired outcome in some circumstances.
However, doing so may also exclude portions of text of interest, such as text written by or describing
minorities with their own unique words and spelling—a plausibly undesired outcome depending on the
objective of the study. Likewise, stemming. Automatically dropping “e”, “ed”, and “ing” from the end of a
word might arguably correctly treat “walked” and “walk” as the same term because they are referencing
the same physical activity. This might be desired because, plausibly, in some cases, the researcher may
not wish to differentiate between the temporal tenses as they appear in those two words. However,
stemming may also treat “university”, “universal”, and “universe” as the same term. That is arguably
undesirable. Another case in mind is whether to differentiate between American and British spelling. Doing
so would make no sense in many cases—unless the objective is something like comparing American to
British writers. That having been said, consistency is of even greater importance than selecting the
optimal transformations. All documents within the corpus must have the same transformations applied in
the same order using the same rules. All pseudo-documents projected onto the corpus must also use the
same transformations; not doing so might produce meaningless results.

Once the words/terms have been transformed, the next step in semantic space creation is creating the
TDM. The TDM is a matrix that contains the terms in the corpus as rows, and the documents as columns.

10 “Lemmatisation (or lemmatization) in linguistics is the process of grouping together the different inflected forms of a word so they
can be analysed as a single item… In many languages, words appear in several inflected forms. For example, in English, the verb 'to
walk' may appear as 'walk', 'walked', 'walks', 'walking'. The base form, 'walk', that one might look up in a dictionary, is called the
lemma for the word. The combination of the base form with the part of speech is often called the lexeme of the word.”
(Lemmitisation, n.d.).

459
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

The cells contain the number of times a term appears within a document, and is known as the raw count.
Next, a second set of transformations is applied based on the distribution of terms within the corpus. This
process is known as weighting, and comes in two forms: local weighting and global weighting. In local
weighting, additional importance is given to terms that appear more times within a single document. In
global weighting, less importance is given to terms that appear in a greater number of documents within
the corpus. These local weights are used in order to account for the diminishing increase in importance of
additional appearances of a term in a document. Global weights account for how often a term appears in
other documents based on the notion that terms that appear in many documents are less important—this
is the same logic as that behind stop word removal. The most common types of global weights are inverse
document frequency (known as IDF) and entropy ratio (usually referred to as entropy, even though it is not
Shannon’s entropy function). The TF-IDF weighting is the most common in IS literature. Larsen and Bong
(2016) recommend log-entropy, which is more common in other disciplines. Table 1 provides the formulae
for these transformations.

Table 1. Common Weighting Applied in LSA

Local weight for word i in document j Global weight for word i

Raw , None 1

Binary
, 1: 1

, 0: 0 IDF 1 log

Log log , 1 Entropy 1

, log ,

log

, Term frequency: number of times word i appears in the document j
 Document frequency: Number of documents word i appears in at least once in the corpus
 Global frequency: Number of times word i appears across the entire corpus

 Number of documents in the corpus

	

With the TDM adjusted for weights, the final step in creating the semantic space is to perform SVD. When
performing SVD, it is necessary to select an appropriate number of dimensions, also known as rank, for
the reduced matrices. Once performed, SVD will produce three matrices U, Σ, and V. These three
matrices together with the rules for pre-processing and information about which rows and columns
correspond to which terms and documents, comprise the semantic space. It may be beneficial to create
and store the Σ×U and the Σ×VT matrices for use in similarity calculations of words and documents,
respectively. The Short Introductory Example in Section 3.1 applies an Σ×U matrix to compare words.

2.3 Projecting Pseudo-documents onto the Semantic Space

Projecting pseudo-documents is the process of creating vectors for texts that were not already present as
documents in the corpus. If the objective of the analysis is to examine the relationships between
documents within the corpus, then it is unnecessary to project pseudo-documents onto the semantic
space because there is already access to the vectors for each document. Projecting pseudo-documents is
necessary when comparing, for example, the cosines of two new sentences as they are projected onto the
semantic space. See examples in Sections 3.3 and 3.4. The process starts by pre-processing the text
using the same transformations and in the same order that were applied when creating the semantic
space, followed by counting the occurrences of each transformed term and applying the same weighting
functions as applied to create the semantic space. This will produce a set of terms and a weighted count
of how many times each term appears. With the weighted counts for each term ready, the next stage is to
create the pseudo-document vector by summing the term vector from the Σ×U matrix multiplied by the
weighted count of that term in the pseudo-document. The vector created from this pseudo-document
represents what the document vector would have been for this document if this document had been in the
semantic space. It can then be used just like any other document vector in the Σ×VT matrix for purposes of
analysis.

Communications of the Association for Information Systems 460

Volume 41 Paper 21

2.4 Comparing Vectors

Vectors are typically compared to each other with cosine similarity. These similarities are used to find
which vectors are most similar to each other and which documents have a similarity above a specified
threshold. Cosine similarity is the dot product of the vectors over the product of their magnitude (see
Equation 3).

cos ,
∙

‖ ‖ ∙ ‖ ‖
∑

∑ ∑
 (3)

The cosine similarity between a vector and itself is equal to 1.0. This means that the closer the cosine of
two vectors is to 1.0, the more similar they are. However, caution is advised when interpreting low cosine
similarities. A similarity near 0.0 may indicate that terms have opposite meanings, but it may also indicate
that they are unrelated. If the words overlapping in those documents are only words that are relatively
common in the corpus, even the co-occurrences of frequently co-occurring words may not drive their
similarities up. The way cosine similarity is calculated also cancels out the magnitudes of the vectors. This
is important because it enables terms, documents, and pseudo-documents of different lengths to be
compared to one another. We show how meaning may be drawn from the comparison of vectors in the
next sections.

3 Annotated Code Examples
In this section, we present annotated code in R that walks the reader through how to perform LSA. We
begin with an overly simplistic case with small data so the reader can see all the data and how to
transform it through the process. The code in Section 3.1 (example step 1) represents typical steps
researchers take to create the semantic space (see second row in Figure 1). Readers can access a
corpus of four text files of financial services complaints in a dedicated directory. The code example might
make the process seem easy, but one must make many crucial decisions prior to running the code. As the
code shows, many of those decisions are parameters that one passes to the software that does that
process. The result is a relevant semantic space.

In Section 3.2 (example step 2), we pick up after having created the semantic space. Typical steps taken
in this stage include projecting terms and vectors of terms onto the terms portion of the semantic space
(the terms matrix). Likewise, one could project documents onto the documents portion of the semantic
space (the documents matrix). One could do both these types of projection to calculate how close the
terms or documents are to each other. Additional analyses that one can do in this step include running
PCA, factor analysis, and multidimensional scaling to discover groupings of terms and groupings of
documents. One can add graphics to visualize the story as well. Separating between step 1 in Section 3.1
and step 2 in Section 3.2 emphasizes that, in many cases, researchers are often more interested in
comparing terms and phrases as they are commonly used in a specific corpus than in creating the
corpora. Some past IS research includes both steps, such as Sidorova et al. (2008) who identified
patterns in IS research based on papers in the top MIS journals. The corpus of those journals formed the
basis for the semantic space. Other research emphasizes step 2, such as Larsen and Bong (2016) who
used text analysis to identify construct identity. Larsen and Bong created a semantic space out of a large
number of newspaper articles and then projected words of interest on that semantic space. In such cases,
research focuses more on specific terms rather than on the documents themselves.

In the two example steps, we run LSA on a very small sample for pedagogical reasons. We follow the
steps with two larger applications: in Section 3.3, we rebuild the semantic space of the short example with
a more appropriately sized corpus of 2391 financial complaints. We apply the same SVD analysis as in
the short example to derive possible insight about the term “trust”. SVD analysis, however, can be
cumbersome when dealing with exceptionally large data. Analyzing such large data requires sparse SVD.
Accordingly, the code example in Section 3.4 shows how to run a sparse SVD. Unlike the lsa function as
applied in the first code sections, running sparse SVD requires extensive preceding data preparation. We
demonstrate sparse SVD in analyzing a large corpus of Q&A posts on Stack Exchange, a popular Q&A
programming site. We add background information about R as footnotes where necessary.

461
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

3.1 A Short Introductory Example: Step 1: Building the Semantic Space

In this section, we provide the reader a grounded hands-on experience with using LSA. This example is
artificially extremely small so one can see all the data and map all the interconnections. For brevity, we
create a directory of only four short documents so that one can trace the outcomes. We emphasize that
one should not run LSA on such a small sample: we do here only so one can see all the data we run the
LSA on. The reader can copy the code in this example and paste it as is into an R console or editor. If the
computer supports it, we recommend that one open the 64-bit version or R instead of the 32-bit one. One
can save the R script and rerun it11. We intend this example for users who use LSA and R for the first
time. We show more realistic semantic spaces and more complex R code in Sections 3.3 and 3.4.

Before we begin, we need to load required code libraries, known in R as “packages”. Because R serves
many purposes, much of the code resides in libraries such that each library contains a collection of
functions relevant to a specific topic12. Because R has a strong Unix heritage, R is case sensitive. Also,
crucially, be aware that R expects quotes as vertical symbols (i.e., "), not the default curly ones (i.e., “ ”)
that Microsoft Word creates as a default. R does not recognize curly quotes. The pound sign in R creates
a comment. The library command loads the required packages LSAfun (analytic functions) and lsa
(simple package to run LSA). The data analyzed in this snippet and the next two sections is financial-
complaint data that one can download from https://catalog.data.gov/dataset/consumer-complaint-
database.

library(LSAfun)

library(lsa)

After downloading the zipfile that contains the text files, extract the directories “MiniComplaints” and
“FinancialComplaints”. Those directories contain the text for Sections 3.1-3.3. In relation to Figure 1, this
section of code corresponds to the first row “preparing documents”.

Replace the [...] with the path in which the directory MiniComplaints was created.

source_dir = '[...]'

source_dir = 'C:/Users/username/Desktop/MiniComplaints' # Windows example

source_dir = '~/Desktop/MiniComplaints' # Mac/Unix example

We will now build the TDM. First, as a standard functionality, we will import the list of default stop words in
English from the LSA package. This list is called stopwords_en. The print command prints the file in
parentheses. In relation to Figure 1, this section of coded corresponds to the “pre-processing text” arrow.

data(stopwords_en)

11 To rerun a saved script, type:

source("path…/your_script_file_name")
12 In all the code examples, if the library commands says “Error in library(LSAfun): there is no package called ‘LSAfun’” or any other
package name, then you may need to install the package. In the R menu, choose packages and then follow the dialog.

After the package is installed, rerun the library command in R. In Section 4.4, we show how to avoid this issue.

Communications of the Association for Information Systems 462

Volume 41 Paper 21

print(stopwords_en) # The complete list of stop words can be shown by using Print.

or just entering

stopwords_en

Next, we will create the TDM from the MiniComplaint text files. In doing so, we will apply the stop words
list stopwords_en that we just imported. Since we know that our text files include two additional terms
used to anonymize data, “xx” and “xxxx”, we will add these to our stop word list. We do so with the
function textmatrix. Notice that TDM is a frequency matrix and that all the words have been transformed
to lower case. The function textmatrix changes upper case to lower case by default and removes
apostrophes and special characters. In relation to Figure 1, this step corresponds to the arrow “creating
the TDM”.

TDM <- textmatrix(source_dir, stopwords=c(stopwords_en, "xx", "xxxx"), stemming=TRUE,
removeNumber=F, minGlobFreq=2)

Optionally, we can show the content of the matrix TDM by just typing the dataset name

TDM

Notice that the terms appear as the row IDs and the documents as the column IDs. The numbers in the
cells are the frequency of each term in each document.

One shows descriptive statistics about a dataset with the summary.textmatrix command.

summary.textmatrix(TDM)

Before running an SVD, we will create a weighted matrix TDM2 out of the original TDM. TDM2 is the term
frequency times its inverse document frequency. This method is a standard one. Again, because we are
using a very small dataset, it is meaningful to show the content of the matrix TDM2. One can do so by
typing the dataset name—in this case, TDM2. Notice how the matrix now contains weights rather than
frequencies. In relation to Figure 1, this step corresponds to the “weighting the TDM” arrow.

TDM2 <- lw_tf(TDM) * gw_idf(TDM)

TDM2

463
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

We can now run an LSA on the weighted matrix TDM2. The code in this case chooses the number of
dimensions by default using the option dimcalc_share(). To specify any positive integer number of
dimensions, replace dimcalc_share() with a number (e.g., 3). Notice how the LSA-transformed matrix
now contains cross-loadings that did not appear in the original matrix TDM2. This additional information
comes from the SVD. To view the matrix, we will first transform it into a textmatrix data type with the
as.textmatrix command. Typing as.textmatrix(miniLSAspace) will print the miniLSAspace as a text
matrix. In relation to Figure 1, this part corresponds to the arrow “calculating SVD”.

miniLSAspace <- lsa(TDM2, dims=dimcalc_share())

as.textmatrix(miniLSAspace)

In the code above, the function lsa transformed TDM2 into three matrices and placed all three into the
miniLSAspace object. We show these three matrices below. The suffixes $tk, $dk, and $sk represent
the three matrices: the term matrix, the document matrix, and the singular value matrix, respectively.
Adding those suffixes allows one to view each of the matrices in miniLSAspace separately. As in a PCA,
one can interpret groupings of item loadings as revealing a higher abstract dimension, although they are
unrotated.

This command will show the value-weighted matrix of Terms

tk2 = t(miniLSAspace$sk * t(miniLSAspace$tk))

tk2

In the tk2 matrix, we see that “believ”, “bill”, and “cancel” have identical values, which means that they co-
occur exactly the same across the four documents. We also see that “card” and “call” are very different in
the first dimension compared to the other terms shown. The terms “credit” and “account” seem close in
the first dimension but are separated in the second dimension.

Communications of the Association for Information Systems 464

Volume 41 Paper 21

This will show the matrix of Documents

miniLSAspace$dk

The dk matrix shows the factoring of the documents. The first dimension separates the documents along
its axis, but the last two are relatively close in the second dimension. We will graphically plot these
relationships later. The document 7017.txt, a complaint about a customer service experience with a credit
card, falls between document 16868.txt with its multifaceted credit card complaint and document 5949.txt
that deals with a mortgage complaint that focuses on payment terms rather than service. The LSA space
reflects this dimensionality. Notice that $sk is a matrix of singular values that connects $tk and $dk
matrices to reproduce the original TDM2.

Because the $sk matrix only has values on the diagonal, R stores it as a numeric vector.

miniLSAspace$sk

As a footnote to the above analysis, had we forced three factors on the SVD by specifying dims=3 rather
than the default, then the $tk matrix could have been more revealing.

miniLSAspace3 <- lsa(TDM2, dims=3)

tk3 = t(miniLSAspace3$sk * t(miniLSAspace3$tk))

tk3

By considering an additional dimension, the relationships between terms add nuance. In two dimensions,
the terms “account” and “due” are relatively similar, but, in the third dimension, they are separated. Their
distances in a three-dimensional space are farther apart than in a two-dimensional space. Conversely,
while the second dimension separated the terms “call” and “due”, the third dimension brings them closer.
Because we are using a deliberately small dataset, presenting it in a diagram could be rather helpful.
Figure 2 shows the result of the next section of code.

The two lines of code must be run together. The first line of code creates a plot of the first two

465
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

dimensions of $tk, marking the dots as red dots. The second line superimposes term names.

plot(tk2[,1], y= tk2[,2], col="red", cex=.50, main="TK Plot")

text(tk2[,1], y= tk2[,2], labels=rownames(tk2) , cex=.70)

This can be done with the documents too. The added parameter cex determines text size.

plot(dk2[,1], y= dk2[,2], col="blue", pch="+", main="DK Plot")

text(dk2[,1], y= dk2[,2], labels=rownames(dk2), cex=.70)

Figure 2. Terms (Left) and Documents (Right) Mapping in the MiniComplaints Dataset

3.2 A Short Introductory Example: Step 2: Analyzing the Semantic Space

The next section of the code starts at the point where the semantic space already exists. We will assume
that the code in step 1 has already run so that the semantic space miniLSAspace exists. With a semantic
space available, it is possible to calculate the cosines of terms in it to check how closely they relate to
each other in that semantic space. In this case, we will calculate the cosine similarity between the terms
“loan” and “chang”13. No two documents in this set use both these words, so the distance is not that close,
but they are related through other words. The sample code will also calculate the distance between the
terms “loan” and “due”, which are closely related. The parameter tvectors identifies the semantic space
matrix of the terms. The parameter breakdown=TRUE forces the data into lower case, replaces umlauts
with ae, removes accents, and replaces β with ss. As standard in R, the Boolean TRUE must be in
uppercase or abbreviated as capital T. In relation to Figure 1, this step and the next ones correspond to
the “projecting into semantic space” and “calculating cosine similarities or other methods” arrows.

Create a cosine similarity between two Terms

myCo <- costring('loan','chang', tvectors= tk2, breakdown=TRUE)

myCo # Typing the name of an object prints its value

myCo <- costring('loan','due', tvectors= miniLSAspace$tk, breakdown=T)

myCo

13 “Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space that measures the cosine of
the angle between them. The cosine of 0° is 1, and it is less than 1 for any other angle. It is thus a judgment of orientation and not
magnitude: two vectors with the same orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0, and two
vectors diametrically opposed have a similarity of -1, independent of their magnitude.” (Cosine similarity, n.d.).

Communications of the Association for Information Systems 466

Volume 41 Paper 21

We can run the code on all the documents or on all the terms in the semantic space. To retrieve the list of
documents and the list of terms, we can run this code:

myDocs <- rownames(dk2)

myDocs

myTerms <- rownames(tk2)

myTerms

We can then run a cosine similarity among all the words in the matrix.

myTerms2 <- rownames(tk2)

myCosineSpace2 <- multicos(myTerms2, tvectors=tk2, breakdown=TRUE)

myCosineSpace2

A partial listing of the cosine matrix appears below.

467
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

In an LSA of a corpus of appropriate size, terms should rarely co-occur identically and, thus, not show
cosines of 1 as in this example. One can export this matrix for analysis in other statistical languages.

Save the cosine space (the user should define the path within file=”…”)

write.csv(myCosineSpace2, file="C:/Users/…/CosineResults.csv")

One can perform the same process for documents, too, which shows that complaint 6337 is closer to
complaint 5949 and that complaint 7017 is closer to complaint 5949 than to complaint 6337.

This provides us with a similarity matrix between documents

myCosineSpace3 <- multicos(myDocs, tvectors=dk2, breakdown=F)

myCosineSpace3

Another method for examining how close terms or documents are to each other is the function neighbors.
This function returns the n nearest words in meaning to the term in the first parameter—in this case, the
term “credit”. We use the term matrix from the three-dimensional space.

neighbors("credit", n=5, tvectors=tk3, breakdown=TRUE)

One can plot these distances, too. The n below specifies how many of the closest neighbors to include in
the diagram. The results are telling. The plot shows that “credit” is closely related to “card” and to “call” but
less so to “chang”. Figure 3 shows the plot.

plot_neighbors("credit", n=20, tvectors= tk3)

Communications of the Association for Information Systems 468

Volume 41 Paper 21

Figure 3. Mapping of Terms Related to “Credit” in the MiniComplaints Dataset

By default, plot_neighbors runs a PCA on the full vectors of the nearest neighboring terms and uses the
first three components to plot them in three dimensions. One can then rotate the plot to investigate further.
One can also plot a list of words in the same way. In this case, one does so into a two-dimensional space.
While the above two-dimensional term plot used two dimensions of the semantic space, this function
takes the full vector of each specified term and computes a PCA (by default) or an MDS from the vectors
of the terms selected. In this example, we plot two components derived from three semantic dimensions.
Figure 4 shows the plot.

words <- c("credit","card", "time", "supervisor")

plot_wordlist(words,tvectors=tk3,dims=2)

Figure 4. Mapping of “Credit”, “Card”, “Time”, and “Supervisor” into a Two-dimensional PCA Space

469
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

To make the interpretation easier, we can add connecting lines and explicitly specify that the space will be
created using PCA. The results are now easier to interpret. In this case, one does so into a three-
dimensional space. Figure 5 shows the plot.

plot_wordlist(words,tvectors= tk3, method="PCA", dims=3,connect.lines="all")

Figure 5. Mapping of “Credit”, “Card”, “Time”, and “Supervisor” into a Two-dimensional PCA Space with
Connecting Lines

Another function that returns terms that are close to a given term is associate. While neighbors returns
the nearest n terms, associate returns whichever terms are within a particular cutoff. And, while
neighbors uses cosine, associate can also calculate Pearson and Spearman measures. (The
parameters pearson and spearman in the parameter list must be in lower case.) The four parameters are
the term matrix tk3, the term whose closest terms being sought, the closeness measure, and the
threshold above which the terms will be selected. As is standard in R, be aware to keep lower case as
lower case even if Microsoft Word changes the leading letter of the first word to upper case.

associate(tk3, "credit", measure="cosine", threshold=0.95)

To compare vectors of terms in a sematic space—which could be convenient when comparing
measurement items that are composed of many terms—all that needs to be done is to create the vectors
of the combination of terms that compose each measurement item. In this case the code calculates how
close the combination of the terms “credit” and “account” are to the combination of the terms “mortgag”
and “account”. The measure is given in cosine distance. Note that costring does not stem the terms, so
the exact terms should be used, and that if a term does not appear in the tvectors matrix, the analysis will
omit the term without a warning. As a footnote, notice that single quotes and double quotes are
interchangeable in the code. To demonstrate that, the next section of code uses single quotes.

X <- c('credit', 'supervisor')

Y <- c('mortgag', 'account')

Communications of the Association for Information Systems 470

Volume 41 Paper 21

myCo <- costring(X,Y, tvectors=miniLSAspace$tk, breakdown=TRUE)

myCo

To calculate the cosine of a series of terms, use the multicos function. The same function can be run to
calculate the cosine between documents, too—all that needs to be changed to do so is that the dk matrix
should be used in that case.

mcTerms <- multicos(c('credit', 'supervisor', 'mortgag', 'account'), tvectors= miniLSAspace$tk,
breakdown=F)

mcTerms

R has additional packages that one can run on semantic spaces. A convenient method of eyeballing what
the data may indicate is to run a correlation on the terms matrix or on the documents matrix. Because of
the structure of the tk and dk matrices, one needs to transpose them first. The function t does that. The
correlation function is called cor. By default, cor runs a Pearson correlation. In the example below, we
force it to run a Spearman and then a Kendall correlation just to show that it one can do it. The function
cor can also be set to treat missing values as a listwise (“complete.obs”) or as a pairwise deletion
(“pairwise.complete.obs”)14. These correlations provide insight on how the data might be interrelated. In
this case, there is a clear grouping into two sets of terms and two sets of documents.

trans_tk <- t(as.matrix(tk3))

trans_dk <- t(as.matrix(dk3))

cor(trans_tk, use="complete.obs", method="spearman")

cor(trans_dk, use="pairwise.complete.obs", method="kendall")

14 A good source for simple stats and plots is http://www.gardenersown.co.uk/education/lectures/r/correl.htm.

471
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

The lsa and LSAfun packages provide other useful functions to assist analysis. The function
choose.target returns randomly selected terms within a particular range of distances from a focal term or
phrase. One can assess contextual differences with conSIM. Paragraphs can be analyzed to assess the
coherence of the sentences or to create a “typical sentence” of that paragraph based on its distance
measures with other sentences in that paragraph with genericSummary. In R, there are help pages for
functions. One can quickly access these help pages with a leading question mark.

?coherence

R also provides a set of functions to visualize text. One such tool is a word cloud. Word clouds can be
very informative. To create a word cloud, we need to load a new package wordcloud. We will install it
and its associated package RcolorBrewer beforehand. Associated packages are loaded through the
dependencies = TRUE parameter.

install.packages("wordcloud", dependencies = TRUE)

library(wordcloud)

Recall that we previously created TDM and myTerms. We will now plot the frequency of the words in
myTerms as they appear in TDM. The function apply returns the results of a function—in this case, sum
with a parameter 1 on the rows of the matrix TDM15. Doing so will create a term count vector, which adds
1 to the sum of the occurrences of each term. After the matrix is transposed (i.e., turned 90 degrees) with
the function t, we can provide it as a parameter to the function wordcloud that does exactly as its name
implies. In this case, we added to wordcloud parameters that limit the diagram to only terms with a
frequency of at least 1 (though, admittedly, doing so is superfluous). The parameter random.order
specified not to apply a random order to the plot16. Adding colors helps one to interpret the word cloud:
one can do so through the color parameter. The resulting plot is informative: it shows that, in our
weighted matrix, “card” has a disproportionate weight in the space. Figure 6 shows the resulting
wordcloud.

Term_count <-apply(TDM2,1,sum)

TCT <- t(Term_count)

wordcloud(myTerms, TCT, min.freq=1, random.order=FALSE, color=brewer.pal(8, "Dark2"))

15 Details about apply appear at https://stat.ethz.ch/R-manual/R-devel/library/base/html/apply.html.
16 More details on wordcloud appear at https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf.

Communications of the Association for Information Systems 472

Volume 41 Paper 21

Figure 6. Wordcloud Depicting the Most Commonly Used Terms in the MiniComplaints Dataset

3.3 Research Application: A Realistic Analysis of the Complaint Data Corpus

Having run LSA on a very small set of documents in Sections 3.1 and 3.2, in this section, we describe
what one can more realistically do with LSA. This demonstration shows one type of application that
behavioral scientists can use text analysis for. Behavioral scientists often turn to interviews with informed
people or resort to reading about their experiences and opinions as a way to gain insight into
organizational processes and their related social, behavioral, and organizational and psychological issues.
In this section, the code demonstrates using text analysis to extract possible insight about the meaning of
trust as it is used in real-life complaints. The demonstration then shows that one could gain some
plausible insight from the semantic space by projecting sentences onto it. The data deal with consumer
financial complaints. Showing the applicability of consumer complaints to IS research, Coussement et al.
(2015) studied related data dealing with consumer reviews.

In this section, we use the text manipulation package tm.

Load required code libraries

library(cluster)

library(tm)

library(LSAfun)

To create the text matrix, we now use tm’s DirSource function, which imports text faster than textmatrix
does. In relation to Figure 1, this step corresponds to the row of arrows in “preparing documents”.

Replace the [...] with the path in to the FinancialComplaints directory.

source_dir = '[...]'

source_dir = 'C:/Users/username/Desktop/FinancialComplaints' # Windows example

source_dir = '~/Desktop/FinancialComplaints' # Mac/Unix example

We shall now create a corpus in memory

raw_corpus <- VCorpus(doc_source, readerControl=list(language='en'))

473
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

We will next create a TDM out of that corpus. In this case, we will use an alternative function
TermDocumentMatrix. This function too appears in the tm package. One can instruct this function to
already include the stop words and the weighting. Because we know that these documents contain
meaningless blackout characters, we will first add those to the tm stop word list. Those instructions are
specified in the control = list(). Note that we create a weighted TDM in one step. In relation to Figure 1,
this step corresponds to the arrows “pre-processing text”, “creating the TDM”, and “preparing documents”.

stoplist <- c(stopwords("en"), "xx", "xxxx","xx/xx/xxxx","xxxx/xxxx/", "xxxxxxxxxxxx","xxxxxxxx")

tdm <- TermDocumentMatrix(raw_corpus,

 control=list(removePunctuation = TRUE,

 removeNumbers = TRUE,

 tolower = TRUE,

 stopwords = stoplist,

 stemming = TRUE, # snowball stemmer

 weighting = function(x) weightTfIdf(x, normalize = FALSE), # Weight with tf-idf

 bounds=list(global=c(5,Inf)))) # Keep only 5 or more appearances, to accelerate

 # space creation for purposes of this guide

The tdm matrix is very sparse

tdm

Still, it may be very sparse, but inspecting it we can show the occasional non-zero value

inspect(tdm[10:20,11:19])

Next, to identify the most frequent terms in the matrix (in this case, those with a frequency of at least
3000), we will run the findFreqTerms command.

Communications of the Association for Information Systems 474

Volume 41 Paper 21

findFreqTerms(tdm, 3000)

To create a semantic space out of the tdm matrix in the code, we can run the lsa command. Doing so will
run an SVD. The next snippet of code shows how to do that and how many rows/columns the $tk matrix
has before printing the 20 closest neighbors of the term “trust”. In relation to Figure 1, this step
corresponds to the “calculating SVD” arrow. Figure 7 shows the result of the plot_neighbors command
on those data with the 20 nearest neighbors of the word/term “trust” in that sematic space.

myLSAspace <- lsa(tdm, dims=dimcalc_share());

dim(myLSAspace$tk) # Check how many rows/columns the tk matrix has

myLSAtk = t(myLSAspace$sk * t(myLSAspace$tk))

plot_neighbors("trust",n=20,tvectors= myLSAtk[,1:70]) # Use only the first 70 dimensions

Figure 7. The 20 Nearest Neighbors of “Trust” in the FinancialComplaints Dataset

Showing those words in a heat map adds a compelling visualization17. To do so, we will first install the
gplot package and its dependent packages. Figure 8 shows the resulting heatmap.

 install.packages("gplots", dependencies = TRUE)

 library(gplots)

 # Extract the closest words to “trust” (a list of their distances as a named vector).

17 More on heatmaps can be found at http://sebastianraschka.com/Articles/heatmaps_in_r.html

475
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

 words<-neighbors("trust",n=20,tvectors= myLSAtk[,1:70])

 # Extract the actual words, and find the distances in the space.

 myCosineSpace2 <- multicos(names(words), tvectors= myLSAtk[,1:70], breakdown=TRUE)

 heatmap.2(myCosineSpace2)

Figure 8. A Heatmap of the Most Frequent Words in Stack Exchange

The heatmap shows two clusters that emerge from among the 20 closest terms to “trust” in this corpus.
Referring to the list of terms below the heatmap (the same list as on its right), the left-hand side terms
seem to relate to interpersonal trust and the lack of it. That list contains terms such as “power”, “abandon”,
“incid” (incident), “uneth” (unethical), and “unprofession” (unprofessional). On the bottom right-hand side
list of terms, the terms seem to relate more to the financial structure of “a trust” with “own”, “deed”, and,
tellingly, the stemmed form of “trustee”. The clustering of these terms in the heatmap suggests that “trust”
indeed has two distinct meanings in our corpus. The two clusters overlap, and the terms “trust” and
“collaps” (collapse) straddle the two clusters. That trust and collapse join in this way and that the two
jointly straddle both clusters of meaning is not surprising coming from a corpus about complaints.

Having created a semantic space, we can now project sentences onto it to calculate how similar those
vectors of words are. For example, does interpersonal trust in a banking context relate more strongly to
gaining restitution after being wronged or to preventing the wrong in the first place? We can compare
“trust” plus “believ” to other terms to compare their distances. The costring does that. In relation to Figure
1, this step corresponds to the “projecting into semantic space” and “calculating cosine similarities or other
methods” arrows.

costring("trust believ", "reconcil loss", tvectors= myLSAspace$tk[,1:75], breakdown=T)

costring("trust believ", "fraud prevent", tvectors= myLSAspace$tk[,1:75], breakdown=T)

Communications of the Association for Information Systems 476

Volume 41 Paper 21

The results show that “fraud prevent” is considerably closer to the “trust believ” string than “reconcil loss”.
Conceptually, one might extract plausible insight from that projection: it might suggest that, among those
people whose postings appear in this corpus, preventing fraud is more important to trust beliefs (i.e.,
semantically closer) than reconciling loss.

3.4 Applying Sparse SVD: A Demonstration on Stack Exchange

In this example, we apply LSA to an even more realistically sized dataset and, in the process, add slightly
more complex R code. Large data, especially if extremely sparse, make applying SVD as we do above
with the lsa function less practical. The code in this section introduces an alternative sparse SVD method.
That method is part of the RSpectra package. Running a sparse SVD requires preparing the data in the
TDM beforehand as opposed to the previous code snippet where the lsa function prepared the data
through specified parameters. In the case of the sparse SVD algorithm in this section, that code will be
explicitly run prior to running the sparse SVD function. We downloaded the data we analyze in this section
from Stack Exchange. The code used to create the data appears in the footnote18.

3.4.1 Creating the Semantic Space

The code uses the tm, RSpectra, and lsaFun packages. The additional RSpectra package is a wrapper
around a C++ library that calculates SVD on sparse matrices efficiently. For readers who start the code at
this point, we will also install the previously installed R packages19 together with R packages that those
packages depend on. Because readers may have already installed these packages in the previous
sections of this guide, this time the code verifies if there one needs to install the package beforehand.

if (!require("tm")) {

 install.packages("tm", dependencies = TRUE)

 library(tm)

 }

if (!require("RSpectra")) {

 install.packages("RSpectra", dependencies = TRUE)

 library(RSpectra)

 }

if (!require("LSAfun")) {

 install.packages("LSAfun", dependencies = TRUE)

 library(LSAfun)

 }

18 ### Query from Stack Exchange:
https://data.stackexchange.com
(Query Specification: SELECT TOP 10000 Text, PostId,
UserDisplayName, CreationDate, Score FROM Comments)
Data downloaded as .csv file

Sets the path to the working directory
setwd("path")

Reads the .csv file downloaded (notice headers are used and stringAsFactors=FALSE
avoids character vectors to be converted into factors)
File <- read.csv(file="QueryResults.csv", header=TRUE, stringsAsFactors=FALSE)

Sets the path to the file folder as the new working directory
setwd("path/StackExchange")

Loop to store each line in the .csv file as an independent .txt file
for (i in 1:10000) { cat(File$Text[i],file=paste0(i,".txt")) }

19 https://cran.r-project.org/web/packages/RSpectra/RSpectra.pdf

477
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

if (!require("gplots")) {

 install.packages("gplots", dependencies = TRUE)

 library(gplots) }

With the packages loaded, we next need to load the individual txt documents into a TDM. We will do so
using the tm DirSource function. This function loads all the text files in a directory into a corpus. The code
specifies that the documents reside in a directory source (meaning that the directory contains documents
as files) and that the folder to look in is StackExchange. The parameter recursive = True indicates that
we will build the corpus also from files in subdirectories. In relation to Figure 1, this step corresponds to
the arrows in the row “preparing documents”.

doc_source <- DirSource('C:/…/StackExchange')

In the next line we create a corpus from these documents by reading each file into R. This function has
several variants. In this case, the code uses VCorpus to load the entire content of all the documents into
memory to enable faster processing. If the computer the code is running on has insufficient memory, then
it is advisable to apply DCorpus instead to store the data on the hard drive. The readerControl argument
specifies additional pre-processing options. Here, those additional options include only that the documents
read in are in English.

raw_corpus <- VCorpus(doc_source, readerControl=list(language='en'))

At this point, we have loaded 10,000 posts into the corpus. The code will now create a function that
replaces all characters that are not letters, spaces, or hyphens with the space character. We will apply this
function to every document in the corpus. Such a function exists in other libraries. We show it here as a
template for pedagogical purposes. In relation to Figure 1, this step and the next one correspond to the
“pre-processing text” arrow.

remove_nonletter <- function(text) { return(gsub('[^a-z\\s\\-]+', ' ', text))}

We can now pre-process the corpus. We will run the tm_map function with the wrapper function
content_transformer. This wrapper will cause the transformations to apply to the text of each document,
not to its metadata. The parameter passed to content_transformer specifies what action to perform. The
transformations cast the text to lowercase and remove standard English stop words and non-letter
characters. Finally, in the last line of code in the snippet, the tm_map function stems the words in each
document. Notice that the transformed output of each command is the input to the next command.

p_corpus <- tm_map(raw_corpus, content_transformer(tolower))

p_corpus <- tm_map(p_corpus, content_transformer(removeWords), tm::stopwords('en'))

p_corpus <- tm_map(p_corpus, content_transformer(remove_nonletter))

p_corpus <- tm_map(p_corpus, stemDocument)

The next command creates a TDM from the p_corpus output by applying the TermDocumentMatrix
function. TermDocumentMatrix receives as parameters a corpus and a list of parameters that it
delegates to functions it calls to create the matrix. The only argument passed in the example below is
bounds. This parameter creates a limit that discards words that appear too frequently or too infrequently.
In this case, the function will discard words that appear fewer than 10 times in the corpus. We run this

Communications of the Association for Information Systems 478

Volume 41 Paper 21

function because terms that are extremely infrequent will take up a significant amount of space but will
add little value to the semantic space. The exact cutoff will depend on the goals of the analysis and the
nature of the corpus. In relation to Figure 1, this step corresponds to the “creating the TDM” arrow.

tdm <- TermDocumentMatrix(p_corpus, control = list(bounds = list(global = c(10, Inf))))

The tdm matrix is now transformed with sparseMatrix into a sparse matrix before it is passed to an SVD
in the RSpectra package. While unnecessary for small corpora, this step is recommended in large
corpora because it can increase speed and reduce memory by orders of magnitude20.

sparse_tdm <- Matrix::sparseMatrix(i = tdm$i, j = tdm$j, x = tdm$v, dims = c(tdm$nrow,
tdm$ncol))

The next command assigns the names of the rows and columns of the newly created sparseMatrix to be
the same as the names of the rows and columns of the TermDocumentMatrix, which will make looking
things up easier in subsequent steps.

dimnames(sparse_tdm) <- dimnames(tdm)

Another step that needs to be taken before performing SVD on this matrix is weighting. The code will
apply log-entropy weighting to this corpus. To do so, the code will retrieve the number of items in the
second dimension of the sparse_tdm matrix (i.e., the number of documents) and calculate the log base 2
of that count. There should be 10,000 documents and the log base 2 of that 10,000 should be about
13.29. In relation to Figure 1, this part and the next snippets correspond to the arrows “weighting the
TDM” and “calculating SVD”.

doc_count <- dim(sparse_tdm)[[2]]

log_doc_count <- log2(doc_count)

Next, the code will create a copy of tdm and name it weighted_tdm. The code will then apply the log
weighting function to each non-zero entry in that matrix. The code does this with the vapply function. That
function receives as parameters a vector, a function, and the data type of the result. The sparseMatrix
format stores rows as triples that can be mapped to the index for the row and column and a value but not
storing anything in cells with the value 0. The values for each cell are stored in the attribute x which is a
vector, so instead of applying the log transformation to every cell in the matrix, the code will only apply it to
each value in the attribute x.21 Because log2 of a zero is negative infinity, the value of each cell shall be
incremented by .00001.

20 This section of code also illustrates the :: syntax in R. This operator allows one to invoke a function from a package without
loading the entire package. The Matrix package is bundled with all distributions of R, so one does not need to install it. As a rule, if
one needs only a few functions in a package, then one should apply the :: operator.
21 The code will create an anonymous function that will only exist for this one instruction. This is similar to how functions are normally
defined except that it is not assigned to a name and it is unnecessary to surround its returned value with the function return.

479
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

weighted_tdm <- sparse_tdm
weighted_tdm@x <- vapply(sparse_tdm@x, function(x) log2(x+.00001), numeric(1))

The code will now create a count of global frequencies of each word. We will use this count in the entropy
function. To do so, the code will call the rowSums function from the Matrix package and run it on the
sparse_tdm matrix we previously created, which will sum all the cells in each row. The code will then
assign the names of these sums to be the same as the term names from tdm in order to make future
indexing easier.

gf <- Matrix::rowSums(sparse_tdm)

names(gf) <- dimnames(sparse_tdm)$Terms

The last step before calculating the entropy for each word is to create a helper function that will be applied
to each row in sparse_tdm to calculate its entropy. This function will be named partial_entropy because
the entropy is the sum of all of these parts plus .00001.

partial_entropy <- function(tf, gf) {

 p <- tf/gf

 return((p*log2(p))/log_doc_count)
 }

The code will next calculate the entropy of each word by creating a vector to store the entropy values,
assigning names to the vector, and iterating through the rows in sparse_tdm to calculate the entropy for
each row. After creating the vector and naming it, the code will iterate through a for-loop. The loop will run
the code inside the curly brackets multiple times controlled by i. The code assigns the value of i to run
between 1 and the number of terms in sparse_tdm. The code selects the rows that have a frequency
greater than 0 by writing a comparison that produces a vector of the same shape as word_row. This
vector contains a value of either TRUE or FALSE depending on whether the condition is true. The code
selects only those rows whose value is TRUE. The code then uses those indexes as the list of columns to
be extracted from word_row. This provides a list of frequencies greater than zero in word_row. The last
line adds 1 to the sum of the result of the mapply function. The mapply function applies a function to a
combination of lists and values. The code calls the partial_entropy function created earlier. This function
is applied to each cell in the non_zero_frequencies vector. The code also specifies that regardless of
which value is used from the non_zero_frequencies vector, the value of gf that is passed to the
partial_entropy function should be the ith entry in gf (i.e., the global frequency of the word calculated
previously).

word_entropy <- numeric(dim(sparse_tdm)[[1]])

names(word_entropy) <- dimnames(sparse_tdm)$Terms

for(i in 1:dim(sparse_tdm)[[1]]){

 word_row <- sparse_tdm[i,]

 non_zero_frequencies <- word_row[which(word_row>0)]

 word_entropy[i] <- 1.0 + sum(mapply(partial_entropy, non_zero_frequencies, gf=gf[i]))

}

Communications of the Association for Information Systems 480

Volume 41 Paper 21

Now that there are entropy values for each word in the corpus, the code can apply weighting to the corpus
by multiplying the weighted_tdm matrix by the entropy value of each word. This is done with the sweep
function that iterates through a matrix along a specified axis and applies a function to it with a provided
additional argument. In this case, the code is applying the multiplication function along the first axis of the
weighted_tdm matrix using a second argument from the word_entropy vector.

weighted_tdm <- sweep(weighted_tdm, 1, word_entropy, '*')

With the weighted TDM ready, the code can now run an SVD. The code will use the svds function from
the RSpectra package. This function serves the same objective as svd except that it is designed to work
on sparse matrices and only calculate the top k rows instead of calculating all the rows and then selecting
the k best. This function significantly improves performance and, thus, enables one to analyze very large
corpora. The code will create two matrices for future use as the result of performing SVD with 300
dimensions and name them su_mat and sv_mat. When naming the dimensions of these two matrices,
the code applies the term and document names for one dimension and labels the other with the numbers
1 through 300 (since they are reduced matrices). Note that svt_matrix requires that the v matrix be
transposed. One can do so with the t function from the Matrix package. The transpose is necessary in
order to maintain the correspondence between columns and documents.

space <- svds(weighted_tdm, 300)

su_mat <- space$d * space$u

svt_mat <- space$d * Matrix::t(space$v)

#Assign names

dimnames(su_mat) <- list(dimnames(weighted_tdm)[[1]], 1:300)

dimnames(svt_mat) <- list(1:300, dimnames(weighted_tdm)[[2]])

The data are now ready for analysis. As exemplars, the code will compare the closest neighbor terms in
Stack Exchange to three popular programming languages. The results are rather informative, perhaps
suggesting the obvious that different programming languages are applied to different types of problems.
This is a good example of deriving meaning from the “semantic neighborhood” [Kintsch, 2001, p. 177] of
words in question: Terms that semantically closer to a given word help define its meaning in the specific
context of the corpus. In this case the analysis shows the kinds of contexts, identified by the closest terms,
in which each of the programming languages are used in this corpus. In relation to Figure 1, this part
corresponds to the arrows “projecting into semantic space” and “calculating cosine similarities or other
methods”. Figure 9 shows the results of the plot_neighbors functions.

plot_neighbors("python",n=20,tvectors= su_mat)

plot_neighbors("java",n=20,tvectors= su_mat)

plot_neighbors("javascript",n=20,tvectors= su_mat)

481
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

Figure 9. The Closest Neighbor Terms in Stack Exchange to Three Popular Programming Languages

We can also apply code to identify the most frequent words in Stack Exchange. In this case, they are, as
one might expect, “package” and “answer”. Figure 10 shows the results of the wordcloud functions.

if (!require("wordcloud")) {

 install.packages("wordcloud", dependencies = TRUE)

 library(wordcloud)

 }

Term_count <-apply(su_mat,1,sum)

TCT <- t(Term_count)

myTerms <- rownames(su_mat)

wordcloud(myTerms, TCT, min.freq=1, random.order=FALSE, color=brewer.pal(8, "Dark2"))

Figure 10. A Wordcloud of the Most Frequent Words in Stack Exchange

Additionally, pseudo-documents can be projected onto the sematic space to gleam possible insight about
its content and maybe what associations the people whose posting are included in this corpus made. In
this case, we will ask whether the combination “package answer”, combining the two most frequent words
in the corpus, is more related Java or to Python. Interestingly, these two most frequent words are more
closely related to Java rather than Python. Possibly, answers about packages are requested more in the
context of Java than Python. This demonstration shows the power of LSA to allow researchers a glimpse
at indirect information in the corpora, information a researcher reading the tens of thousands of Q&A
might have skipped because acquiring such insight requires reading beyond the texts. Projecting arbitrary

Communications of the Association for Information Systems 482

Volume 41 Paper 21

sentences that may not even occur as is in the texts and then comparing their distances thus may allow
an overview of how information that may not even be directly recorded in the text can be acquired. Such
inference is an example of the kind of “family resemblances” (Wittgenstein, 1953) that Kintsch (2001)
discusses as a key advantage of LSA. In relation to Figure 1, this step corresponds to the arrows in
“projecting pseudo-documents”.

costring("package answer", "JAVA", tvectors= su_mat, breakdown=TRUE)

costring("package answer", "Python", tvectors= su_mat, breakdown=TRUE)

Another application of projecting new documents is presented in the next code snippet. A complete
sentence in English, rather than terms that we know already appear in the corpus, will be created. Then,
the previous pre-processing steps that were applied to the corpus when the semantic space was created
will be applied to it, followed by weighting, and projecting it onto the semantic space to identify the terms
most associated with it. In contrast to the previous snippet where relationships between known terms were
compared, in this case the code will identify possible “answers” to that complete sentence.

The first line of this snippet creates the sentence. The next lines perform the same pre-processing steps
that we performed to create the semantic space. The last two lines are the only ones that differ
significantly. The first of these two lines multiplies the log weights by the values from the word_entropy
table. When creating the semantic space, the entropy of each word in the corpus was calculated. That
weighting is the one that was used for a global weight. However, in this case, we are only interested in the
weights of words from the pseudo-document. This is where naming the indices earlier comes in handy. By
using the same names as used earlier, it is possible to look up their entropy weights by the words
themselves. As a result, this function only needs to multiply matches by one another. The last line then
takes the column sums of the log-entropy weights (currently stored in pseudo) and the su_mat matrix.
The same trick is used to pull only the relevant rows from su_mat that were applied to extract entropy
from the word_entropy table. Notice that a comma follows the list of names because the code wants
each column from that table instead of just a single value. Once the code sums across each of the
columns, the result is a vector that represents the pseudo-document and can be used just like the vector
of any term or document in the neighbor function (among others). In relation to Figure 1, this step
corresponds to the “pre-processing pseudo-documents” and “weighting pseudo-documents” arrows.

pseudo <- 'Tell me about overflow problems'

pseudo <- tolower(pseudo)

pseudo <- removeWords(pseudo, tm::stopwords('en'))

pseudo <- remove_nonletter(pseudo)

pseudo <- stemDocument(PlainTextDocument(pseudo))

pseudo <- termFreq(pseudo)

pseudo <- vapply(pseudo, function(x) log2(x+.00001), numeric(1))

pseudo <- mapply(function(x, y) x*y, pseudo, word_entropy[names(pseudo)])

pseudo <- colSums(pseudo * su_mat[names(pseudo),])

For illustration, the next snippet identifies the terms most close to the sentence entered in the first line in
the snippet above, and lists the documents where one may wish to start looking for content close to that
sentence. The results suggest that overflow problems as the posts on Stack Exchange discussed are

483
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

associated mostly with terms such as instructions, permission, reproduce, and crash and that, sometimes,
one might describe the results as weird. These problems appear in a wide range of documents.

neighbors(pseudo, 20, tvectors=su_mat)

neighbors(pseudo, 20, tvectors=Matrix::t(svt_mat))

And, since R runs in memory, after one has run the code, we recommend that one remove objects that
are not currently in use from memory. It is recommended to apply functions such as rm() (removes an
object), rm(list = ls()) (removes all objects in memory), or ls() (list all the objects in memory) as
necessary.

ls()

rm(doc_source)

4 The Potential and Limitations of LSA Modeling
To better understand how to use a methodology, one needs to think of it in the context of its epistemology
and philosophy of science. This section accordingly briefly discusses what can be prudently done
methodologically with LSA and discusses some key epistemological and methodological specialties and
limitations that need to be considered. We begin with the technical aspects of LSA, which researchers
have discussed previously, and then discuss issues of validity and reliability informed by previous IS
guidelines (Boudreau, Gefen, & Straub, 2001; Straub, Boudreau, & Gefen, 2004).

4.1 The Technical Side

Before addressing the reliability and validity issues of LSA, we review some analysis and reporting issues.
Evangelopoulos et al. (2012) summarizes these issues well. They recommend that researchers should:

1. Consider their research’s objective before deciding what analysis to perform on the matrices
that LSA produces. Evangelopoulos et al. discuss and demonstrate how to classify documents,
cluster them, and conduct factor analyses on the items. This recommendation of course
extends to other types of analysis than one can perform on LSA-derived matrices such as PCA
and CBSEM in which case one should also consider whether to derive correlations or cosines
(Gefen & Larsen, Forthcoming).

2. Researchers should also be cautious in applying rules of thumb threshold values borrowed
from other research epistemologies (such as choosing items loadings to be above a certain
value when running factor analyses). Evangelopoulos et al. (2012) argue that, based on their
experience, the meaning of the term-factors derived in a factor analysis may be lost if too
rigorous rules of thumb are applied. Statistically too that recommendation is correct: it cannot
be assumed that the cosines (or any other measure) derived from the LSA matrices
necessarily have a normal or any other assumed distribution. Hence, applying rules of thumb
that assume a specific distribution is unavoidably introducing misinterpretations of the results..
Further, as we discuss in Section 4.2, because LSA deals with language, it will inevitably
produce many cross loadings of terms on factors. That is, terms will likely load on many factors
(representing the shared meaning across those terms) because of the inherent nature of words
to display polysemy (multi-meaning) and polysemousness (ambiguity), to be heterosemous

Communications of the Association for Information Systems 484

Volume 41 Paper 21

(different meanings depending on other words in the sentence), and to be used as metonyms
(a word or expression used as a substitute for something else with which has a close
association, such as referring to the U.S. Government as the White House). Assuming a clean
factor loading on a large sample of terms derived from real-life language usage corpora
ignores the nature of language.

3. Likewise, researchers should not hide crucial information that others may need to understand
the exact parameters they applied. In the case of LSA that includes inter alia whether stop
words and stemming were applied. That recommendation is not unique to LSA. Researchers
have suggested equivalent recommendations for PLS and CBSEM in the MIS Quarterly
guidelines (Gefen, Rigdon, & Straub, 2011).

4. Researchers should also try more than one transformation on the data, such as TF-IDF and
log-entropy, and choose the transformation that best applies to the research question and
data. Of course, there are many other transformations, including Standard Boolean, TF
weights, latent Dirichlet allocation, latent Dirichlet allocation multicore, and others. (See
https://cran.r-project.org/web/packages/lsa/lsa.pdf for a detailed listing of available
transformations.). However, we need to clarify this recommendation. Like data transformation
in other contexts such as CBSEM, researchers should look into their data when making such
transformations rather than fishing for the best-fitting model (Muthén & Muthén, 2010).

5. And, as in much previous research on LSA (e.g., Landauer et al., 2004), researchers should
investigate alternative LSA dimensionalities before they choose a specific level. This advice
applies in principle also to PCA, and is crucial for the data we present in this paper (Hair,
Black, Babin, & Anderson, 2005). If the code analyzing the complaint data in Section 3.2 is run
on the entire 42,000 documents rather than on the much smaller sample, then, with 20
dimensions, the terms “trust” and “security” are quite similar with a cosine of 0.72, but, if one
chooses 200 dimensions, then that cosine decreases to a nearly orthogonal 0.09.

To a large extent, these recommendations apply not only to LSA but also in principle to many other
statistical methods. It is always important to choose the model carefully based on the research objectives
and the type of data and to compare alternative models and alternative dimensionality (Hair et al., 2005).
Indeed, CBSEM philosophy has long included the tenet that one should try alternative models with
alternative factor patterns (e.g., Bollen, 1989). Likewise, researchers should not blindly apply rules of
thumb (as the American Statistical Association also demands in the case of p-values (Wasserstein &
Lazar, 2016)). And, it is a matter of integrity that researchers do not hide crucial information that others
need to interpret their results (Gefen et al., 2011).

Putting those recommendations into context, the Appendix summarizes IS and related research that has
applied LSA or equivalent methods. It also includes some technical aspects of that research. The
Appendix shows that almost all the papers applied stemming, that almost all reported whether they used
stop words (and almost all did), but that not all reported whether they rotated the semantic space or how
many dimensions and terms they retained. The Appendix also demonstrates the power of LSA and related
methods to do more than just classify documents and terms.

4.2 Reliability and Validity Considerations

The above technical aspects of LSA implementation are important: the mathematics, and specifically the
SVD transformation and the data preparation before the SVD is run, will dictate different results based on
the parameters applied to them. After all, LSA is at its core a mathematical transformation. Some technical
aspects of that research are also included in the Appendix. To demonstrate that point, we will compare
LSA to CBSEM-type survey research.

In a typical setting of CBSEM survey research, a predefined survey is given to a supposedly random and
reasonably large enough representative sample of the population of interest. The methodology typically
assumes an implicit positivist approach (at least to the extent of giving meaning to the p-value of the Х2
statistic) and should be top down at least in the confirmatory measurement model part of the analysis. The
measurement model defines how the measurement items either load on (in reflective scales) or form into
(in formative scales) the factors (often also known as latent variables). That being said, researchers do
occasionally add ad hoc analyses in which they add or remove paths based on modification indices and
other fit statistics that the CBSEM software provides, but those modifications should be only minor
adjustments (and one should report them). The ad hoc additions should not be the driving force in the
modeling: the theory should do that (Bollen, 1989). Because theory should drive CBSEM survey research,

485
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

CBSEM analysis is confirmatory. In that context, the p-value takes on the meaning of the probability that
the pattern in the sample is not random noise, but, rather, reflects what is happening in the population of
interest. The statistics that CBSEM produces both at the path level and at the overall model level are
based on the sample but are taken to also refer to the population that one draws the sample from. If a
path or a model is significant in the sample, it is treated as if it probably applies also in the population.

In contrast, at its core, LSA is a bottom-up, data-driven exploratory method. Moreover, while one can run
LSA on a very large sample of documents, no published method we know about provides a systematic
approach to creating a representative random sample out of a population of interest. As such, because
the sample does not claim to be a random representative sample of a population of interest, the p-values
produced by analyses on LSA matrices are harder to interpret. This presents several threats to validity. As
Straub (1989) and by Straub et al. (2004) note, there are three kinds of validity researchers should pay
special attention to: instrumentation validity, internal validity, and external validity. Instrumentation validity
is about the instrument constructs representing their real-world namesakes and that they measure what
they are supposed to be measuring. In the case of survey research that means that the items reflecting or
forming a scale actually measure that construct. Internal validity deals with the ability to rule out alternative
hypotheses and dimensionality. External validity deals with the probability that the results obtained from a
sample apply to the population of interest too, as well as to other populations and situations.

Applying these types of validity—developed with surveys and experiments in mind—to LSA analyses
shows how relatively problematic drawing conclusions from an LSA sample can be and that one might
need to add appropriate limitations to papers that apply LSA and equivalent methodologies. Comparing
LSA to survey research demonstrates these limitations.

1. As the data cannot be assumed to come from a random sample, p-values produced by
subsequent analysis on the matrices produced by LSA, such as a factor analysis or CBSEM
run as in Gefen and Larsen (Forthcoming), relate to an unknown distribution. The p-value is,
therefore, merely a function of the t, F, Х2, or any other statistic it refers to as the math
indicates. Interpreting the p-value as probability that the sample statistics may apply to the
population is conjecture, meaning that concluding from the corpora of sample documents to
the world at large is at best tentative. In other words, unless the entire population of interest is
studied, as was done when analyzing all the abstracts in a set of journals in range of dates
(e.g., Sidorova et al., 2008), then the external validity of the results cannot be established.. The
results of a convenient sample may be indicative, but they are not definitive. Having said that,
however, the same is true of CBSEM survey research too unless the sample there is random
and large. (If one includes the entire population of interest in the analysis, then, by definition,
the p-value is no more that its mathematical function implies. The p-value in that case does not
mean the probability that what applies to the sample may apply to the population.) Thus,
researchers should frame their conclusions accordingly.

2. Additionally about the p-value produced by subsequent analyses and expanding on the
previous point: if the corpora being analyzed in LSA cannot be convincingly shown to be a non-
random sample then the distribution of the means in the sample cannot be assumed to be a
normal distribution. That means that the interpretation of a p-value less than .05 as being
significant is mere speculation. That poses a threat to statistical validity. That is another reason
why the rules of thumb as applied to survey research do not readily apply to LSA data.

3. Internal validity may be at stake, too. Analyzing LSA data creates a threat to internal validity
because no established rules define the best dimensionality of the LSA. (Contrast that with the
eigenvalue greater or equal to 1 recommendation in PCA and factor analysis (Hair et al.,
2005).) It is a matter of trial and error, with different dimensionality choices producing different
result patterns in the LSA-derived matrices (Landauer et al., 2004). Inevitability, changing the
number of dimensions produced by LSA will change the resulting results of subsequent factor
analysis, clustering, or PCA. That constitutes a threat to internal validity and means that also
statistical reliability, at least in its traditional meaning of obtaining equivalent results in a test-
retest process or as an alpha coefficient across respondents (corpora in the case of LSA)
cannot be established. Here too, researchers should be cautious to frame their conclusions
with this limitation in mind. A possible way to partially address the issue of reliability is to split
the corpora into several datasets and then run exactly the same analysis on all those datasets.
Standard reliability tests could then be run across those dataset results, including Cohen’s
Kappa (Cohen, 1960).

Communications of the Association for Information Systems 486

Volume 41 Paper 21

4. Having alternative dimensionality also poses a threat to instrumentation validity. If alternative
factoring of the same terms can be done, and, thus, also alternative meaning produced, then
one could doubt conclusions that those factors represent specific constructs in the real world
and not others. Instrumentation validity threats exist in CBSEM too (Straub et al., 2004), but in
CBSEM there is a methodology for determining the optimal number of factors and establishing
their reliability and factorial validity (e.g., Bollen, 1989). Establishing factorial validity In LSA is
more complicated because the number of dimensions is orders of magnitude larger and
because words, in stark contrast to survey items, are expected to carry more than one
meaning and consequently to load on more than one factor. Assigning a construct name to a
factor with LSA data is therefore bound to be more ambiguous than with CBSEM survey data.
Some consequences of this are discussed in section 4.3

5. This lack of an established methodology for choosing the appropriate number of dimensions
(Landauer et al., 2004) opens the floodgates to fishing by researchers. Fishing constitutes
threats to both internal and external validity. There is nothing in the methodology to guide
researchers on dimensionality, and therefore nothing to prevent them from choosing the
dimensionality that best fits their objectives—and doing so even in the face of alternative
dimensionality that produces different results. This makes fishing inevitable. That being said,
fishing is not unique to LSA. It applies even to CBSEM, it is just that there are guidelines in
CBSEM (e.g., Bollen, 1989). Here too, a possible way to partially address the issue is to split
the corpora into several datasets and then run exactly the same analysis on all those datasets.
Validation by splitting the original dataset was applied also by Coussement et al. (2015). If the
results appear stable across corpora samples then presumably the results are reliable (at least
in the context of test-retest reliability).

6. An often consequence of fishing is that researchers over fit the model to the data. Over fitting
means that researches adjust their model to what the data analysis suggests will improve the
fit indices. This is a problem in CBSEM too (Bollen, 1989). The inevitable consequence of over
fitting is that the conclusions relate to the sample, but cannot be extended to the population
that that the sample represents. CBSEM methodology suggests researchers should disclose
their actions when they do so (Gefen et al., 2011). The same should be applied to LSA, too.
Splitting the corpora into several datasets and running exactly the same analysis on all those
datasets may provide a partial solution to those inevitable consequences. .

7. As a footnote and going outside the realm of LSA (and LDA), research has looked at methods
to address some issues of the interpretability of the results of text analysis. This is an issue of
external validity. One of the most important papers to address this issue is Chang et al.’s
(2009) “Reading Tea Leaves: How Humans Interpret Topic Models”. Chang et al. proposed
verifying the interpretability of the results by explicitly adding unrelated words and topics into
the results of text analysis and verifying that human subjects can identify those “intruders”.
They suggested two types of intruders: words and topics. In a word intrusion, a human subject
is presented with several words that relate to a random latent topic derived from a semantic
space. An additional unrelated (intruder) random word is then added to that list, and the
subject is asked to identify that intruder word. Run many times on many random latent topics,
that test provides a measure of the correctness of the text analysis factoring of terms by
comparing it with human cognition. In topic intrusion, an equivalent experiment is run on
human subjects, but this time with the intention of verifying that the human subject can identify
an intruder document (rather than an intruder word). The intruder document is added to a list of
documents that is composed of a factor of documents that the text analysis process produced.

4.3 More on Validation through Splitting the Data

Splitting the data and then comparing the results of running a machine learning algorithm on each split
alone as a way to assess the reliability of the results is common (e.g., Coussement et al., 2015). Adapting
the reliability assessment methods of test-retest and split-half from survey research may suggest a
nuanced adaptation of those established statistical methods.

In survey research, assessing reliability through test-retest is about having the same person take the
same survey twice. Test-retest reliability is calculated by comparing the results across the two or more
times the survey was taken. Adapting this approach to LSA would entail splitting the semantic space into
two or more spaces based on a time criterion, such as when the documents were created. If the LSA
results of the first time unit resemble those of the subsequent time units, then test-retest reliability can be

487
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

established. Alternatively, postings (e.g., in social media) by a “respondent” over several periods of time
could be compared to a “gold standard” of texts from the same kind of media about the same topic. If that
respondent’s postings retain their levels of close similarity to the gold standard texts over time, this too
could be interpreted as a type of test-retest reliability.

Another reliability method commonly used in survey research is split-half reliability. In this approach, the
data are split randomly into two or more datasets, the analysis is then performed separately on each
dataset, and the results compared. Reliability is measured as a function of how close the results are
across the datasets. In the context of LSA split-half reliability could be established by randomly splitting
the corpora into several datasets, creating a semantic space out of each dataset with LSA, and then
comparing the subsequent analyses. Reliability is shown through the degree to which the results across
datasets are close to each other. In contrast to test-retest, the splitting in this case is done randomly,
rather than by a time criterion. If the algorithm randomly selects a large set of documents from the corpora
to create each semantic space, then, because this method conceptually resembles the idea of
bootstrapping, statistical confidence levels can be also established around the mean values.

4.4 Cognitive Complexity

Exacerbating threats to interpretability is the enormous size of the data often analyzed with these
methods, and the number of dimensions needed to represent it (Landauer et al., 2004). And, by
extension, this threat means that if people cannot understand what the data mean then it cannot be ruled
out that there are also threats to instrumental, statistical, internal, and external validities. Landauer et al.
suggested that 250 to 400 might be the correct dimensionality needed in some applications of LSA, such
as answering TOFEL multiple choice questions, and then went on to lament that such dimensionality
cannot be visualized or otherwise analyzed easily by people. That being said, Landauer et al. also added
that “the 300-dimension optimum is not a universal law, nor is there a theory to explain it” (p. 5125). The
dimensionality Landauer et al. discussed related to a unique corpora universe, but as the Appendix
shows, having the number of dimensions in the hundreds is not rare in IS research either. Interestingly,
earlier research on LSA also adopted a 300 dimension approach, claiming that “a (roughly) 300-
dimensional space usually compares best with human performance” (Kintsch, 2001, p. 176).

Such large dimensionality poses a clear problem for interpretation because it is not the visualization or
data presentation as such that scientists look for but rather the meaning that can be projected on that
matrix or visual pattern (Landauer et al., 2004). Telling a story that encompasses 300 dimensions is
clearly overwhelmingly complex. The task is even more overwhelmingly complex because, empirically, it
seems that even as few as 75 to 125 word paragraphs could be enough for LSA to create a semantic
space out of (Landauer et al., 2004). That so many dimensions often come from such very small snippets
of text makes deriving meaning even more challenging. That challenge comes on top of the complexity
introduced by terms’ cross-loading extensively on their factors in the LSA-derived data because of
polysemy, polysemousness, heterosemousness, and metonymsness. The comparison to CBSEM is
startling. In CBSEM survey research, models seldom have more than 10 latent constructs; that is, factors,
and those are composed of only a few items each.

Adding further to the complexity of assigning meaning to LSA results is that LSA is mostly applied as an
exploratory method (see Appendix), meaning that the actual pattern in the data is initially mostly unknown.
(And, because of polysemy, polysemousness, heterosemousness, and metonymsness there may be more
than just one pattern.) In contrast, CBSEM in essence takes a positivist approach to research, and so
CBSEM models typically compare the data to an expected pattern. In short, mapping of LSA discovered
patterns back to theory might at times be too complex for human cognition. That said, LSA can be run
applying a positivist approach, such as in verifying that TAM can be supported based on projecting its
items’ keywords onto newspaper corpora (Gefen and Larsen, Forthcoming), making the interpretation of
the results straightforward and defendable.

4.5 Visualization

Due to the relative simplicity of LDA outputs, researchers have successfully created visualization
packages such as the LDAvis package (Sievert & Shirley, 2014). As in other statistical analyses,
visualization is one possible method to reduce cognitive complexity. Unfortunately, LSA’s data structure is
quite complex compared to LDA. LSA’s data structure allows one to calculate similarities between terms
and documents that may or may not have been part of the original semantic space. Because LSA
represents each term and document as a high-dimensional vector, only by reducing these dimensions can

Communications of the Association for Information Systems 488

Volume 41 Paper 21

visualization become useful. Some approaches to visualizing LSA can be found in Fortuna, Grobelnik, and
Mladenič (2005) and Teplovs (2008). Both approaches begin by constructing a similarity matrix from each
document to each other document in a corpus and then use that similarity matrix to construct a two-
dimensional representation. In Fortuna et al.’s approach, an energy minimization function is applied based
on multi-dimensional scaling. In Teplovs’s approach, documents are plotted on a graph where edge
lengths correspond to the similarity scores between nodes with scores below a threshold being discarded.
However, neither these nor other approaches have gained much traction.

5 Conclusion
A tremendous amount of data is stored as text, and that text data is growing in leaps and bounds and
making analysis possible in contexts that were not easily accessible in the past. It used to be that
acquiring information out of text would require an informed person to actually carefully read the texts,
compare them, and then draw subjective conclusions. Making that manual option even less practical with
large corpora, methodologically, preferably, that kind of manual text analysis should be done
independently by several informed people, not just one, so that their conclusions can be compared. That
may still be the best way to understand text, but it is not practical nor is it applicable when tens of
thousands of documents need to analyzed within a short period of time.

One alternative to a person actually reading large corpora of text and drawing reasonable information out
of it, even if clearly not at the level of a human reader, is to run text analysis with LSA. LSA is by no
means perfect, but it does hold the promise of at least partly acquiring some insight from text analysis in a
semi-automatic manner from large corpora. To date, researchers have presented several rather
convincing applications of LSA, including in the context of IS. For example, Gefen and Larsen
(Forthcoming) show that the most cited model in the discipline, TAM, is correct also because of the
sematic closeness of the keywords in its scale items.

It is reasonable to expect that as LSA and related methods mature, and their coding becomes easier and
their philosophy of science more standardized, that more researchers will turn to LSA and related
methods as a means of both augmenting existing research and opening new avenues. The text data are
there and readily available, so it would be a pity not to take advantage of such powerful text analysis
methods. LSA is a powerful tool, but applying it correctly requires both understanding what it does, and
hence its epistemology and strengths and weakness, and how to run it. We hope this guide with its
practical code snippets will serve that purpose.

489
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

References
Ahmad, S. N., & Laroche, M. (2017). Analyzing electronic word of mouth: A social commerce construct.

International Journal of Information Management.

Arnulf, J. K., Larsen, K. R., Martinsen, Ø. L., & Bong, C. H. (2014). Predicting survey responses: How and
Why semantics shape survey statistics on organizational behaviour. PLoS ONE, 9(9),

Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley and Sons.

Boudreau, M. C., Gefen, D., & Straub, D. W. (2001). Validation in IS research: A state of the art
assessment. MIS Quarterly, 25(3), 1-16.

Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user
reviews: A text mining approach. Decision Support Systems, 50(2), 511-521.

Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., & Blei, D. M. (2009). Reading tea leaves: How humans
interpret topic models. In Proceedings of the 23rd Annual Conference on Neural Information
Processing Systems (pp. 288-296).

Chen, L.-C. (2012). Building a term suggestion and ranking system based on a probabilistic analysis
model and a semantic analysis graph. Decision Support Systems, 53(1), 257-266.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20, 37-46.

Cosine similarity. (n.d.). In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Cosine_similarity

Coussement, K., Benoit, D. F., & Antioco, M. (2015). A Bayesian approach for incorporating expert
opinions into decision support systems: A case study of online consumer-satisfaction detection.
Decision Support Systems, 79, 24-32.

Coussement, K., & Poel, D. V. d. (2008). Improving customer complaint management by automatic email
classification using linguistic style features as predictors. Decision Support Systems, 44(4), 870-
882.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of information
technology. MIS Quarterly, 13(3), 319-340.

D’Haen, J., Poel, D. V. d., Thorleuchter, D., & Benoit, D. F. (2016). Integrating expert knowledge and
multilingual Web crawling data in a lead qualification system. Decision Support Systems, 82, 69-78.

Debortoli, S., Müller, O., Junglas, I., & vom Brocke, J. (2016). Text mining for information systems
researchers: An annotated topic modeling tutorial. Communications of the Association for
Information Systems, 39, 110-135.

Eliashberg, J., Hui, S. K., & Zhang, Z. J. (2007). From story line to box office: A new approach for green-
lighting movie scripts. Management Science, 53(6), 881-893.

Evangelopoulos, N., Zhang, X., & Prybutok, V. R. (2012). Latent semantic analysis: Five methodological
recommendations. European Journal of Information Systems, 21(1), 70-86.

Evangelopoulos, N. (2016). Thematic orientation of the ISJ within a semantic space of IS research.
Information Systems Journal, 26(1), 39-46.

Fortuna, B., Grobelnik, M., & Mladenič, D. (2005). Visualization of text document corpus. Informatica,
29(4), 497-502.

García-Crespo, Á., Colomo-Palacios, R., Gómez-Berbís, J. M., & Ruiz-Mezcua, B. (2010). SEMO: A
framework for customer social networks analysis based on semantics. Journal of Information
Technology, 25(2), 178-188.

Gefen, D., & Larsen, K. (Forthcoming). Controlling for lexical closeness in survey research: A
demonstration on the technology acceptance model. Journal of the Association for Information
Systems

Gefen, D., Rigdon, E., & Straub, D. W. (2011). An update and extension to SEM guidelines for
administrative and social science research. MIS Quarterly, 35(2), III-XIV.

Communications of the Association for Information Systems 490

Volume 41 Paper 21

Gefen, D., & Straub, D. W. (1997). Gender differences in perception and adoption of e-mail: An extension
to the technology acceptance model. MIS Quarterly, 21(4), 389-400.

Gomez, J. C., Boiy, E., & Moens, M.-F. (2012). Highly discriminative statistical features for email
classification. Knowlege Information Systems, 31(1), 23-53.

Hair, J. F., Black, B., Babin, B., & Anderson, R. E. (2005). Multivariate data analysis (6th ed.). Upper
Saddle River, NJ: Prentice Hall.

Hao, J., Yan, Y., Gong, L., Wang, G., & Lin, J. (2014). Knowledge map-based method for domain
knowledge browsing. Decision Support Systems, 61, 106-114.

Indulska, M., Hovorka, D. S., & Recker, J. (2012). Quantitative approaches to content analysis: Identifying
conceptual drift across publication outlets. European Journal of Information Systems, 21(1), 49-69.

Islam, A., Milios, E., & Keselj, V. (2012). Text similarity using Google tri-grams. In Proceedings of the 25th
Canadian Conference on Artificial Intelligence (pp. 312-317).

Kintsch, W. (2001). Predication. Cognitive Science, 25(2), 173-202.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2),
211-240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse
Processes, 25(2&3), 259-284.

Landauer, T. K., Laham, D., & Derr, M. (2004). From paragraph to graph: Latent semantic analysis for
information visualization. PNAS, 101, 5214-5219.

Larsen, K. R., Michie, S., Hekler, E. B., Gibson, B., Spruijt-Metz, D., Ahern, D., Cole-Lewis, H., Ellis, R. J.
B., Hesse, B., Moser, R. P., & Yi, J. (2016). Behavior change interventions: The potential of
ontologies for advancing science and practice. Journal of Behavioral Medicine, 40(1), 6-22.

Larsen, K. R., & Bong, C. H. (2016). A tool for addressing construct identity in literature reviews and meta-
analyses. MIS Quarterly, 40 3), 529-551,

Larsen, K. R., Monarchi, D. E., Hovorka, D. S., & Bailey, C. (2008a). Analyzing unstructured text data:
Using latent categorization to identify intellectual communities in information systems. Decision
Support Systems, 18(1), 23-43.

Larsen, K. R., Nevo, D., & Rich, E. (2008b). Exploring the semantic validity of questionnaire scales. In
Proceedings of the Hawaii International Conference on System Sciences (pp. 1-10).

Lemmitisation. (n.d.). In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Lemmatisation

Love, J., & Hirschheim, R. (2016). Reflections on Information Systems Journal's thematic composition.
Information Systems Journal, 26(1), 21-38.

Meire, M., Ballings, M., & Poel D. V. d. (2016). The added value of auxiliary data in sentiment analysis of
Facebook posts. Decision Support Systems, 89, 98-112.

Mendoza, M., Alegría, E., Maca, M., Cobos, C., & León, E. (2015). Multidimensional analysis model for a
document warehouse that includes textual measures. Decision Support Systems, 72, 44-59.

Muthén, L. K., & Muthén, B. O. (2010). MPlus user’s guide (6th ed.). Los Angeles, CA.

Sidorova, A., Evangelopoulos, N., Valacich, J. S., & Ramakrishnan, T. (2008). Uncovering the intellectual
core of the information systems discipline. MIS Quarterly, 32(3), 467-482.

Sidorova, A., & Isik, O. (2010). Business process research: A cross‐disciplinary review. Business Process
Management Journal, 16(4), 566-597.

Sievert, C., & Shirley, K. E. (2014). LDAvis: A method for visualizing and interpreting topics. In
Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces (pp.
63-70).

Straub, D. W. (1989). Validating instruments in MIS research. MIS Quarterly, 13(2), 147-169.

491
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

Straub, D. W., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research.
Communications of the Association for Informations Systems, 14, 380-426.

Tannen, D. (1994). You just don't understand women and men in conversation. New York, NY: Ballantine
Books.

Tannen, D. (1995). The power of talk: Who gets heard and why. Harvard Business Review, 73(5), 138-
148.

Teplovs, C. (2008). The knowledge space visualizer: A tool for visualizing online discourse. In
Proceedings of the International Conference of the Learning Sciences (pp. 1-12).

Valle-Lisboa, J. C., & Mizraji, E. (2007). The uncovering of hidden structures by latent semantic analysis.
Information Sciences, 177(19), 4122-4147.

Visinescu, L. L., & Evangelopoulos, N. (2014). Orthogonal rotations in latent semantic analysis: An
empirical study. Decision Support Systems, 62, 131-143.

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA's statement on p-values: Context, process, and
purpose. The American Statistician, 70(2), 129-133.

Wittgenstein, L. (1953). Philosophical investigations. New York: Macmillan.

Wei, C.-P., Yang, C. C., & Lin, C.-M. (2008). A latent semantic indexing-based approach to multilingual
document clustering. Decision Support Systems, 45(3), 606-620.

Yu, L.-C., & Chien, W.-N. (2013). Independent component analysis for near-synonym choice. Decision
Support Systems, 55(1), 146-155.

Communications of the Association for Information Systems 492

Volume 41 Paper 21

Appendix
Table A1. List of IS Studies that Applied LSA or Equivalent Method

Study
Questions answered / hypotheses

tested

Ahmad, S. N., & Laroche, M. (2017). Analyzing electronic word of mouth: A
social commerce construct. International Journal of Information
Management.

1) To explore the topics of positive and
negative reviews 2) to identify which
topics are seen as helpful by potential
customers.

Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for
the “helpfulness” of online user reviews: A text mining approach. Decision
Support Systems, 50(2), 511-521.

What influences helpfulness of reviews?
(Used "SVD factors" as variables.)

Chen, L.-C. (2012). Building a term suggestion and ranking system based
on a probabilistic analysis model and a semantic analysis graph. Decision
Support Systems, 53(1), 257-266.

Application. Build a system to
recommend cheaper adwords,

Coussement, K., Benoit, D. F., & Antioco, M. (2015). A Bayesian approach
for incorporating expert opinions into decision support systems: A case
study of online consumer-satisfaction detection. Decision Support
Systems, 79, 24-32.

Application. Review categorization as
part of expert system,

Coussement, K., & Poel, D. V. d. (2008). Improving customer complaint
management by automatic email classification using linguistic style
features as predictors. Decision Support Systems, 44(4), 870-882.

Application. Email classification system
using LSI and linguistic style from LIWC.

D’Haen, J., Poel, D. V. d., Thorleuchter, D., & Benoit, D. F. (2016).
Integrating expert knowledge and multilingual Web crawling data in a lead
qualification system. Decision Support Systems, 82, 69-78.

Application. Use LSA to identify better
prospects and improve sales call
efficiency via web data

Eliashberg, J., Hui, S. K., & Zhang, Z. J. (2007). From story line to box
office: A new approach for green-lighting movie scripts. Management
Science, 53(6), 881-893.

Method to improve movie investment
decisions.

Evangelopoulos, N. (2016). Thematic orientation of the ISJ within a
semantic space of IS research. Information Systems Journal, 26(1), 39-46.

Literature review.

Evangelopoulos, N., Zhang, X., & Prybutok, V. R. (2012). Latent semantic
analysis: Five methodological recommendations. European Journal of
Information Systems, 21(1), 70-86.

Methods. Identify best practices for LSA.

García-Crespo, Á., Colomo-Palacios, R., Gómez-Berbís, J. M., & Ruiz-
Mezcua, B. (2010). SEMO: A framework for customer social networks
analysis based on semantics. Journal of Information Technology, 25(2),
178-188.

Hao, J., Yan, Y., Gong, L., Wang, G., & Lin, J. (2014). Knowledge map-
based method for domain knowledge browsing. Decision Support Systems,
61, 106-114.

Indulska, M., Hovorka, D. S., & Recker, J. (2012). Quantitative approaches
to content analysis: Identifying conceptual drift across publication outlets.
European Journal of Information Systems, 21(1), 49-69.

Larsen, K. R., & Bong, C. H. (2016). A tool for addressing construct identity
in literature reviews and meta-analyses. MIS Quarterly, 40 3), 529-551,

Methods to identify similar theoretical
constructs.

Larsen, K. R., Monarchi, D. E., Hovorka, D. S., & Bailey, C. (2008).
Analyzing unstructured text data: Using latent categorization to identify
intellectual communities in information systems. Decision Support
Systems, 18(1), 23-43.

Lin et al. (2017). Social commerce research: Definition, research themes
and the trends. International Journal of Information Management, 37(3),
190-201.

Literature review. What are the themes of
“social commerce” research?

Love, J., & Hirschheim, R. (2016). Reflections on Information Systems
Journal's thematic composition. Information Systems Journal, 26(1), 21-38.

493
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

Table A1. List of IS Studies that Applied LSA or Equivalent Method

Meire, M., Ballings, M., & Poel D. V. d. (2016). The added value of auxiliary
data in sentiment analysis of Facebook posts. Decision Support Systems,
89, 98-112.

What information can help identify
sentiment in FB posts, what predictors
are most important, and what is
relationship between predictors and
sentiment?

Mendoza, M., Alegría, E., Maca, M., Cobos, C., & León, E. (2015).
Multidimensional analysis model for a document warehouse that includes
textual measures. Decision Support Systems, 72, 44-59.

Application. OLAP data warehouse for
storing/sorting text.

Sidorova, A., & Isik, O. (2010). Business process research: A cross‐
disciplinary review. Business Process Management Journal, 16(4), 566-
597.

Sidorova, A., Evangelopoulos, N., Valacich, J. S., & Ramakrishnan, T.
(2008). Uncovering the intellectual core of the information systems
discipline. MIS Quarterly, 32(3), 467-482.

Visinescu, L. L., & Evangelopoulos, N. (2014). Orthogonal rotations in
latent semantic analysis: An empirical study. Decision Support Systems,
62, 131-143.

Wei, C.-P., Yang, C. C., & Lin, C.-M. (2008). A latent semantic indexing-
based approach to multilingual document clustering. Decision Support
Systems, 45(3), 606-620.

Application. LSI-based technique for
multilingual document clustering.

Yu, L.-C., & Chien, W.-N. (2013). Independent component analysis for
near-synonym choice. Decision Support Systems, 55(1), 146-155.

Gefen, D., & Larsen, K. (Forthcoming). Controlling for lexical closeness in
survey research: A demonstration on the technology acceptance model.
Journal of the Association for Information Systems

Shows that the paper that initially
introduced the technology acceptance
model (TAM), the most cited paper in IS,
is correct also because of the way the
keywords in the survey relate to each
other in English.

Communications of the Association for Information Systems 494

Volume 41 Paper 21

Table A2. List of IS Studies that Applied LSA or Equivalent Method

Authors
Number of
documents

Number
of terms

Number of
dimensions

Document types Stemming
Stop word

lists

Was the
semantic

space
rotated?

Ahmad & Laroche
(2017)

2 sets: 147,
258.

1046,
1190

10 Amazon online reviews Yes Yes No

Cao et al. (2011) 3460 3457
CNET Download.com

online reviews
Yes Yes No

Chen (2012)

Coussement et al.
(2015)

1014 Consumer reviews Yes
Yes, and

rare terms
No

Coussement & Poel
(2008)

5196
By 10s to

200
Customer service emails

Dictionary-
based

Yes No

D’Haen et al. (2016) unspecified 1-100
Crawled corporate web

pages
Yes

Yes, and
rare terms

No

Eliashberg et al.
(2007)

200 100 2 Movie spoiler reviews Yes

Dropped
words apart

from
“important

words”

No

Evangelopoulos
(2016)

4827 1225 5 IS Abstracts Yes
Yes, also

low-meaning
words

Yes

Evangelopoulos et al.
(2012)

498, 498, 498,
22

1873,
1873, 230,

261

100, 30, 12,
7 & 3

EJIS paper abstracts Yes

563-word
list, 563,

230,
unspecified

No, yes,
yes, yes

García-Crespo et al.
(2010)

Hao et al. (2014) 844

153 -
autogen
list, then
expert-
edited

844 documents about

CNC technology
 Go-list No

Indulska et al. (2012) 8544
Abstracts from IS,

Management, Accounting

Larsen & Bong (2016) 300
Paragraphs from IS
articles: MISQ/ISR

Yes No

Larsen et al. (2008) 14510 IS Abstracts Yes Yes Yes

Lin et al. (2016)
418 academic

abstracts
1741 3 Article abstracts Yes Yes

Love & Hirschheim
(2016)

4745 7619 100
IS Abstracts + keywords

+ titles, Basket of 8 1991-
2013

Yes Yes Yes

Meire et al. (2016) 17,697 100 Facebook posts Yes Yes

Mendoza et al. (2015) 200, 400, 600 Scientific articles Yes Yes

Sidorova & Isik (2010) 2701 1176 10, 20, 30
Academic abstracts on

business processes
Yes

Yes, also
low-meaning

words
Yes

Sidorova et al. (2008) 1615 1318 5 and 100 IS Abstracts Yes
Yes, also

low-meaning
words

Yes

Visinescu &
Evangelopoulos

(2014)

902; 1481;
1110

 3, 5, 7, 9
SMS

messages
Yes

Wei et al. (2008) 2949
5 to 200 by

5

English and Chinese
language abstracts from
MIS theses/dissertations

Implied- only
nouns and

noun phrases
 No

495
A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews

and the Stack Exchange Community

Volume 41 Paper 21

Table A2. List of IS Studies that Applied LSA or Equivalent Method

Yu & Chien (2013)
20,000 5-

grams

100, 300,
500, 700,

1000, 1500,
2000, 2500,

3000

sentences from news
articles

Gefen & Larsen
(Forthcoming)

JAIS 500 500 Two newspaper corpora Yes No No

Communications of the Association for Information Systems 496

Volume 41 Paper 21

About the Authors
David Gefen is a Professor of MIS at Drexel University and Provost Distinguished Research Professor,
Philadelphia, US, where he teaches IT Outsourcing, Strategic Management of IT, Database Analysis and
Design, Data Mining in SAS, and research methodology. He received his PhD in CIS from Georgia State
University and a Master of Sciences in MIS from Tel Aviv University. His research focuses on trust and
culture as they apply to the psychological and rational processes involved in ERP, CMC, and ecommerce
implementation management, and to outsourcing. His wide interests in IT adoption stem from his twelve
years of experience in developing and managing large information systems. His research findings have
been published in MISQ, ISR, IEEE TEM, JMIS, JSIS, Omega, Journal of the Association for Information
Systems, Communications of the Association for Information Systems, and elsewhere. He is an author of
a textbook on VB.NET programming and a book on the art of IS outsourcing. He was a Senior Editor
MISQ and is currently on the Editorial Board of JMIS.

James E. Ellicott is a PhD Candidate in Information Management at the Leeds School of Businesses,
University of Colorado at Boulder. They received a Master of Science in Information Science and
Technology at Claremont Graduate University in California. Their research focuses on using natural
language processing techniques in order to increase the accessibility of texts to both experts in other
disciplines through work like the Inter-nomological Network (INN) and non-experts through text
simplification.

Jorge E. Fresneda is a PhD Candidate in the Marketing Department at the LeBow College of Business,
Drexel University, Philadelphia, PA, US. He received a Master of Sciences in Applied Statistics from
UNED and a Master of Arts in Marketing and Sales Management from EAE Business School. His
research focuses on analyzing the influence of textual information in online consumers on their purchase
decision processes. He teaches courses on marketing research and consumer analytics. Jorge has nine
years of industry marketing experience as a product manager at a large Business-to-Business
corporation.

Jacob Miller is a Ph.D. candidate with a concentration in Organization and Strategy at the LeBow College
of Business, Drexel University, Philadelphia, PA, US. He received his MBA at York College of
Pennsylvania. His research interests are focused in information technology and cognition through the use
of large scale text analytics. He teaches courses on entrepreneurship and corporate strategy.
Professionally, he developed and maintained information management systems in the software and
information industries.

Kai R. Larsen is an associate professor of Information Systems at the Leeds School of Business,
University of Colorado at Boulder. He holds a courtesy appointment in the Information Science
Department, College of Media, Communication and Information. As director of the Human Behavior
Project, he is conducting research to create a transdisciplinary “backbone” for theoretical research. He
applies text mining technologies to create an integrating framework for predictors of human behavior. The
research has implications for our understanding of human behaviors, including technology utilization,
investor decisions, and cancer-prevention behaviors.

Copyright © 2017 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to
publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from publications@aisnet.org.

	Communications of the Association for Information Systems
	11-2017

	A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews and the Stack Exchange Community
	David Gefen
	James E. Endicott
	Jorge E. Fresneda
	Jacob Miller
	Kai R. Larsen
	Recommended Citation

	Microsoft Word - Article 16-140.docx

