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This article presents a technical approach to acquiring quality, real-time decision-making information within 
organizations and illustrates this approach with an extended case study. Using relational model bases for real-time, 
operational decision making in organizations facilitates a transition to dynamic (vs. forecast-driven) resource 
allocation decisions. These and related systems offer development of a new generation of DSS applications which 
can be applied to extend preemptive decision making across many industries. This approach is illustrated through a 
description of a detailed conceptual case (scenario) pertaining to its application in agribusiness. This approach to 
decision making can be viewed as an extension of well-known techniques pertaining to DSS but also represents the 
opportunity to address problems not amenable to traditional post hoc analysis. Researchers can learn from the 
accumulated knowledge pertaining to DSS but can also examine innovations that push forward into new territories. 
The article presents and discusses a variety of emergent research questions prompted by the application of these 
technologies in the business environment. 
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I. INTRODUCTION 

The development and deployment of RFID sensors, massive Web-based data (e.g., network traffic, user clicks, etc.) 
and many other new sources of streaming data offer many operational opportunities for industries as diverse as 
supply chain management and health care. The prevalent model of DSS would integrate incoming data with other 
organizational information largely for the detection of patterns and to aid in long-range decision making. This will 
continue to be an important and profitable function of DSS. 

However, achieving full value from these streams of data requires new organizational approaches to fully utilize 
them in predictable and innovative ways [Niederman, Mathieu, Morley and Kwon, 2007]. Although one approach to 
using this data involves traditional storage and analysis, it has been argued that additional uses are conceivable that 
will take better advantage of the real-time processing of the enormous volume, velocity, and variety of data that 
these sources make available [McAfee and Brynjolfsson, 2012]. This approach focuses on automated analysis of 
data as it arrives rather than post hoc analysis after operational activities have been completed. Such a priori 
processing offers an approach to address competitive situations that require actionable information much more 
rapidly than ever before, minimizing lengthy (or impossibly complex) processing. From a strategic perspective, firms 
are challenged to ensure the real-time availability, agility, and adaptability of information, both internally and 
externally, required for handling dynamically changing business and competitive environments [Prahalad, 2009; 
Kohli and Grover, 2008; Sambamurthy, Anandhi and Grover, 2003; Mithas, Ramasubbu and Sambamurthy, 2011]. 
The ability to develop more flexible operational responses during the processing of transactions can represent a 
strategic approach or advantage relative to firms without that level of flexibility. Tesco, a bricks-and-mortar UK 
grocer, gathers transaction data on its 10 million customers and uses the information to analyze new business 
opportunities―for example, how to create the most effective promotions for specific customer segments. They 
further apply data to inform their strategic direction using data to inform decisions on pricing promotions and shelf 
allocation. Fresh Direct, a U.S. online grocer, shrinks reaction times even further to adjust prices and promotions 
daily or even more frequently, based on data feeds from online transactions, visits by customers to its website, and 
customer service interactions. In healthcare the University of Ontario Institute of Technology and Toronto’s Hospital 
for Sick Children use real-time data collected from premature infants in its nursery to detect earlier hospital-acquired 
infections in these infants, enabling the children to be treated before the situation becomes life-threatening [Baluja, 
2012]. 

One approach to such automated decision processing is real-time processing which can be expected to make 
available the most current data upon which to base business intelligence [Duan and Xu, 2012; Watson and Wixom, 
2007]. The current approach to enacting real-time processing uses active data warehouses and push-based BI 
(made possible with the arrival of large quantities of addressable RAM). Using underlying technologies such as 
complex event processing and event correlation, operational intelligence analytics are a step in the direction of 
finding and extracting information before it heads into the data warehouse, where the time to retrieve the information 
again increases significantly. Operational intelligence allows for operational data that does not need to be loaded 
into the warehouse before analysis, as the arrival of events in the data input stream triggers processing of the query. 

However, even with the application of these techniques, organizations are still reliant on fixed models. To achieve 
true real-time BI systems need to “learn” or adapt from the data being streamed in during the data acquisition stage 
to update and/or replace decision models [Blei, 2012; Chandy and Schulte, 2010; Marjanovic, 2007]. Once 
instantiated, these complex, adaptive systems would take streaming data and allow for algorithmic data decision-
making interaction. 

One promising approach to moving toward such “true” real-time processing may be based on the use of model 
bases to process the data [Davenport and Harris, 2005]. As an active, model-driven DSS class [Power, 2008], 
relational model bases address transaction and process automation with internal, integrated processes when 
deployed as an organizational decision support system (ODSS) [Carter, 1992; Eom, 2007; George, 1992] and has 
the potential to be deployed to support transaction and process automation with inter-organizational (peer) 
processes when deployed as an inter-organizational system (IOS) [George, Nunamaker and Valacich, 1992; Sen,  
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Moore and Hess, 2000].
1
 Cohen, Kelly and Medaglia [2001] describe several implementations of optimization-based 

DSS that integrate data from several sources, signaling model-based DSS as finally poised to emerge as a powerful 
tool for organizational decision making. 

Relational model bases exist today in very basic instantiations where models can be changed only manually. 
Conceptually, relational model bases are an emerging technology that would allow input data to add, update, or 
delete aspects of the models upon which input data is processed autonomously, in addition to being able to alter the 
parameters of the model. A relational model-base structure as a class of active, adaptive DSS [Holsapple, Pakath, 
Jacob and Zaveri, 1993; Jacob and Pirkul, 1990; Manheim, 1989; Mirchandani and Pakath, 1999] acts as an 
integrative device by relating an organization’s elementary relational functions to each other in models prior to data 
acquisition with a model management system at its core to build, analyze, and maintain models dynamically as the 
system inputs and elementary relational functions evolve [Liu and Tuzhilin, 2008; Muhanna and Pick, 1994]. 
Sutherland and Baker [2007] show that relational model bases can provide the technical capability for encouraging 
constructive interconnections among decision models in the overarching process of providing more adequate and 
accurate real-time, decision-making information. 

It is important to keep in mind that while relational model bases provide an opportunity to provide value by capturing 
and exploiting real-time data for decision making and action taking, they are not likely to be as successful if applied 
to inappropriate tasks. Appropriate tasks must involve situations with regular decision instances, when the decisions 
are recurrent and routine. The decision task must also admit to a conventional, technical, algorithm-driven solution 
for which decision choices are deterministic or probabilistic in nature. In organizations where a premium is placed on 
real-time propositional decision functions and near-instantaneous decision execution, instantiations of relational 
model-base structures would serve to provide these organizations with a mechanism to analyze the propositional 
decision functions in real time. Proctor and Gamble uses real-time data to monitor conditions so that if supplies are 
delayed due to weather, traffic, or other causes, the systems will use the data to create alternative delivery 
scheduled to ensure that production facilities get the appropriate supplies in sufficient quantities [O’Leary, 2008]. 
Real-time data in healthcare can help clinical decision making at the individual level and the population level by 
interpreting and monitoring patient data for diagnosis, establishing benchmarks and alerts to help with chronic 
disease management, and detecting pandemic diseases or tracking chronic diseases, aiding overall public health 
surveillance [Basu, Archer and Mukherjee, 2012]. 

This work addresses an open research question in the domain of real-time business intelligence [Ranjan, 2008]. A 
gap exists in this research regarding tools that would allow for the real-time synthesis of data prior to processing into 
a warehouse for decision makers, either solitary decision makers or groups charged with making a decision. This 
research path is taken in response to a plea made by several IS researchers concerned that this area might be 
overlooked by the IS field at a critical moment during this intense focus on “Big Data” and its potential impacts 
[Chen, 2011; Chen, Chiang and Storey, 2012]. This research also addresses the industry need to shorten the time 
lag between data acquisition and decision making [Chaudhuri, Dayal and Narasayya, 2011]. The research question 
addressed is: What are the technical requirements when an information system must process information prior to its 
being stored in the data warehouse, delivering output that is algorithmic to make automated decisions, or easily 
interpretable by a human decision maker for real-time decision making? 

Relational model-base structures are presented in the following section, followed by a discussion of the potential 
impacts of IS research that could be done in this area throughout several knowledge domains. One approach to 
responding to this challenge of implementing such a system will be presented based on a case within the field of 
precision agriculture. Precision agriculture is the field of whole-farm management with the goal of optimizing returns 
on inputs (economics) while preserving resources (environmental conservation) by matching farming practices more 
closely to crop needs (crop science). The exemplar relational model base is applied to precision farming, a farming 
management concept based on observing and responding to intra-field variations. The article concludes with a 
discussion of additional areas to which this technical solution could be applied and the potential impact of the 
widespread adoption of these systems in organizations. 

 

                                                      
1
  Relational model bases are not to be confused with relational database management systems (RDBMS). In RDBMS, decision models can be 

built, but their processing does not vary dynamically based on the input data as it is processed. Of course, a technologist can reprogram the 
decision models within the RDBMS; however, such reprogramming will be inefficient (e.g., requiring scheduled human labor) and will invoke a 
delay (e.g., finding the need to reprogram, taking the time to change the model, testing the new design, and running the new model). 
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II. RELATIONAL MODEL-BASE STRUCTURES: A RECURSIVE APPLICATION IN 
PRECISION AGRICULTURE 

Agriculture is one commercial endeavor where there is a clearly identified need to improve operational efficiencies 
by integrating processes between participants at various levels [Henderson, Akridge and Dooley, 2006; Ernst and 
Tucker, 2002]. Additionally, the need for real-time information processing to facilitate more efficient agricultural 
decision making, including the introduction of more sophisticated decision technologies, also has been identified 
[Diekmann and Batte, 2010; Hirafuji, 2000; Massey, Myers, Kitchen and Sudduth, 2008; Schiefer, 2003]. As an 
industry in the U.S. alone, agribusiness is a 2.4 trillion USD industry with an annual growth rate of 1.5 percent 
[Kruchkin, 2012]. Precision agriculture systems and services, a subset of the agribusiness industry, has U.S. 
revenue of 1.3 billion USD with annual growth projected at 6.1 percent [McBee, 2012]. The robust growth rate 
reflects that technological innovations within precision agriculture systems will make the technology more compelling 
to implement, in spite of farmers’ general lack of technological sophistication as a group [Kitchen, Snyder, Franzen 
and Wiebold, 2002; Omidi-Najafabadi and Bahramnejad, 2010]. The adoption and diffusion of precision agriculture 
will increase as penetration of broadband and mobile technologies in rural areas grows and educational efforts 
achieve further success [Kitchen, 2008; Lamb, Frazier and Adams, 2008]. Worldwide, the growing demand for 
agriculture products and services from newly industrialized countries will make the use of precision agriculture more 
attractive [Omidi-Najafabadi, Hosseini and Bahramnejad, 2011]. 

More importantly than market size, precision agriculture is a clear example of how relational model bases can be 
used to improve sustainability in the global food supply [Walsh et al., 2006] and improve farmers’ profitability 
[Rickman et al., 2003], encouraging a more rapid adoption of the technologies. Having these precision agriculture 
technologies contribute to the sustainability of agricultural systems stressed by increasing food and biofuel demands 
is a critical humanitarian issue. Population growth is expected to increase, and world population is projected to reach 
10 billion by 2050. This population growth decreases per capita arable land. More intensive agricultural production 
will have to meet the increasing food demands for this increasing population, especially because of an increasing 
demand for land area to be used for biofuels [Delgado and Berry, 2008; McConnell and Burger, 2011]. 

This case is developed in the context of agribusiness, with the target application being precision agriculture, 
alternatively known as precision farming. The goal of precision agriculture is to retain the benefits of large-scale 
mechanization essential to the large fields (many kilometers square is typical of today’s farm sites), while 
recognizing local variation within the large field site, both made possible through the increased use of technology. As 
rationale for introducing relational model bases to aid in this case, it is important to note how the geographical scale 
of these decision requirements has increased dramatically for today’s farmer. In the United States, a farm operator 
now manages a square mile or more to be viable, with the size of a typical field measuring hundreds of meters on a 
side. Usually all portions of that large farmland plot are treated similarly, with crop varieties, seed density, soil 
preparation, fertilizers, and insecticides (among other chemical treatments) uniformly applied [Rickman et al., 2003]. 
However, grain crops respond to environmental and soil variables that vary on subfield scales, especially as the 
farm fields get larger in acreage. To minimize the amount of production lost due to the mismatch of uniform crop 
treatments and unique physiological responses of individual plants in the crop, the ability to farm more precisely and 
apply decision requirements for all the associated crop variables on a smaller scale within the farm would be 
advantageous. Additionally, this associated increase in the scale of geographical decision requirements for precision 
agriculture has corresponded to a decrease in the response time available for farmers to be able to make these 
decisions, further highlighting the need for an integrative system to optimize and expedite decision making. 

The introduction of relational model bases to this scenario is of tremendous benefit to the practice of precision 
agriculture, as the computational requirements for decision making in precision agriculture are high in deciding 
specific amounts and combinations of seeding, fertilizer, chemical, and water use for local variations of the large 
land plots, while the required response time is short, to make certain that the land is optimally planted relatively 
quickly over ever-larger scales. The benefits of applying real-time BI to precision farming also include the integration 
in real time of decision models by the relational model base, allowing the farmer to invest decision authority in the 
model-base system, freeing the farmer to make more strategic decisions about his operation, while simultaneously 
gaining the capability to more quickly and accurately process the decision inputs acquired to make the decisions. A 
diagram of a generic prototypical relational model-base-centered integrative system appears in Figure 1. 

In this generalized conceptual case, the relational model-base-centered integrative system is going to be detailed 
from the perspective of a grain producer, including specific requirements for a relational model-base system in this 
environment. The outline of this article is as follows: after the relational model-base-centered integrative system for 
the grain producer is detailed, based on Figure 1, the relational model-based structures will be outlined, followed by 
a discussion of how large quantities of inputs to create and modify models would be handled by this system. This 
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Figure 1. A Prototypical Relational Model-base-centered Integrative System 

 
article concludes with a discussion of possibilities and implications of relational model base implementation in the 
enterprise. 

III. A GRAIN PRODUCER’S RELATIONAL MODEL BASE AND ITS CHARACTERISTICS 

Within the context of precision agriculture and from the perspective of a grain producer, the target application of this 
integrative system is stewardship over the determination of the amount and placement of a particular crop to be 
grown on a farm plot (or the combination of crops and in what amount) and the associated amounts of seeding, soil 
nutrient, pesticides, and moisture levels for the given crop, all of which comprise the decision requirements. Figure 2 
shows what a relational model-base structure would look like in a real-time, decision-making system applied to 
precision farming. 
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Figure 2. A Relational Model Base Model with an Example from Agribusiness 

 
In addition to knowing the target application and the decision requirements in the relational model-base-centered 
integrative system, grain farming comes with an inherent structural model consisting of connective (structural) 
specifications and substantive (magnitudinal) determinant-level specifications. Connective specifications indicate 
which state variables are interlinked with which others in what ways. In a real-world precision agriculture situation, 
the complex interplay among decision models governing nutrient absorption, thermal emission of the plants, water 
absorption, and necessary rates of irrigation with relation to precipitation form the connective specifications in 
precision farming. An example of the complexity of one model involved is presented in Kim, Sudduth and Hummel 
[2009], who model soil macronutrient sensing for precision agriculture. 

For each particular farm, there would also be substantive specifications, which are the results of the calculation of 
the initial parameters and relationships/constraints relating nutrient, crop, and water decisions. These initial 
substantive (magnitudinal) specifications would be the initial parameters (bx) and relational coefficients (mx) that 
would inform the grain producer’s relational model-base structure in a real-world example. For the purposes of a 
vastly simplified illustrative example, in Table 1, we chose four variables relevant to grain farming planting decisions 
and outline their connective and substantive specifications, which together comprise the inherited structural model 
for the relational model base. 

A relational model-base structure for a grain producer would also have very specific information acquisition 
requirements to be able to provide decision makers with adequate accurate and current decision predicates. These 
requirements would involve the determination or collection of any relevant empirical data necessary to calculate the 
relational model-base substructure parameters and relational coefficients. On a modern farm, there are several 
specific pieces of information that need to be known for effective decision making; thus information acquisition 
requirements would include (among others) temperature and composition of the soil, weather conditions on the site, 
fertilizer residue present in the soil, and moisture conditions of the soil. Knowing the requisite information acquisition 
requirements in precision farming for the development of more current and accurate data collection directs the ability 
to tap the appropriate real-time data sources. 

The data sources from which the relational model base for the grain producer would gather its information in the 
precision farming environment will be empirical data (sampling-based) from field observations recording the current 
parameter values for many variables of interest. In the move toward more real-time decision making, it is in this area 
where precision farming has made the greatest gains thus far [Rickman et al., 2003]. Improved navigation 
equipment, yield monitors, soil sensors, weather equipment, satellite and cellular network communications, etc., can 
all be used in a more sophisticated manner to provide decision makers (or technical decision aids, such as relational 
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Table 1: Inherited Structural Model and Substructure for Agribusiness Example 

 Inherited structural model Relational model-base substructure
  Variables v1: the amount of seed that is planted 

v2: the amount of irrigation necessary to achieve optimal soil moisture 
v3: the amount of pesticide used 
v4: the amount of fertilizer used 

Connective  
specifications 
(elementary 
relational 
operators) 

v2 is ↑ (positively and proportionally) 
related to v1 

v3 is ↑ (positively and proportionally) 
related to v1 

v4 is ↑ (positively and proportionally) 
related to v1 

v2 is  (dependent on (dominated by)) 
level of current soil moisture, so 

rx(1 ∩ 2): v2 is ↑ (positively and 
proportionally) related to v1 

rx(1 ∩ 3): v3 is ↑ (positively and 
proportionally) related to v1 

rx(1 ∩ 4): v4 is ↑ (positively and 
proportionally) related to v1 

rx(2 ∩ 3): v2 is ↑ (positively and 
proportionally) related to v3 

rx(2 ∩ 4): v2 is ↑ (positively and 
proportionally) related to v4 

rx(3 ∩ 4): v3 is ↑ (positively and 
proportionally) related to v4 

Substantive  
specifications 
(computational 
functional 
relationships) 

v2 = m2v1 + so + b2 

v3 = m3v1 + b3 

v4 = m4v1 + b4 

 
model-base substructures) with almost instantaneous readings of soil temperature, moisture, precipitation, and 
pesticide levels, along with any other parametric direct measurement variables that might be of interest [Kitchen, 
2008]. Farmers currently use wireless, high-speed Internet services, and other forms of wireless, networked 
communications to link various sensors or grids of sensors placed throughout their vast farm areas to get readings 
on crop moisture, temperature, weather, soil composition, and field conditions, among other things [Hirafuji, 2000; 
Ninomiya, 2004; Rickman et al., 2003]. By having these grids of sensors provide real-time readings of the state of 
farm conditions, the most current and accurate empirical data can be provided to a relational model-base 
substructure for decision support. 

With the copious amounts of data that will be collected from the field observations and conditions factors, it will be 
necessary to employ some means of input fusion to reduce the total aggregate of data collected down to the 
smallest actionable amount. Various methods of data reduction could be used, including collation, aggregation, 
redundancy filtering, and templating. In this agricultural case, various spatial-compilation algorithms, such as GPS 
correction, would be employed for crop-sensor data, as well as correction algorithms for raw yield data, and antenna 
offsets correction. Each of these input fusion techniques would lead to the eventual output of current values for 
parameters and relational coefficients of the relational model base. 

The Relational Model-base Structure 

The structure of the relational model-base system itself within the recursive relational model-base-centered 
integrative system will be explicated in detail in this section. All aspects of the integrative system from discussion of 
the target application and its decision requirements through to the empirical data collection and input fusion leads to 
the structure of the relational model-base system itself. As the graphic in Figure 2 depicts, the relational model-base 
system consists of five interrelated parts: the relational model-base structure; the cellular-connectionist analysis and 
modeling conventions, for systematically recognizing and formulating relational constructs in the relational model-
base; computational decision tree constructs; the initial substantive specifications of the relational model-base 
structure consisting of the current values for parameters and relational coefficients (as shown in Table 1 earlier in 
this article as an illustrative example); and, finally, updating operations to continuously update the parameters and 
relational coefficients of the relational model-base structure based on continuously streaming empirical data from 
field observations. Each of these five pieces together forms the comprehensive relational model-base structure 
central to the relational model-base-centered integrative system. 

The cellular-connectionist analysis and modeling conventions in the case of the grain producer, independent of a 
grain miller, is the necessary beginning of the relational model-base structure. The relational operations in this case 
build to first-order (inter-decision) operations, allowing for task- and entity-independent links between decisions. As 

shown in Table 1, at the elementary relational operator level, rx(vm  vn) ∈ dx, there are codified links among 
variables that are related to planting one particular grain (from here on referred to as the planting decision model, 
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(dx): amount of seed that is planted (v1); the amount of irrigation (v2); the amount of pesticide used (v3); and the 
amount of fertilizer used (v4). (In a real-world example, there would be many other variables that are relevant to this 
decision, yet for the sake of simplicity, the number of variables in this illustrative example is going to be limited to 
four.) The relational operators (r) among these variables constitute the decision model for planting, dx, where dx = 

R(v1  v2  v3  v4), which is detailed in Table 1 as the substantive specifications, and R is a primary relational 
operator conjoining the elementary relational operators, consisting of the system of equations in the illustrative 

example. For the remainder of this discussion, rx(vm  vn) will be abbreviated rx(vm,vn). 

Returning to the computational constructs for this model, this hierarchical decision case assumes dependent or co-
dependent decision-making relationships in the organization that relate to each other and to other participants in the 
supply chain who might govern what is being farmed and in what quantity. These decision-making relationships are 
hierarchical and recursive in nature, with the mathematical constructs informing the relational model-base structure 
operationalizing as a system of linear equations in a hierarchical node-arc structure, where the nodes contain 
executable decision models (algorithmic objects) and the arcs hold relational functions that explicate any 
connections between or among the various nodal objects. 

Table 2: Relational Model-Base Substructures’ Configuration Features for Planting Decision Model (dx) 

 Relational Substructure R(dx) 

 1 = v1, t-1 2 = v2, t-1 3 = v3, t-1 4 = v4, t-1 

v1 = v1, t v1 f(1,2) = f(2,1) f(1,3) = f(3,1) f(1,4) = f(4,1) 

v2 = v2, t f(2,1): v2 = m2v1 + so + b2 v2 f(2,3) = f(3,2) f(2,4) = f(4,2) 

v3 = v3, t f(3,1): v3 = m3v1 + b3 f(3,2): v3=m3((v2-b2)/m2)+b3 v3 f(3,4) = f(4,3) 

v4 = v4, t f(4,1): v4 = m4v1 + b4 f(4,2): v4=m4((v2-b2)/m2)+b4 f(4,3): v4 = m4((v2-b2)/m2)+b4 v4 
 
Table 2 shows a relational substructure of dx, which in this case is the decision model for planting. Across the top of 
the grid is the current parameter value for each variable (vm), which would be initially determined or calculated by 
empirical field data and over time would be updated through direct observations or through Bayesian updating 
operations to incorporate new information acquisition data weighting the most recent observations more heavily than 
older ones. Each row consists of a variable pertinent to the decision model, in this case, v1, v2, v3, and v4. Where the 
rows and columns intersect, there is the elementary relational operator, which describes the character and 
magnitude of the actual or anticipated impact of the current value on that variable. In the case of the grain producer, 
rx(v2,v1) would signify the relationship/effect of the amount of irrigation (v2) on the amount of a particular seed that is 

planted (v1), which is rx(v2,v1) = v2 is ↑ (positively and proportionally) related to v1. The value 1 at the top of the 
column would be the current amount of that seed that is being planted, and the value would be updated over time. In 

this illustrative example, 1 is the value of variable v1 at time (t–1). Based on the substantive specifications, rx(v2,v1) 
would be replaced by a mathematical or algorithmic expression, f(2,1), where the categorical connectives would be 
expressed by a mathematical function, as shown for this illustrative case in Table 2. 

In a time series example, v1 describes the relationship between v1 and 1 at time t. It is used to compute the value 

of v1 at time t based on the value of v1 at time (t–1), which is 1. v1 is not defined algorithmically in this current 

example, as the value of v1 and 1 are not related computationally. The value for v1 at any given time is based on 
GPS input function data describing the planting terrain. As the farmer plants and navigates throughout his or her 
field, differing GPS coordinates processed through a planting map will give the farmer different values for the 

amount of seed to be planted, based on his or her location in the field. The functions v2, v3, and v4 also are not 
defined algorithmically in this particular example. Overall, in a real-world example, the entire relational model-base 
structure, consisting of all the interconnected substructures, would be filled out by all of the variables that had been 
identified in the cellular–connectionist analysis, reflecting all pertinent relationships in the planting decision model, 
dx. 

Table 3: Relational Model-base Output for Planting Decision Model (dx) 

 (m2 = 2; m3 = 0.1; m4 = 0.3; b2, b3 and b4 = 0) 

 1 2 3 4 
t = 0 10 20 1 3 
t = 1 20 40 2 6 
t = 2 5 10 0.5 1.5 
t = 3 10 20 1 3 

 
After all of the data has been processed through the decision-driven relational model-base structure, the current 

decision predicates (the actual values for 1, 2, 3, 4) would be available in real time for the grain producer. Table 3 
shows the actual values for running the relational model base for the illustrative example, assuming that for each 10 
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pounds of seed planted, a farmer needs 20 cubic feet of water, 1 pound of pesticide and 3 pounds of fertilizer. At 
each time t, the amount of seed to be planted is fed into the relational model base from the data sensors, 
determined based on the GPS position of the farm plot being planted; subsequently, the model calculates the 
remaining variables in the model. In real-world precision farming, every acre of land would have readings of the input 
variables taken in real-time from remote wireless sensors and satellite data streams as the turbine/tractor covers the 
ground distributing the seed and tailored mixture of P, N, and K. With the large size of such farms (tens of thousands 
of meters) and the pace with which this farm equipment must cover such plots for the optimal farming output, real-
time processing is needed to determine the outputs from the large volume of inputs and the decision models that are 
employed. 

Considering that agriculture is a largely geographical endeavor, some GIS-based construct would be used as the 
interface where all decision predicates would be displayed to the decision maker in a format that displays the density 
or frequency distribution data of relevant variables as mapped onto the grain producer’s farm production area. As a 
final piece of the recursive relational model-base-centered integrative system, information acquired from the 
resource disposition decisions made, which consists of current parameter values resulting from the decision 
execution, is fed back into the relational model-base structure. This data would be stored outside of the relational 
model-base structure itself. The quality of previous decisions would be assessed based on different inputs and the 
outcomes effected [Jones and Taylor, 2004]. 

The key aspect of relational model bases that make them a new type of DSS is that this quality assessment could 
subsequently be used to generate better decision models in real time, in collusion with the incoming data acquisition 
requirements, acquired from RFID sensor arrays, for example. Armed with this information, updating operations 
would be used to update the relations between the variables (model, or substantive specifications, updating), while 
Bayesian updating operations would update present operating values for parameters and relational coefficients, 
examples of which are shown in Table 3. Model specification updating functions, which are ideally dynamic and 
agent-based in operation, would serve to enact model updating within the relational model-base structure in the 
likely event that new data force a significant enough change in the value of a variable that a model alteration or 
outright substitution that would affect changes in all other variables subject to the original variable’s influence.” How 
parameters and models are updated in a relational model-base structure is shown in Figure 3. 

Input Fusion

 

Dynamic Parameter Updating: Current values for 

variables will expectedly most often be generated by a 

Bayesian-type updating function, which has the effect of 

assigning relatively more impact to more recent data.

 

Redundancy 

Filtering 

Dvm,i® Ddx | (dy  dz...):
 A changed value for vm will force 

changes to other decision models 

involving that variable

Relational

Model-Base

Substructure,

 R(dx) 

Data Gathering: Elicitation of inputs 

from an assemblage (network) of real-time sources 

Templating  
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{I}dx: Information 

acquisition requirements dx ,t-1  
Decision

 Instance 

dx,t:  Updated (time-t 

current iteration) version 
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Resonation: 
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Figure 3. Dynamic Parameter and Model Updating Functions in a Relational Model Base 

IV. ECONOMIC IMPLICATIONS 

The goal of the enterprise is to establish optimal profit margins for the organization. For probabilistic decisions where 
the decision maker is risk averse, such as those present in precision agriculture, improvements in the quality of an 
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information base in terms of richness, precision, credibility, and/or currency result in a favorable change in the 
structure of the associated probability distribution, as shown in Figure 4. 

Figure 4b: EVDE of Decision with

a Relational Model Base structure

 

Figure 4a: EVDE of Decision without

a Relational Model Base structure

m = 2500 bushels m = 2500 bushels

500 bushels 5500 bushels 2000 bushels 3000 bushels

 

Figure 4. The Expected Value of Decision Error Using a Relational Model-base Structure 

 
The distribution in Figure 4a, driven by an improved information base provided by the relational model-base 
structure, with its updating operations for model specification and parameter updating, entails a lower expected 
value of the decision error than the distribution in Figure 4a, which is based on a less complete information base. In 

both distributions, m is taken as the amount of grain that needs to be provided by the grain producer to satisfy the 
completed bid with the grain miller. The key difference between the two distributions is Figure 4b’s much narrower 
range of production values that are deemed possible. This contraction is presumed to be a consequence of 
additional valuable information contained in the underlying information base of Figure 4b. This results in a reduction 

in the expected value of decision error (EVDE), defined as the probability multiplied by loss for all | m- |, where  is 
any value included in the range of the probability function. 

The distribution in Figure 4b has a lower EVDE than that in Figure 4a because the worst that is expected to happen 
is that there would be a loss (real or opportunity) of 1000 (vs. 5000) units. Thus, the value of information from the 
relational model base that is seen as an improvement over information provided from current systems is equal to the 
EVDE (area in Figure 4a–area in Figure 4b). Thus, to the extent that the relational model-base structure on any level 
can provide an improved information base that will reduce the EVDE and provide tightening and elimination of bias 
in the mean, moving to a relational model-base structure to facilitate organizational decision making is valuable to 
any organization that implements it. Over time, the investment in the system will generate positive returns stemming 
from this improved decision making. 

V. DISCUSSION 

Relational model-base structures are most well-suited to scenarios in which the decision outcomes are reasonably 
well-bounded. The decision makers in the organization cannot be reasonably expected to meet the data processing 
demands that a high response, real-time situation requires; therefore, these decision makers turn to inter-
organizational, real-time, multi-criteria, multi-decision-making tools that can provide this capability. Therefore, the 
potential for these relational model base systems includes any decision-making scenario where real-time business 
intelligence is needed and where there is value in automating the decision making to provide this real-time data, 
providing a tool with the capability to solve many complex problems in several knowledge domains. These areas 
include public health and emergency services (i.e., pandemic response plans), bioinformatics, customer 
segmentation, and inventory management, in addition to the more widely recognized areas of fraud detection, risk 
management, financial modeling, and trade execution [Kloeckl, Senn and Ratti, 2012; Lederman and Wynter, 2011; 
Livengood, Maciejewski, Wei and Ebert, 2012; Maciejewski et al., 2011]. 

The case for the introduction of relational model bases is further strengthened by the fact that there already exist 
cases where propositional decision-function data goes into models and is processed in real time when response 
requirements in the situation are high. A representative example in finance is ActivePivot (quartetfs.com), a real time 

http://www.quartetfs.com/
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risk assessment tool for credit, market, counterparty, or liquidity risk, and an example in pandemic preparedness and 
public health is BioDiaspora (www.biodiaspora.com), a research project focused on the health implications of global 
population mobility. Although any of these scenarios could be chosen for investigation, this work looks in depth at a 
case in precision agriculture, detailing the appropriate conceptual model of the relational model base applied to this 
situation and discussing how this relational model base is reflected in the industry solution for real-time BI. Industry 
has developed relational model-base systems for use in precision agriculture and ecological reclamation projects, 
without those systems being termed as such. By looking at the work of those in industry who have deployed such 
solutions (e.g., IDLAMS (Integrated Dynamic Landscape Analysis and Modeling System) [Shoemaker, Dai and 
Koenig, 2005]), we can reevaluate and reposition the prior IS literature on real-time BI DSS to approach the 
problems we are encountering now that can be addressed by relational model bases. 

VI. CONCLUSION 

This work addresses an open research question regarding tools that enable the real-time synthesis of data prior to 
processing into a warehouse for decision makers, either solitary decision makers or groups charged with making a 
decision. This research path is taken in response to a plea made by several IS researchers concerned that this area 
might be overlooked by the IS field at a critical moment during this intense focus on “Big Data” and its potential 
impacts [Chen, 2011; Chen, Chiang and Storey, 2012]. The conceptual case presented is designed to illustrate how 
a relational model-base approach can address the opportunity presented by the explosion of data inputs and the 
need for dynamic models for real-time decision-making data. This work focuses on the technical requirements for 
implementing such a decision tool in an organizational setting. As the case is hypothetical, we would expect to learn 
more in the dialogue between technology constraints and organizational facts. Naturally much work remains in order 
to translate such a conceptualization into institutionalized everyday processes for placing these technologies 
regularly into business contexts. 

In our view there are a number of directions for the extension of knowledge regarding this sort of technology. First, 
from a more technical perspective, the principles and examples described herein can (and likely will) be replaced 
over time with more specific and detailed sets of specifications. An accumulation of knowledge that distinguish more 
from less helpful approaches will ultimately save time from repeated trials and false starts. Second, from an 
organizational perspective, the range of tasks and the variations of technology required for successful 
implementation are not clear. Optimally tasks that are important, repetitive, and describable in models will be the 
“low hanging fruit,” but how far can such tasks be pushed into the less repetitive, more complex, and even more 
quickly changing models? Third, from an historic perspective, contrasting both content and methods of development 
useful in DSS applications with those in the emerging relational model-base world can provide some basis for more 
quickly reacting to the next steps forward in decision-making technologies. 

In the view of many, there is a Big Data revolution occurring where the growth of technology is leading to a deluge of 
decision-making data, while rapidly changing competitive environments demand business intelligence derived from 
this data to be available and applied in real time. Using relational model bases as a more sophisticated real-time, 
operational decision making in organizations in order to aid the transition to dynamic (vs. forecast-driven) resource-
allocation decisions, relational model bases can and are leading to a new generation of DSS applications in fields 
ranging from bioinformatics and agriculture to supply chain management and personalized marketing. This is the 
beginning of a new set of technical and behavioral research questions where IS researchers can seize the moment 
and make a significant impact on many knowledge domains, including the grand challenges of IS and engineering 
[Chen, 2011; National Academy of Engineering, 2008]. 
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