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Task-Representation Fit’s Impact on Cognitive Effort 
in the Context of Decision Timeliness and Accuracy: A 
Cognitive Fit Perspective 

Dinko Bačić 
University of Southern Indiana, USA 

 Raymond M. Henry 
Cleveland State University, USA 

 
Abstract: 

Cognitive fit theory (CFT) has emerged as a dominant theoretical lens to explain decision performance when using data 
representations to solve decision making tasks. Despite the apparent consensus regarding cognitive effort's theoretical 
criticality in CFT-based research, researchers have made limited attempts to evaluate and empirically measure cognitive 
effort and its impact. Unlike prior CFT-based literature that has theorized only the role of cognitive effort, in our empirical 
study, we presented information and tasks to 68 participants and directly measured cognitive effort to understand how 
cognitive fit impacts it and how it impacts decision performance. We found that 1) cognitive fit had an impact on cognitive 
effort only for more complex tasks and 2) cognitive effort had an impact on decision performance time but not on decision 
performance accuracy. These findings enhance our understanding of an established IS theory and encourage more 
research on the cognitive underpinnings of CFT. 
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1 Introduction 
In recent years, practitioners and academics have found renewed interest in the visual display of business 
information and its usefulness in decision making. Not surprisingly, technology vendors have responded 
through business intelligence (BI) systems that feature graphical data- and visual data-discovery 
capabilities, while self-service dashboards have become as popular as ever (DeBois, 2015; Gartner, 2016; 
Howson, 2010). However, the initial excitement over data visualization capabilities has decreased as 
researchers and practitioners have found it difficult to assess how these capabilities impact users’ work and 
decision making (Bresciani & Eppler, 2015). Indeed, the challenges associated with efficiently and 
effectively displaying business information are as old as the information systems (IS) field itself. Today, 
these challenges have become even more prominent as users operate in environments that feature 
increased data complexity, volume, and velocity and in which decision making and data analysis tasks 
depend on visually intensive applications more than ever before (Simon, 2014). 

Amid data visualization’s increased prominence in BI and the resulting proliferation of popular presentation 
formats and display options, we take a closer look at business data visualization research’s theoretical 
underpinnings and explanatory power. We focus on one of the dominant theoretical lenses, cognitive fit 
theory (CFT) (Vessey, 1991; Vessey & Galletta, 1991), a theory that initially emerged over 25 years ago as 
a way to explain individuals’ decision performance (accuracy and speed) when they use graphical and 
tabular displays. The theory successfully explained a series of seemingly conflicting studies; consequently, 
the broader research community adopted it as a dominant lens to predict decision performance when 
leveraging competing data-presentation formats. Today, the CFT literature has matured: researchers have 
extended the original theory multiple times and used it as the theoretical foundation for a growing list of task 
types, presentation formats, and problem contexts. Yet, it fundamentally remains focused on task-
representation fit as a predecessor to decision performance by suggesting that fit’s impact on decision 
makers’ cognitive effort (CE) constitutes the underlying mechanism that influences decision timeliness and 
accuracy. While cognitive effort lies at the heart of CFT, few researchers have explicitly incorporated this 
construct in research models or empirically measured this primary cognitive mechanism (Bačić & Fadlalla, 
2016). We believe that we may better understand this important theoretical lens and its impact by 
emphasizing and measuring its underlying cognitive elements. Therefore, in this research, we do not 
introduce a brand-new construct but rather investigate the mechanism that research has already theorized 
and that has a central role in cognitive fit; however, researchers have not yet measured or empirically tested 
it in this context. We empirically evaluate the role of cognitive effort and reinvestigate some basic 
assumptions behind CFT in the context of varied task type and complexity. 

To address these gaps, in this research, we succinctly review the CFT literature by documenting the IS 
literature’s prevalent view that the fit between task and external representation impacts decision/problem 
solving performance through its impact on users’ cognitive effort. Further, we provide initial empirical 
evidence about how we can advance this mature theoretical model. Lastly, we suggest that directly 
measuring cognitive effort represents an opportunity to enhance and clarify the explanatory power of CFT 

We hope that this research influences CFT-based research to focus more on understanding the role that 
CE—as the main mechanism through which cognitive fit affects task performance—could play in CFT. We 
suggest that, by focusing on understanding cognitive effort, the research community may discover new 
insights into what drives efficacious and efficient presentation formats—even potentially beyond cognitive 
effort. We hope that this research provides a few steps toward applying CFT in a more nuanced way. 

2 Literature 

2.1 Cognitive Fit Theory  
Vessey (1991) and Vessey and Galletta (1991) developed CFT to explain the inconsistencies that early 
research on tables versus graphs found by attributing performance differences to how well the presentation 
format matches the task at hand (Baker, Jones, & Burkman, 2009). Namely, the theory suggests that, if 
both the problem representation and problem solving task involve the same information type, a “cognitive 
fit” exists between them. When the information that the presentation emphasizes matches the task, decision 
makers can use the same mental representation and decision processes for both the presentation and the 
task, which results in faster and more accurate solutions (Vessey, 1991). Researchers have since expanded 
the original theory various times to further explain problem solving performance by explicitly including 
problem solving skills (Vessey & Galletta, 1991), evaluating the congruence between the external 
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information and the internal representation (Chandra & Krovi, 1999), and differentiating between the two 
types of representations of the problem domain (i.e., internal and external representation) (Shaft & Vessey, 
2006). However, CFT and its extensions share the underlying assumption that problem solving processes 
that human problem solvers use in completing the task help to reduce processing effort (Vessey & Galletta, 
1991). 

After CFT appeared, the theory gained rapid adoption in the IS academic literature. Over more than a quarter 
century (1991-2018) and through over 50 research papers, several common themes have emerged. First, 
the available research has primarily focused on exploring the implications of problem solving task 
characteristics and, to some degree, individual characteristics (Cardinaels, 2008; Dunn & Grabski, 2001; 
Hubona, Everett, Marsh, & Wauchope, 1998; Khatri, Vessey, Ramesh, Clay, & Park, 2006; Shaft & Vessey, 
2006). Over time, researchers expanded the initial theory’s focus on tasks characteristics and, in particular, 
spatial versus symbolic tasks (Vessey, 1991; Vessey & Galletta, 1991), to other types of tasks (Dennis & 
Carte, 1998; Hong, Thong, & Kar Yan, 2004; Khatri, Vessey, Ram, & Ramesh, 2006; Sinha & Vessey, 
1992). Second, while more studies have considered tables and graphs than any other representation format, 
the variety in such formats has nevertheless expanded. Some of the new problem representations that 
researchers have considered include modeling tool types (Agarwal, Sinha, & Tanniru, 1996; Khatri et al., 
2006), maps versus route directions (Dennis & Carte, 1998; Hubona et al., 1998), online interface design 
formats (Adipat, Zhang, & Zhou, 2011; Kamis, Koufaris, & Stern, 2008), and many others. Third, while a 
significant number of CFT-based studies have found support for their hypotheses, the literature still contains 
unsupported and even contradictory findings (Dennis & Carte, 1998; Frownfelter-Lohrke, 1998; Speier, 
2006).  

Last, and the most salient theme for this research, in reviewing the literature, we found that studies have 
largely theorized processing effort as the mechanism behind the impact that data presentation has on 
decision performance even though they refer to it under different names such as cognitive effort, cognitive 
load, burden, and workload (Bačić & Fadlalla, 2016). According to CFT, if an external problem 
representation does not match to the task, little exists to guide the decision maker in solving a task, and 
they must exert greater cognitive effort to transform the information into a form suitable for solving that 
particular type of problem (Vessey, 1994).  CFT-based researchers have adopted this view because they 
have specifically identified the condition of fit between data representation and task as impacting cognitive 
effort. We provide direct quotes from various influential CFT-based studies in Table 1 as the evidence of 
this adopted view. 

Similarly, the same research stream has embraced the connection between cognitive effort and decision 
performance. More specifically, empirical research directly states that effort negatively impacts decision 
performance (see Table 2). 

Despite the apparent consensus regarding cognitive effort’s criticality, little research has measured the 
impact that data representation has on cognitive effort or assessed the impact that users’ cognitive effort 
has on decision making efficiency and effectiveness. Only a handful of studies have approached the issue 
by including the somewhat related perceived ease of use (Adipat et al., 2011; Dunn & Grabski, 2001; Khatri 
et al., 2006). However, most of these studies have not found support for their hypothesized relationships 
between cognitive fit and ease of use, between cognitive load and ease of use (Li, Santhanam, & Carswell, 
2009), or between workload and ease of use (Shen, Carswell, Santhanam, & Bailey, 2012). Extant research 
in the online shopping context has used decision cognitive effort but found that cognitive fit had no impact 
on it (Hong et al., 2004). Another study (Huang, Tan, Ke, & Wei, 2013) focused on comprehension effort 
found significant results based on CFT; however, the scale items the study used reveal closeness to 
perceived ease of use and task complexity (i.e., distinct constructs from the cognitive effort in CFT).  

By directly measuring cognitive effort, we address an important and essential missing element in the current 
CFT-based literature (Bačić & Fadlalla, 2016) and take up previous calls to identify relevant factors in 
problem solving so that experimental research can control or else directly measure them (Agarwal et al., 
1996). Therefore, in Section 2.2, we evaluate critical findings from the cognitive psychology and decision 
making literatures as they relate to cognitive effort and its measurement. 
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Table 1. Fit and Cognitive Effort: Literature Quotes* 

Paper Quote 

Vessey & Galletta 
(1991) 

“One of the ways to reduce processing effort is to facilitate the problem-solving processes 
that human problem solvers use in completing the task. This can be achieved by matching the 
problem representation to the task, an approach that is known as cognitive fit” (p. 65). 
“Supporting the task to be accomplished with the display format leads to minimization of both 
effort and error” (p. 81). 

Dennis & Carte 
(1998) 

“Choosing decision processes that match the information presentation minimizes effort, 
because using a different process requires the decision maker to expend more effort to 
transform the information before using it” (p. 197). 
“Effort is minimized when analytical processes are used for symbolic information, so decision 
makers presented with information in symbolic form are more likely to choose analytical 
processes” (p. 197). 
“Few took the effort (i.e., cost) to translate the spatial data into the precise underlying numeric 
data it represented” (p. 200). 
“We believe that the higher cost of accurately processing the detailed numeric data induced 
decision makers to not expend the needed effort” (p. 201). 

Hubona et al. (1998) “This paradigm of cognitive fit has a characteristic such that consistent mental representations 
reduce the mental effort required to solve a problem” (p.708). 

Chandra & Krovi 
(1999) 

“Message passing is assumed to be a natural metaphor for reducing cognitive strain to help 
reduce a broad search that is typical in a PN mode” (p. 277). 
“The larger the network, the more the traversal that will be required. This should impose 
cognitive load, thereby, increasing the probability of errors” (p. 278). 
“This paper suggests that representational congruence is one way to reduce such a cognitive 
load. Similar in principle to the construct of cognitive fit” (p. 272). 

Mennecke, 
Crossland, & 

Killingsworth (2000) 

“Since an Image contains an integrated view of the relevant data, this should create a 
decision-making environment that more consistently fits the cognitive requirements of the 
decision maker and thereby reduces cognitive load” (p. 607). 

Goswami, Chan, & 
Kim (2008) 

“We believe that the higher cost of accurately processing the detailed numeric data induced 
decision makers to not expend the needed effort” (p. 336). 

Baker et al. (2009) 

“Visual representations that require a high level of cognitive effort from viewers in order to 
interpret the representation are less desirable than visual representations that require 
relatively less effort” (p. 539). 
“When a common facial expression is not recognized, a greater amount of cognitive effort is 
required to apprehend the meaning of the face (Umanath and Vessey, 1994)” (p. 545). 

Adipat et al. (2011) 

“If a mismatch between task and information presentation occurs, users must make extra 
cognitive effort to transform information into a format that is suitable for accomplishing the 
task.” 
“Both hierarchical text summarization and colored keyword highlighting adaptations are aimed 
at enhancing information scent in the tree-view hierarchy to alleviate users’ cognitive load 
and efforts, especially when browsing complex Web pages” (p. 103). 

Chan, Goswami, & 
Kim (2012) 

“...problem representation will determine the extent of cognitive effort required by users to 
mentally process the information to process the task” (p. 26). 
“In order to perform the task using the A1 and R1C1 problem representations, users have to 
expand significant cognitive effort as the task is a visual spatial task while the problem 
representations are not” (p. 33-34). 

Dilla, Janvrin, & 
Jeffrey (2013) 

“Since nonprofessional investors tend to have lower levels of task-specific knowledge and 
experience, they will rely on these graphical displays to reduce cognitive effort when making 
earnings evaluations and investment judgments, regardless of task type. On the other hand, 
professional investors will not rely on graphical displays of pro forma information when engaged 
in the relatively simple task of evaluating current year earnings performance. They will rely on 
these graphical displays to reduce cognitive effort only when performing the more complex 
tasks of making future earnings potential and investment amount judgments” (pp. 38-39). 

Giboney, Brown, 
Lowry, & Nunamaker 

(2015) 
“…and cognitive fit reduces cognitive effort…” (p. 8). 

* All papers except Baker et al. (2009) are empirical. Vessey and Galletta (1991) and Chandra and Krovi (1999) provide strong 
theoretical contributions to CFT (supported with data). 
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Table 2. Cognitive Effort and Performance: Literature Quotes 

Paper Quote 

Umanath & Vessey (1994) “This process may result in lower prediction accuracy due to increased cognitive 
effort required…” (p. 809). 

Agarwal et al. (1996) 

“A second, related explanation for the lack of significant results for object-oriented 
tasks and structure subtasks is that structure is inherently easier to model. If that is 
the case, the cognitive burden involved in solving structure-oriented tasks would be 
small; hence, the effects of a match between the tool and the task would not be 
discernible as improvement in performance” (p. 154 ). 

Chandra & Krovi (1999) “The larger the network, the more the traversal that will be required. This should 
impose cognitive load, thereby, increasing the probability of errors” (p. 278).  

Mennecke et al. (2000) “….this would be typical of a Figuration and would require greater cognitive effort 
and consume more time” (p. 607). 

Dunn & Grabski (2001) 
“Cognitive fit predicts that users of information that is consistent across problem and 
task representation will perform more quickly than users of inconsistent information, 
because of increased cognitive costs to process information” (p. 63). 

Adipat et al. (2011) 

“If a mismatch between task and information presentation occurs, users must make 
extra cognitive effort to transform information into a format that is suitable for 
accomplishing the task. This extra effort can result in inferior task performance 
(Vessey 1994)” (p. 103). 

Chan, Goswami, & Kim 
(2012) 

“Since mental transformation takes time and effort, it affects task performance 
(Vessey, 2006)” (p. 37). 

2.2 Cognitive Effort  
Researchers have defined cognitive effort as the total amount of cognitive resources (e.g., perception, 
memory, and judgment) that an individual needs to complete a task (Cooper-Martin, 1994; Russo & Dosher, 
1983). Cognitive effort research originated as a theoretical construct in cognitive psychology (Johnson & 
Payne, 1985; Kahneman, 1973; Navon & Gopher, 1979; Norman & Bobrow, 1975; Thomas, 1983), which 
widely recognized it to impact human performance. In addition to extensive research on cognitive effort in 
cognitive psychology, the literature that focuses on the role that cognitive effort has in decision making has 
particular relevance to this study; in particular, it suggests that decision makers primarily focus on minimizing 
cognitive effort (Bettman, Johnson, & Payne, 1990; Cooper-Martin, 1994; Johnson & Payne, 1985).  
Researchers have measured cognitive effort via several methods and lenses. One of the earliest methods, 
called “the cost of thinking” (Shugan, 1980), involves comparing alternatives across an attribute. Similarly, 
Bettman et al. (1990) used elementary information processes (Johnson & Payne, 1985), a system that 
describes a heuristic as a sequence of mental events, to predict cognitive effort as it relates to response 
time and for subjective reports. Further, research suggests that one can evaluate cognitive effort through 
the dimension of time, cognitive strain, and a concept labeled “total cognitive effort” (Cooper-Martin, 1994). 
Researchers have defined the time dimension as the period (duration) over which an individual expands the 
cognitive effort and examined it via self-reports (Bettman et al., 1990; Wright, 1975) or as objective decision 
time (Christensen-Szalanski, 1980). Research has measured the second dimension, cognitive strain, as a 
self-reported subjective measure (Cooper-Martin, 1994; Wright, 1975). Lastly, research has used total 
cognitive effort, which measures the number of comparisons that a user makes in a statement about a 
choice (Cooper-Martin, 1994). This concept captures the cost element to the effort; namely, 1) number of 
attributes processed (Wright, 1975), 2) number of alternatives processed (Wright, 1975), and 3) number of 
comparisons processed (Shugan, 1980). 

In our context, cognitive strain represents the most appropriate measure of cognitive effort since the 
perception of time does not capture effort intensity and research has found it to lack discriminant validity 
when used with cognitive strain (Cooper-Martin, 1994). Additionally, CFT models typically incorporate 
performance time as a dependent variable. Similarly, our research captures the number of attributes and 
statements processed through task complexity, making the use of “total cognitive effort” lens inappropriate 
in our context. 
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3 Model and Hypotheses 
Based on CFT and CFT-based literature, we suggest the need to more directly recognize the role of 
cognitive effort as Figure 1 represents. 

 
Figure 1. Research Model (based on Vessey, 1991; Vessey & Galletta, 1991) 

As we highlight in our literature review (see Table 1), CFT suggests that cognitive fit will lead to lower 
cognitive effort when compared to an alternative scenario without such a cognitive fit. However, before 
stating this relationship as a hypothesis, CFT-based research suggests the need to examine the impact of 
cognitive fit on cognitive effort in the contexts of tasks that vary in information type/task requirements and 
complexity. 

First, to solve the difficulty in developing a link between presentation format and task characteristics due to 
the large number of characteristics and the many ways in which one can describe them, Vessey (1991) 
proposed a two-category classification based on information type and task requirements. She classified 
tasks into two cognitive types: spatial and symbolic. Spatial tasks consider the problem area as a whole 
rather than as discrete data values and require one to make associations or perceive relationships in the 
data, such as understanding a firm’s performance by considering monthly sales trend by product segments 
along with its profitability strengths and weaknesses relative to its peers in those segments. Symbolic tasks, 
on the other hand, involve extracting discrete and precise data values (Vessey & Galletta, 1991), such as 
looking up an individual’s tax bracket. Given 1) CFT’s original context, 2) the link between spatial/symbolic 
tasks and tables/graphs as data-representation methods, and 3) the significance of tables and graphs in 
business information visualization context, we adopt these two problem-solving cognitive task types as a 
task nature component of cognitive fit in this research.  

Second, CFT originally focused on addressing decision performance under elementary/simple mental tasks 
(Speier, 2006). However, given the reality of today’s decision making and its complexity (Abbasi, Sarker, & 
Chiang, 2016), researchers quickly recognized the potential to apply CFT to complex tasks (Vessey & 
Galletta, 1991; Dennis & Carte, 1998). Consequently, a stream of CFT-based research focused on exploring 
fit’s impact on task complexity in contexts such as financial statement analysis (Frownfelter-Lohrke, 1998), 
geographic information systems (Dennis & Carte, 1998), interruptions (Speier, Vessey, & Valacich, 2003), 
operation management (Speier, 2006), and quality assurance (Teets, Tegarden, & Russell, 2010). Note that 
research focused on task-representation fit in more complex tasks has predominantly found partial (Speier, 
2006; Teets et al., 2010) to contradictory (Frownfelter-Lohrke, 1998) support for cognitive fit’s decision 
performance implications. The mixed nature of these results further emphasizes the need to understand the 
role of cognitive effort across tasks of varying complexities. 
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In summary, the existing CFT research suggests that cognitive effort represents an important mechanism 
that links data representation with performance and emphasizes the appropriateness of approaching tasks 
from both a complexity (simple vs. complex) and representation lens (spatial vs. symbolic). Consequently, 
task classification that involves the combination of four tasks (i.e., simple symbolic, simple spatial, complex 
symbolic, and complex spatial) (Speier, 2006) pertains most to our study. 

H1:  For simple symbolic tasks, symbolic (table) information presentation formats results in lower 
cognitive effort than spatial (graph) formats. 

H2:  For simple spatial tasks, spatial (graph) information presentation formats result in lower 
cognitive effort than symbolic (table) formats.  

H3:  For complex symbolic tasks, symbolic (table) information presentation formats result in lower 
cognitive effort than spatial (graph) formats. 

H4:  For complex spatial tasks, spatial (graph) information presentation formats result in lower 
cognitive effort than symbolic (table) formats. 

CFT assumes that problem solving processes that human problem solvers use in completing tasks facilitate 
processing effort (Vessey & Galletta, 1991). According to CFT, when a mismatch between task, 
representation, and decision processes occurs, one of two processes will occur. Decision makers may 
transform the presented data to better match the task, which can increase task-completion time and 
decrease task accuracy because any transformation can introduce errors (Vessey, 1991). Alternatively, 
especially when decision makers cannot alter the presented data, they may adjust their decision processes 
to match the presentation, which can increase cognitive effort. While existing empirical research widely 
supports the notion that an increase in cognitive effort results in an increase in task-completion time (Vessey 
& Galletta, 1991), CFT-based research findings that explore the relationship between cognitive fit (and 
resulting cognitive effort mechanism) and decision accuracy offers less conclusive findings. Potentially 
competing forces influence the impact that effort has on decision accuracy. On one hand, CFT suggests 
that the mismatch between the task and presentation format, could influence a decision maker to have to 
expend more effort, which research has hypothesized to result in lower ability to accurately solve the task 
(see quotes in Table 2). On the other hand, cost-benefit principles (Beach & Mitchell 1978; Einhorn & 
Hogarth 1981; Johnson & Payne 1985; Klein & Yadev 1989) suggest that, when deciding, we seek to 
minimize effort. Per cost-benefit principles, decision makers will forgo some task accuracy in order to expend 
less effort. Therefore, a decision maker’s readiness to exert more cognitive effort in dealing with a difficult 
task would lead to a higher decision accuracy, which contradicts the CFT-based link between effort and 
accuracy. 

Although we adopt CFT’s implied direction of the relationship between cognitive effort and decision 
performance in our context, we formally state the relationship between cognitive effort on decision time in 
more certain terms (one leads to another), while, in the case of the relationship between cognitive effort and 
accuracy, we recognize the relationship complexity and describe that relationship with less implied causality 
(one is associated with another). Consistent with the existing CFT-based research and aligned with H1 
through H4, we state each hypothesis for both simple and complex tasks. We do not, however, separate 
hypotheses for task type (spatial and symbolic) as task type represents an element of cognitive fit and not 
a distinct category that determines how cognitive effort impacts performance. 

H5:  For simple tasks, an increase in cognitive effort increases the amount of time that a decision 
maker needs to make a decision.  

H6:  For simple tasks, an increase in cognitive effort is associated with a decrease in decision 
accuracy. 

H7:  For complex tasks, an increase in cognitive effort increases the amount of time that a decision 
maker needs to make a decision.  

H8:  For complex tasks, an increase in cognitive effort is associated with a decrease in decision 
accuracy. 

4 Methodology 
To empirically test our hypotheses, we conducted an experiment with 68 (usable) human participants who 
each completed four of eight tasks. Tasks ranged from simple to complex and spatial to symbolic. 
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Participants solved those tasks using tabular and/or graphical presentation formats. In our experiment, we 
also measured participants’ perceptions about their own cognitive effort and actual performance (time and 
accuracy) for each task. In Section 4.1, we describe the experimental design and procedures in greater 
detail. 

4.1 Research Design 
The research design had two parts. In the first part (which tested H1 through H4), we used a three-factor 
experimental design. To allow for analysis flexibility, we used task complexity (simple, complex) and task 
type (spatial, symbolic) to create four tasks (simple spatial, simple symbolic, complex spatial, and complex 
symbolic) with data representation type (table, graph). As a result, we created an eight-cell two by two by 
two factorial design. We employed a completely counterbalanced, fully factorial design in which we randomly 
assigned users to one of eight scenarios. This design provided eight combinations of representations 
(tabular, graphical) and tasks (simple spatial, simple symbolic, complex spatial, and complex symbolic). In 
each scenario, users completed all four tasks. We counterbalanced the task-representation combination 
order in each scenario. We used cognitive effort as the dependent variable for this first portion of the study. 
In the second portion of the study, we regressed cognitive effort against two dependent variables, time (H5 
and H7) and accuracy (H6 and H8), to test the remaining hypotheses.  

4.1.1 Tasks 
We divided the task experimental conditions into simple and complex tasks with either symbolic or spatial 
cognitive requirements. We adopted Wood’s (1986) view of task complexity, which defines the concept as 
1) a function of the number of distinct information cues that one must process, 2) the number of distinct 
processes that one must execute, and 3) the relationship between the cues and processes. To separate 
tasks into simple versus complex, we created two tasks that required a low number of variables/information 
cues and calculations (simple) and two tasks that required a high number of variables/information cues and 
calculations (complex).  

We developed the simple spatial, simple symbolic, and complex spatial tasks based on the existing CFT 
literature (Speier, 2006; Speier et al., 2003), and we adapted those tasks to the financial accounting domain. 
We created the complex spatial task specifically for this study. In the simple spatial task, we asked the 
participants to identify the month in which the actual unit rate was the highest for all three firms (adapted 
from Speier, 2006; Speier et al., 2003). This task required the participants to assess the relationship 
between data point (spatial) while trying to identify the month in which the unit rate was the highest for the 
combined locations. Following Wood’s (1986) methodology to assess tasks, this simple spatial task required 
participants to use three information cues (unit rate, location, and month), add unit rates for each month and 
location, and then compare those unit rates across six months to find the optimal answer.  

The simple symbolic task (adapted from Speier, 2006; Speier et al., 2003) required participants to obtain 
specific data by directly extracting information regarding unit rates for a specific location and a specific 
month (symbolic). Once they did so, they had to subtract target unit rate from actual unit rate to retrieve the 
correct answer. Following Wood’s (1986) methodology to assess tasks, this simple symbolic task involved 
four information cues (actual rate, target rate, month, and location), one behavior (calculate), and subtraction 
between selected actual and target rate..  

In the complex spatial task, the participants had to use existing information for six firms to assess which 
ones met two financial scenarios that each had three and/or conditions. Following Wood’s (1986) 
methodology to assess tasks, this complex spatial task required participants to assess 17 information cues 
and use them in nine different acts of comparison. Further, the task required participants to assess the 
relationship between data points and did not require precision, which made it a spatial task as well.  

The complex symbolic task comprised a firm-investment task based on a previously published operations 
management task (Speier, 2006; Speier et al., 2003) that we adapted to the financial accounting context. In 
the firm-investment task, we provided the participants with five different balance sheet (liabilities) line 
items/categories associated with six firms. They had to determine which firms to invest in. The complex 
symbolic task required participants to assess 11 information cues (dollar amount, firm, accounts payable, 
accrued expenses, notes payable, bonds payable, total liabilities, fixed amount of total liabilities, fixed 
percent limit for notes payable, and fixed percent limit for accounts payable) and perform acts of comparison 
and ordering. Given the number of the cues and behavioral acts, this task involved substantially more 
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complexity for the user when compared to two simple tasks. Further, the task required participants to obtain 
specific data by directly extracting information, which made it a symbolic task. 

4.1.2 Representation 
Participants completed each experiment task with information represented via graph(s) or table(s). Each 
representation focused on supplying sufficient information to participants to correctly respond to each task. 
Researchers have criticized previous research for poor-quality representations and unequal levels of data 
in those two formats (Few, 2013). Thus, we focused on ensuring that both representation formats used best 
practices for visualizing information. Similarly, we ensured that each representation format displayed 
equivalently granular data. Lastly, to better control the cognitive processes that the participants needed to 
acquire and interpret the information, we ensured that each representation (and task problem statements) 
fit on one computer screen. As such, participants did not need to scroll or page down to see additional data. 
Appendix A shows an example of a complex spatial task and both representation formats1. 

4.1.3 Cognitive Effort 
We measured cognitive effort (CE) using Cooper-Martin’s (1994) cognitive strain scale (see Table 3). We 
removed two items from the original scale. We did not include perception of time since we used time as a 
dependent variable in our model. Similarly, we did not include an item that reflected the number of 
statements and alternatives because, in the context of this study, they formed part of task complexity.  

Table 3. Cognitive Effort Scale Items 

Items Scale 
1. I was careful about which answer I chose Strongly disagree (1) to strongly agree (7) 
2. I thought very hard about which answer to pick Strongly disagree (1) to strongly agree (7) 
3. I concentrated a lot while making this choice Very little effort (1) to great deal of effort (7) 
4. It was difficult for me to make this choice Strongly disagree (1) to strongly agree (7) 
5. I didn’t pay much attention while making a choice Strongly disagree (1) to strongly agree (7) 
6. How much effort did you put into making this decision? Very little effort (1) to great deal of effort (7) 
* Adopted cognitive strain scale item from Cooper-Martin (1994). 

To ensure applicability to our context, we pretested the scale for reliability and inter-item correlations2. The 
Chronbach’s alpha for the six items was 0.836, which exceeded the suggested value for reliability (> 0.7) 
(Nunnally, 1978), and the items displayed adequate internal consistency due to an average inter-item 
correlation of 0.459. The Cronbach’s alpha concurs with the 0.82 Chronbach’s alpha that Cooper-Martin 
(1994) reported. Both the high internal consistency and inter-item correlation confirm the appropriateness 
of the scale.  

4.1.4 Decision Performance 
Consistent with prior research, we measured decision performance via decision accuracy and decision time 
(Vessey, 1991; Vessey & Galletta, 1991). The experimental tool captured start and end times, which meant 
we could calculate total time. Based on pretest times, we expected that participants would need only up to 
one hour to complete the experiment; however, we placed no limit on the time they had to do so. In line with 
existing decision performance CFT-based literature, participants performed all intellective tasks (McGrath, 
1984), which have optimal answers. To provide a standardized comparison across tasks, decision accuracy 
for each task was calculated as the percentage of the optimal solution achieved ((optimal solution-subject 
solution)/optimal solution)).  

                                                   
1 We can provide all materials for all conditions upon request. 
2 The profile of the pretest group (n = 61) was consistent with the main study: in the pretest, 86% (54) were in 19-29 age group (89% 
(57) in the main study), 98% (60) were undergraduate students (99% (67) in the main study), and 51% (31) females (43% (29) in the 
main study). 
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4.2 Research Procedures 
We recruited both undergraduate and graduate participants from various business classes at a large, public, 
university in the Midwestern United States. Students received partial course credit for their participation and 
could win one of three US$50 rewards for performance in terms of accuracy per unit of time. Two 
representation formats and four tasks resulted in eight conditions. Each participant performed one simple 
symbolic, one simple spatial, one complex symbolic, and one complex spatial task in random order. 
Although they had no time limit with which to perform the tasks, all participants completed the tasks and 
responses within one hour. 

In total, 74 individuals volunteered to participate in this study. We could not use data for six participants, so 
we conducted our subsequent analyses with data from the remaining 68 (43% male and 57% female) who 
each participated in four out of eight experimental cells such that that each cell had N = 34. The participants’ 
median age was 21 and average age was 23.5 (SD = 7.22), and all but one participant was an 
undergraduate student. Further, 25 percent participants had at least some work experience in professional 
or technical jobs, while 17.6 percent had some work experience as a manager or proprietor. On average, 
the participants had 0.83 years of experience (SD = 2.064) in a professional or technical role   and 0.35 
years of experience (SD = 0.91) as a manager or proprietor. Participants came from a wide number of 
business majors. Table 4 provides additional descriptive details about them. 

Table 4. Participant Demographics 

Variable Count 

Gender Male: 29 
Female: 39 

Student type Undergraduate: 67 
Graduate: 1 

Major 

Accounting: 14 
Computer information systems: 4 

Management & OSCM: 12 
Marketing: 17 

General business & other: 21 

Age 
18-29: 61 
30-39: 3 
40+: 4 

Experience (Years) Professional Managerial 
0 51 56 

1-5 14 12 
5-10 2 0 
10+ 1 0 

The Cronbach’s alpha for the self-reported CE six-item scale was .779, which exceeds the 0.7 acceptable 
threshold (Nunnally, 1978). Therefore, we used the average score of all six-items to measure participants’ 
self-reported perception of CE. Furthermore, we used the Shapiro-Wilk test for normality, which suggested 
that the average score for CE was normally distributed.  

We completed a manipulation check for task complexity by asking participants their perceptions of 
complexity on a seven-item Likert scale. We found that the difference in mean values for complex (M = 5.75, 
SD = 2.53) and simple (M = 3.49, SD = 2.25) tasks was significant (F(68) = 95.675, p < 0.01) and in the 
expected direction.  

5 Results and Data Analysis 
A two (task complexity: simple vs. complex) by two (task type: spatial vs. symbolic) by two (format: graph 
vs. table) between-subject ANOVA (Table 5) revealed an adjusted R squared of 12.6 percent and a 
significant main effect of task complexity (F(1,264) = 31.911; p < 0.001; MSE = 24.320; ηp2 = 0.108). 
However, we found no significant effect for task type (F(1,264) = 2.478; p = 0.117; MSE = 1.889; ηp2 = 0.009) 
and format (F(1,264) = 1.038; p = 0.309; MSE = 0.791; ηp2 = 0.004).  
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To test H1 to H4, we looked for a statistically significant interaction effect between task type and format on 
CE. The analysis of variance showed a significant interaction effect between task type and format on CE 
(F(1,264) = 5.557; p = 0.019; MSE = 4.250; ηp2 = 0.021). We found no other interaction combination to be 
significant. 

Table 5. ANOVA Results 

Source df Mean square F Sig. P. eta squared Obs. power 
Task complexity 1 24.320 31.911 .000 .108 1.000 

Task type 1 1.889 2.478 .117 .009 .348 
Format 1 .791 1.038 .309 .004 .174 

Task complexity * task type 1 2.118 2.779 .097 .010 .383 
Task complexity * format 1 .721 .946 .332 .004 .163 

Task type * format 1 4.250 5.577 .019 .021 .653 
Task complexity * task type * format 1 1.021 1.340 .248 .005 .211 

Subject 1      
Error 264      
Total 272      

Model R squared = 14.9 (adjusted R squared = 12.6). 

Since we detected a significant interaction effect, we conducted pairwise t-tests to evaluate whether 
differences in CE means between cells that we hypothesize in H1 to H4 were significant. Table 6 
summarizes the means and N for each experimental cell. 

Table 6. Pairwise Comparison* 

 Tasks 

Format 
Simple Complex 

Spatial Symbolic Spatial Symbolic 

Tabular Cell 1 
4.554 (n = 34) 

Cell 4 
4.436 (n = 34) 

Cell 6 
5.554 (n = 34) 

Cell 7 
4.838 (n = 34) 

Graphical Cell 2 
4.637 (n = 34) 

Cell 3 
4.775 (n = 34) 

Cell 5 
5.186 (n = 34) 

Cell 8 
5.216 (n = 34) 

* CE (n) by experimental cell: bolded cells represent theorized state of cognitive fit. 

Figure 2 visually displays the same pairwise tests. 

 
Figure 1. Pairwise Comparison Between Tasks 
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A pairwise comparison3 of CE mean difference (see Table 6) between the simple spatial task with graphs 
(cell 1; M = 4.554; SD = 0.150) and the simple spatial task with tables (cell 2; M = 4.637; SD = 0.150) (i.e., 
.083; SD = 0.212) was not significant (p = 0.350); therefore, we did not find support for H1. A pairwise 
comparison of CE mean difference between the simple symbolic task with graphs (cell 3; M = 4.775; SD = 
0.150) and the simple symbolic task with tables (cell 4; M = 4.436; SD = 0.150) (i.e., -.338; SD = 0.212) 
approached but did not reach significance (p = 0.066); therefore, we did not find support for H2. A pairwise 
comparison of CE mean difference between the complex spatial task with graphs (cell 5; M = 5.186; SD = 
0.150) and the complex spatial task with tables (cell 6; M = 5.554; SD = 0.150) (i.e., -0.368) was significant 
(p = 0.034); therefore, we found support for H3. Lastly, a pairwise comparison of CE mean difference 
between the complex symbolic task with graphs (cell 7; M = 4.838; SD = 0.150) and the complex symbolic 
task with tables (cell 8, M = 5.216; SD = 0.150) (i.e., -.377) was significant (p = 0.031); therefore, we found 
support for H4. Table 7 summarizes these findings. 

Table 7. Summary of Findings 

Hypotheses Exp. cells Diff. in CE Findings 
H1: For simple spatial tasks, spatial (graph) information presentation 
formats result in lower cognitive effort than symbolic (table) formats. 2 vs. 1 .083 Not supported 

H2: For simple symbolic tasks, symbolic (table) information presentation 
formats results in lower cognitive effort than spatial (graph) formats 3 vs. 4 -.338 Not supported 

H3: For complex  spatial tasks, spatial (graph) information presentation 
formats result in lower cognitive effort than symbolic (table) formats 6 vs. 5 -.368 Supported 

H4: For complex symbolic tasks, symbolic (table) information 
presentation formats result in lower cognitive effort than spatial (graph) 
formats. 

7 vs. 8 -.377 Supported 

We conducted regression tests to test H5 through H8. We found that CE had statistically significant direct 
impact on time for both simple (adjusted R square = 5.1%, F(136) = 10.252, p = 0.002) and complex 
(adjusted R square = 6.4%, F(136) = 8.254, p = 0.005) tasks. However, we found that CE effect had no 
effect on accuracy for either simple or complex tasks. Table 8 shows the regression results, and Table 9 
summarizes our findings.  

Table 8. Regression Results 

 Simple tasks Complex tasks 
 H5 H6 H7 H8 
 Time Accuracy Time Accuracy 

Constant 18.816 
(15.765) 

1.103 
(.173) 

23.219 
(41.032) 

0.579 
(.268) 

Cognitive 
effort (CE) 

9.656*** 
(3.361) 

-.044 
(.037) 

24.942*** 
(7.790) 

-.019 
(.051) 

R square 0.241 0.103 0.267 0.033 
Adjusted R 

square 0.051 0.003 0.064 0.033 

No of 
Observations 136  136  

We note standard error in parentheses. 
**,*** indicates significance at the 95% and 99% level, respectively. 

 

 

                                                   
3 We conducted a pairwise comparison of direction and statistical significance of mean difference for cells 2 – 1, 3 – 4, 6 – 5, and 7 – 
8 (see Table 6) to evaluate H1 through H4 using Fisher’s LSD method for multiple comparison. Because H1 to H4 are theory-supported 
directional hypotheses, we adopted one-tail significance in interpreting the results.  
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Table 9. Summary of Findings 

Hypotheses Findings 
H5: For simple tasks, increase in cognitive effort increases the amount of time that a decision maker 
needs to make a decision. Supported 

H6: For simple tasks, increase in cognitive effort is associated with a decrease in decision accuracy. Not supported 
H7: For complex tasks, increase in cognitive effort increases the amount of time that a decision 
maker needs to make a decision. Supported 

H8: For complex tasks, increase in cognitive effort is associated with a decrease in decision 
accuracy. Not supported 

6 Discussions and Implications 
As a response to a gap in the literature and due to CFT’s value in today’s data-driven decision making 
environment, we investigate cognitive effort, the theorized mechanism central to cognitive fit, in this study. 
More specifically, we evaluate how the match between task type and representation format impacts 
cognitive effort and how cognitive effort impacts decision performance. CFT proposes that cognitive effort 
represents the mechanism that fit impacts and the variable that drives decision making performance. We 
designed our study to evaluate such suggestions through eight hypotheses across two levels of task 
complexity: simple and complex. In this context, several new findings about cognitive effort emerged.  

First, participants did not perceive significant change in cognitive effort in simple tasks with the two different 
formats (tabular and graphical) but did perceive it for more complex tasks. More specifically, for simple 
tasks, they did not perceive a significant difference in cognitive effort regardless of whether they dealt with 
information formats that represented theorized cognitive fit or not. Although this finding does not support 
our hypotheses for simple tasks, we might explain the results by evaluating participants’ performance 
relative to time and accuracy and by comparing it with other empirical research results. In a post hoc analysis 
(pairwise analysis) for both decision time (for spatial and symbolic tasks) and accuracy (the spatial task 
only), we found that participants did not perform significantly differently in different formats (see Table 10).  

Table 10. Post Hoc Analysis: CE in Simple Tasks 

 Time Accuracy 
Task type Mean difference (Sig) Mean difference (Sig) 

Simple spatial -5.677 (0.528) .000 (1) 
Simple symbolic -9.971 (0.268) .235 (0.005) 

 

As for why, the evaluated tasks may have been too simple to cause a substantial difference in participants’ 
speed and accuracy performance. Other researchers have suggested this explanation in the past (Vessey, 
1991). In our literature review, we noted several other studies that failed to confirm similar hypothesis as 
well. In our study, however, we can go a step further and assert that users’ inability to perceive a significant 
difference in cognitive effort accompanied task-representation fit’s inability to result in performance 
advantages (time and accuracy) over an alternative format (lack of task-representation fit). Therefore, 
considering the post hoc analysis, our results for simple tasks do not contradict CFT but instead provide 
some degree of empirical support for the role of cognitive effort. On the other hand, these findings do elevate 
concerns about the extensive reliance on CFT-based hypotheses in simple tasks in the IS literature. 

However, we found that task-representation fit did impact participants’ perception of cognitive effort 
differently for complex tasks than for simple tasks. For complex tasks, we found that task-representation fit 
impacted cognitive effort as we hypothesized. In other words, participants reported lower cognitive effort 
when they solved complex spatial tasks through spatial (graphical) rather than tabular (table) formats. 
Similarly, they reported lower cognitive effort when they solved a complex symbolic task through tabular 
(tables) rather than spatial (graphs) formats. To further interpret our findings, we also conducted post hoc 
analysis for only complex tasks and found that, for both decision time (symbolic tasks only) and accuracy 
(both symbolic and spatial task), participants performed significantly differently across fit/no fit conditions 
(see Table 11).  
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Table 11. Post Hoc Analysis: CE in Complex Tasks 

 Time Accuracy 
Task type Mean difference (Sig) Mean difference (Sig) 

Complex spatial -21.457 (0.116) .235294 (0.026) 
Complex symbolic -32.68953 (0.035) .205882 (0.044) 

Therefore, in the CFT context, our research provides the first empirical evidence that change in cognitive 
effort accompanies a change in decision performance. Combined with findings for simple tasks, our findings 
suggest that, once a task becomes sufficiently complex, individuals can detect a difference in cognitive effort 
between fit/no-fit inducing representations. 

Second, the relationship between cognitive effort and traditional decision performance measures may not 
be as straightforward as CFT suggests. For example, unlike in the case of simple spatial tasks, for simple 
symbolic tasks, the participants did have significant variance in accuracy due to a difference in presentation 
format, while, at the same time, they did not report the difference in cognitive effort. Studies that do not 
measure cognitive effort yet claim it as the underlying mechanism for cognitive fit’s impact on performance 
would miss this nuanced discovery. We might explain this surprising finding in several ways. On one hand, 
as in three instances of the simple tasks (see Table 10), cognitive fit’s weak impact on cognitive effort 
perception may have arisen because the simplicity of the problem itself regardless of accuracy performance 
may result in such a small difference in cognitive efforts that it makes it hard for one to detect perceptually. 
In other words, one may not be able to clearly link a perceived measure of effort and more objective measure 
of accuracy for simple tasks. Alternatively, one may need to consider other factors that potentially influence 
cognitive effort across different contexts, factors such as personal traits (need for cognition, graphical skills, 
domain knowledge, experience) or group-based factors (organizational, societal, cultural). Lastly, since 
cognitive fit had a poor impact on cognitive effort perception only for the symbolic tasks, a task’s nature 
(spatial, symbolic) could have its own impact on the alignment between effort and accuracy in the context 
of simple tasks.  

Interestingly, in one complex task scenario (complex spatial), participants did not have significant variance 
in time due to a difference in presentation format (fit) while, at the same time, reported a difference in 
cognitive effort. This finding may indicate that, as task complexity increases, individuals do not view the 
same amount of time on a decision as “equal”. In the case of complex spatial task, our participants worked 
for a similar duration across formats but reported working “harder” when using tables over graphs. CFT-
based research could miss such findings if it continues to focus solely on representation-task fit and decision 
performance in terms of time and accuracy. Regardless of the explanation, the above findings do suggest 
a need for a more nuanced approach in task-representation fit (cognitive fit) research. At a minimum, studies 
need to start measuring cognitive effort because their focus on the “usual” outcomes (time and accuracy) 
may downplay or misinterpret the cost of processing (cognition). We should augment performance 
measures with perceptual measures, especially perceived effort, to understand CFT in a more holistic way. 

Third, as expected, cognitive effort influenced time performance for both simple and complex tasks (H5 and 
H7). This finding suggests that, once users do experience varying levels of effort, it does impact their 
efficiency as CFT indicates. However, and more interestingly, our study provides initial evidence that this 
insight differs across task nature; in a post hoc analysis, we found that, for simple tasks, the relationship 
between cognitive effort and time was more pronounced for symbolic tasks, while, for complex tasks, it was 
more pronounced for spatial tasks. Although we did not expect this difference across tasks, our post hoc 
results about task-presentation fit’s influence on time for complex spatial tasks may explain it.  

Fourth, for performance accuracy (H6 and H8), we found no evidence of a relationship between cognitive 
effort and performance. Our findings suggest that individuals who solve a simple task do not appear to start 
to optimize effort and accuracy but will work on the problem harder and work through it to solve the problem 
more accurately. Thus, our findings do not support the premise that an increase in effort due to task-
representation misfit will result in degraded performance accuracy for simple tasks. Similarly, prior research 
has reported a difficulty in linking presentation formats to accuracy for complex tasks (Frownfelter-Lohrke, 
1998; Speier, 2006; Vessey & Galletta, 1991), and we found similar results. However, we do provide initial 
empirical evidence that there is a lack of link between perceived cognitive effort and performance accuracy 
and suggest a need to reassess other important factors that may drive these results, such as task difficulty 
as the missing independent variable and effort and accuracy as outcomes. Consequently, the increase in 
effort may both indicate cognitive misfit (leading to lower accuracy) and result from a willingness to exert 
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effort to deal with difficulty (leading to higher accuracy), which may result in higher variance in results and 
potentially explains why we found non-significant correlations between effort and accuracy. Lastly, and 
considering our findings for H5 and H7, these results may arise from the two competing forces that we 
discuss in Section 3. Individuals who expend more effort and time on transforming and extracting information 
may better comprehend it and, thus, improve their accuracy, which could partially cancel the decrease in 
accuracy due to increase in cognitive effort that arises from lack of cognitive fit as CFT argues. 

In summary, from a theoretical perspective, our novel focus on cognitive effort incrementally extends the 
well-researched cognitive fit phenomenon. CFT represents an influential and widely used IS theory. Its early 
success and ability to predict performance resulted in the IS research community’s quickly adopting it for 
various display formats, problem tasks, and contextual domains. Although rooted in other disciplines, CFT 
represents a rare IS native theory that will most likely continue to influence IS research. As such, our 
research reexamines a phenomenon that is salient to the IS community while providing a compelling 
rationale to focus on cognitive effort’s role in CFT and to directly measure it.  

From a practical perspective, future research should evaluate our study in the context of how practitioners 
use business intelligence (BI) visual components, such as dashboards and visual data displays. Although 
the clear majority of business users have never received training in data visualization design, in this age of 
self-service dashboards and data analyses, they can use a single mouse click to transform or alternatively 
display data with minimal computer processing or personal cost. The ease with which users can author and 
modify data displays may transfer authoring/processing costs from the visualization designer/author to the 
consumer and decision maker. Consequently, they may change the way they understand data and, 
subsequently, make decisions. For that reason, we need to critically evaluate the usefulness and 
appropriateness of visual data displays and the role of cognitive effort in that context. Therefore, we consider 
our empirical findings as a call for research to better understand cognitive effort a critical first step in that 
evaluation process.  

7 Limitations and Future Research 
As with most research, our study has several limitations that present opportunities for further research. First, 
given the strong theoretical foundation, we did not expect our regression results. The highest level of 
explained variance was 6.4 percent, and only two of the four regression models were statistically significant. 
Given the strong reliance on cognitive effort mechanism’s strong theoretical role in the CFT-based literature 
(see quotes in Section 2.1) and given that we adopted three out of four tasks from the existing literature, the 
low level of explained variance raises important questions about cognitive effort, its role, and measurement. 
We assert that our results represent two calls to action. On the one hand, the difficulty we faced in measuring 
cognitive effort could explain the relatively low variance or lack of statistical significance we found in our 
results. Although we used a pioneering method to evaluate and measure cognitive effort in the CFT context, 
we measured cognitive effort perceptually. While perceptual measures remain the dominant way to assess 
user experiences in IS research, we suggest a need to continue describing, understanding, and capturing 
cognitive effort. Our findings suggest that we must be careful not to rely exclusively on perceptual and 
subjective measures of cognitive effort. Users do not always consciously recognize their cognitive decision 
making process when relying on visualizations (Yetgin, Jensen, & Shaft, 2015). Furthermore, users might 
be unable, uncomfortable, or unwilling to accurately self-report IS constructs that make up cognitive 
processes, such as cognitive strain or effort (Dimoka et al., 2012). Cognitive effort represents a complex 
phenomenon that may require multiple and more complex methods to measure. One such way may come 
from adopting more objective measures of cognitive effort through biometrics. Human-computer interaction 
and neuroIS offer promising avenues to measure cognitive effort through eye-tracking, facial expressions, 
brain activity, and skin and heart response (Bačić, 2018; Bačić & Fadlalla, 2016; Dimoka et al., 2012). This 
research direction would not only enrich our understanding of cognitive effort but also address a concern 
that human perception of cognitive effort does not always represent the best way to measure experienced 
cognitive effort. Investigating alignment, complementarity, or potential paradoxes between perceived 
(“subjective”) versus biometrically measured (“objective”) cognitive effort across data displays and task 
context may provide a promising IS research stream.  

On the other hand, factors that influence decision performance other than or in addition to cognitive effort 
may explain the relatively low explained variance we found. While we purposefully limited the factors we 
examined to narrow our study’s scope to CFT’s original context, continued focus on only primarily cognitive 
effort as the determinant of decision performance may lead one to omit important findings. Our findings 
suggest that, in future CFT-based studies, researchers should not exclusively rely on the theorized role that 
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cognitive effort has in decision performance when developing hypotheses but consider the potential role 
that other mechanisms may have in it as well, such as affective (stress, emotions), cognitive 
(approach/avoidance, engagement, boredom, need for cognition, memory), perceptual mechanisms 
(preattentive attributes, Gestalt Laws, storytelling), and user biases. 

Second, as studies have done in the past, we used a student population for our experiments. Although this 
practice has become the de-facto norm in IS research, we suggest the need to continue this research using 
more varied population segments.. We recognize that, in other decision making contexts, research that 
considers other population segments may prove more important. As such, readers should generalize our 
findings to other demographic with caution. 

Third, the size of our experimental sample may have limited our ability to find significant support for more 
hypotheses. Although we deployed a highly controlled environment such that we could detect cognitive 
effort level, a universal human trait, a study with a larger sample could more broadly confirm and/or extend 
our findings. 

Fourth, while highly controlled experiments provide an appropriate environment to measure treatment 
effects, one may not be able to generalize our findings to a more realistic decision making scenario. 
Professionals make decisions in an environment that lacks as much control as the one we examined and 
often includes interruptions, group decision making, time constraints, emotion, managerial biases, and 
varied screen and display sizes. Since we addressed the fundamental CFT mechanism in this study, we 
believe a controlled environment represented an appropriate context, but we also recommend subsequent 
research to contextualize our findings in more realistic settings. 

Fifth, we used specific tasks and representation formats (tables, line and bar charts) in our study. With the 
proliferation of new representation formats (bullet graphs, network diagrams), the integration of older 
graphical methods with standard BI offerings (maps, histograms, scatterplots), and the emergence of more 
“exotic” displays (various three dimensional (3D) formats, word clouds, bubble charts) and questionable 
practices (“chartjunk”), we invite more research to evaluate task-representation fit and consequential 
cognitive effort using other tasks and other representations formats. 

Sixth, one should interpret our results with caution because we removed two items (time and complexity) 
from the original cognitive strain scale (Cooper-Martin, 1994). Thus, some confounding issues could have 
emerged because the original cognitive strain items (including time and complexity) belong to the same 
scale. CFT-based research would benefit from future research that focused on exploring ways to better 
understand and delineate cognitive effort connected to task duration from task difficulty. 

Finally, we limited our scope to only two measures of decision performance: time and accuracy. We did so 
purposefully to remain aligned with the original studies that form the foundation for CFT. However, 
organizations also find other decision performance criteria besides time and accuracy as useful in decision 
making. As such, researchers should conduct studies that investigate how fit and cognitive effort impact 
other decision-performance measures (such as creativity, confidence, or trust) and/or simultaneous impact 
across various measures. 

8 Concluding Remarks 
In summary, in this research, we explore and expand further our understanding about how data 
representation and task variables impact decision performance by focusing on the cognitive effort 
mechanism. Unlike prior CFT-based literature that has theorized only about how cognitive effort mechanism 
impacts decision performance, we directly capture this mechanism as a perceptual measure. As such, this 
study represents the first to examine how a fit between task type and representation format impacts 
perceived cognitive effort and how that underlying CFT mechanism impacts decision time and accuracy. 
We hope that our research stimulates constructive debate around cognition, enhance our understanding of 
cognitive effort, and further increases the relevance of CFT in the business decision making and data 
representation context. This study represents only an initial step, and we invite others to further explore the 
role of cognition, its measurement, and its effects on decision performance. 
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Appendix A: Complex Spatial Task: Graphical & Tabular Representation 

 
Figure A2. Complex Spatial Task 

 

 

Figure A2. Tabular Representation for Complex Spatial Task 
 
 
 

	
Using information presented below you are to assess which firm(s) meet all 
conditions in both financial analysis scenarios 
Scenario 1: 
- Sales have been increasing every year between 2000 and 2011 
- Gross Profit % > 25% or Profit Margin >5% 
- Return on Assets (ROA) >6.25% and Return on Equity (ROE) > 50% 
Scenario 2: 
- In 2000 - 2011 time period, EPS has been consistently in top three out of 6 firms  
- Current Ratio >100%  
- Debt-to-Equity ratio is less than 590% and Debt-to-Assets is less or equal to 90% 
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Figure A3. Graphical Representation for Complex Spatial Task  
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