
27TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2018 LUND, SWEDEN)

Strategy Dynamics in Markets of Software Components

Di Shang Di.Shang@liu.edu
Long Island University Brooklyn
New York, United States

Karl R. Lang Karl.Lang@baruch.cuny.edu
Baruch College, City University of New York
New York, United States

Roumen Vragov rumvra@yahoo.com
The Right Incentive LLC
Cold Spring, United States

Abstract
In this paper we propose a dynamic model of a software market for component reuse. We
investigate the market dynamics using experiments with economically motivated human
subjects. Our results suggest that the introduction of the software component market reduces
production costs and increases vendor profits. The dynamic interactions in the component
market helped vendors coordinate better their production decisions and resulted in production
cost savings. The component market can thrive on a balance between competition and
cooperation of software vendors. These experimental results could be applied with some
modifications to the development of software products in general.
Keywords: Component markets, Strategy dynamics, Software reuse, Experimental economics

1. Introduction
An individual software component is a software module, or a web service, that encapsulates a
set of related functions. Considered a key enabler of software reuse, component-based software
development (CBSD) is often highlighted as a practice that reduces time to market and
improves quality, and it has been recognized by software vendors as an effective approach to
reduce production costs [2]. In the last decade, a large number of software component models
have been developed using different principles and technologies [3]. Recently, Gartner
suggested that “analytics vendors have started creating marketplaces for software components,
such as analytical algorithms, to bring greater flexibility and choice to end users” [4]. This
reflects the trends that web services and cloud services have opened new opportunities for
dynamically integrating business processes across corporate boundaries on demand, and
component-based, distributed computing architecture are pursued by major software vendors
such as IBM, Google and Microsoft.
 One important attribute of software components is their substitutability. A component can
replace another if they meet the same requirements. Often, vendors might already have a
platform on which they can integrate several components to derive products customized to their
needs. Thus software vendors need to not only embrace component-based development
practices but also to actively participate in software component markets that permit vendors to
purchase and reuse available components in their products/services.

While there are significant benefits of using components in the development process, there
has been little empirical evidence that directs software vendors towards exploring the
appropriate production strategies in software component markets that utilize the economic
potential of component reuse. Insights on the benefits of participating in component markets
will help software vendors decide on their portfolio of products and components offered. In this
research, we develop a simplified software component market for a laboratory experiment that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301376338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SHANG ET AL. STRATEGY DYNAMICS IN SOFTWARE MARKETS

that supports software component reuse. We specifically aim to investigate the dynamic
interactions and how vendors coordinate their production decisions in the component market.
Our results suggest that the dynamic interactions in the component market helped vendors
coordinate better their production decisions and resulted in production cost savings.

The paper is organized as follows: In the next section, we discuss related literature on
software component-based development and software reuse. Then we present our theoretical
analysis and the design of our economic experiment. The subsequent sections present the results
of our experiment, and we conclude with discussing our contributions and future work.

2. Related Literature
An individual software component is a piece of software, a web service, or a module that
encapsulates a set of related functions. For example, in web services or service-oriented
architectures (SOA), a component is converted by the web service into a service and
subsequently inherits further characteristics beyond that of an ordinary component [2], [16].
Component-based software development focuses on building large-scale software systems by
integrating existing software components, often referred to as Commercial-Off-The-Shelf
(COTS) components [8]. CBSD has been recognized to play various roles in addressing needs
of particular applications [9]. While the reduced cost of component-based development comes
from the relative ease with which components can be assembled, enabling reuse, such assembly
may involve complexities of analysis, design, testing, and maintenance processes, common in
conventional software development [3], [6,7]. In addition, prior literature on software product
line engineering [10] has established the link between reusability of components in the product
platform and the ability to increase product variety. Scholars suggest that software vendors can
form B2B alliances with partner organizations to deliver a more customized solution to their
customers [11].

Reusability is an important characteristic of a high-quality software component, and
software components should be designed and implemented in such a way that many different
programs can reuse them in different ways [15]. Creating and using software components has
greatly expanded a company's ability to create massive, high quality, modern projects powered
by components [1]. Software vendors are becoming increasingly involved in putting together
components to build applications that solve specific problems. If a software development
organization invests considerable resources into developing a flexible and robust software
platform architecture that can accommodate the use of components to derive numerous product
variants, time to market may accelerate considerably. Because software components are
developed by vendors that are focused on developing components in a specific application
domain, and since such components are used by large customer bases and would have been
tested in a variety of conditions and environments, they are typically considered as relatively
higher quality and more reliable alternatives to in-house developments from scratch. However,
significant challenges remain due to supply constraints in currently existing software
component markets. Vendors lack information on what component would sell in the market,
how to effectively price them, and software buyers have difficulties in comparing and
evaluating components that are on offer. In addition, most existing guidelines approach this
problem from engineering rather than a business standpoint. While frameworks providing
guidelines for development and acquisition of components are available, they do not provide
insights on how market dynamics impact component supply and demand [13]. The growth of
component integrators, component brokerages, and third-party component certifications in the
software component market is a key indicator highlighting the need for research focusing on
this area [14].

3. Theoretical Analysis
In a market environment where reusable and substitutable components are available, the basic
problem that software vendors face is to find the cheapest way to develop a software product
without compromising quality. A software product can be developed with the internal resources

ISD2018 SWEDEN

of the vendor from scratch or sourcing components from the marketplace. The timing of the
launch of new products is as important as the decision whether a launch should be done in the
first place. In a software market with component reuse, the optimal time of launching a
monopoly product is the point of time that the vendor has the most resource advantage. Since
the quantity of components available in a market increases over time, the later a vendor launches
their new product, the more alternatives they can choose to develop a product through the reuse
of other products already available in the market. Moreover, ideally the price of a product will
eventually approach its marginal cost from its high introductory price, so the later a vendor
buys products from the component market, the lower price they will pay, and thus the lower
cost their new products will take for the development. Therefore, in the software component
market, vendors have to follow the dynamic changes of market demand and available resources
to set the best product launch time.
 For the time being let us assume that every vendor is a monopoly in the consumer market
for the products they create. If the demand conditions in the consumer market do not change,
the revenues from the consumer market will be relatively certain. However, vendors are not
monopolies in the vendor market for software components. This is because the same component
can be developed and used in several products by different vendors, which can then compete to
provide this component. In a dynamic setting vendors in the vendor market always face a
dilemma. Suppose that a vendor is considering developing productA. On the one hand the
vendor is pressured to develop and offer productA as soon as possible so that they can sell the
product in the vendor market before the competing companies have offered similar components
to those found in productA. On the other hand, the company might have an incentive to wait
until it is able to make productA at much lower cost by buying some low cost components in
the vendor market. In most realistic settings it will take time before market participants discover
the combination of components that spans the complete product space. Let us call this set C.
There is always the possibility that vendors who can produce one of the products in C, focus
their attention on the consumer market and ignore business opportunities in the vendor market.
Vendors might also be afraid that competition in the component market will drive the revenues
in that market towards 0. Therefore, vendors who have more accurate information are able to
act strategically and quickly in the component market to take advantage of their informational
and strategic advantage.

We can create a dynamic model in which one of the vendors (P1) can make productA from
set C. At the same time, another component market participant (P2) can make productB, which
shares some components with productA but is not a member of the set C. We define a multi-
period game in which Nature moves first to decide which vendor has to make the first decision.
One of the vendors moves second and decides whether to wait for low cost components in the
component market (Action W) or to make the product using their own resources and offer it in
the market at price p1 or p2. Then the remaining vendor observes all actions that have happened
so far and decides to wait until a better alternative is available (W) or to produce a competing
product and offer it in the market for a price p1 or p2. The modified extensive form of the game
and its phase diagram are shown in Figure 1 where R signifies the expected revenue from the
component market, and c1 and c2 are vendor P1 and P2’s costs.

Given the structure of the game we can see that there are four basic states: price war, no
market, vendor P2 buys from vendor P1 (Action B), vendor P2 makes productB and sells it in
the market. The most efficient state in the system is the one where vendor P2 buys productA
from vendor P1 before going into a price war. If c2-p1 >= R2-c2, the most efficient state will
be the sub-game perfect equilibrium of the game and the only stable state. Both vendors prefer
to be in that state at the end of the game. Vendor P2 will wait for vendor P1 to build productA
and will use A’s components to build productB. Vendor P2 can also control to an extent the
market power of vendor P1 because, if the price for productA is too high, vendor P2 can make
productB and offer it on the market as a partial substitute for productA. Vendor P2 can use the
“threat” of a price war to keep vendor P1 in check.

SHANG ET AL. STRATEGY DYNAMICS IN SOFTWARE MARKETS

Fig. 1. The modified extensive form and the state diagram of the multi-period game. The

arrows in the extensive form shows transitions from one period of the game to another. The
payoffs pertain to the nodes only if they are final nodes.

Assuming that Q is the monopolistic quantity supplied to the market for the components in
productA, the above inequality could be rewritten as c2 >= Qp1/2. If the number of vendors
willing to buy the components in productA or productB is high, then the inequality above will
not hold. Vendor P2 will have an incentive to produce productB as soon as possible without
waiting for vendor P1 to build productA. The most efficient state can be maintained only if
vendor P1 can use the threat of a price war to discourage vendor P2 from building and offering
productB. The “no market” state is unstable because if one vendor knows for sure that the other
one will not participate in the market, he will have an incentive to deviate from this state. The

ISD2018 SWEDEN

“price war” state leads to 0 profits from the component market for both vendors because
marginal cost is 0.

4. Experiment
The methodology of experimental economics is suitable for our investigation especially
because private and unobservable customer and vendor preferences and costs can be induced
and are directly available to the researcher in the laboratory [12]. Through laboratory
experiments we are also able to relax many of the standard homogeneity, uniformity, and
independence assumptions. Laboratory experiments also allow us to gather data from pricings
and market designs that have never existed in practice.
 Following the experimental economics approach, we present an experimental lab
environment that captures the salient features of the software economy while simplifying the
design in order to attain experimental control and streamline the cognitive demands on the
participants. Our experimental environment represents a simplified, idealized economy of
vendors and clients of component-based software applications. There are 4 vendors (P1 – P4)
in the ecosystem and each of them has the capacity to develop 4 applications (product1 –
product16). The software applications are component based, and each of them is designed for
providing a specific business solution to the business clients (C1-C10). Among the applications,
product6, product11, and product16 are in set C. Each application has a given fixed cost (from
a random cost schedule that ranges from 100 to 500) to develop the software and bring it to
market. The marginal cost for producing additional units is set to zero. There are 10 business
clients in the ecosystem, and each client demands for 5 applications. We model variation of
demand for applications in a way that each application has different levels of demand in the
marketplace, as suggested by [5]. The vendors are to sell applications for profit to the business
clients.

Fig. 2. The valuation of each software application to the clients and the production cost of

each software application.

As illustrated in Figure 2, the applications vary in their profit potential, some enable high
returns while others may not be profitable at all. The vendor can decide to offer none, 1, 2, 3,
or all 4 of the applications to business clients.

Our experimental design comprises of two treatments. In the Baseline treatment, vendors
sell complete component-based applications without a component market. In the Component
Market Treatment, vendors offer the same software applications but now bundled with a
component reuse license (that allows for decomposition of the software and reuse of individual
components) in a component market. In this treatment, each vendor can decide to develop a

SHANG ET AL. STRATEGY DYNAMICS IN SOFTWARE MARKETS

software application either with the internal resources of the vendor from scratch or by
obtaining and reusing components available in the market. When a vendor purchases a software
application from the component market, he can create applications on their own development
platform based on the components available in the applications that they have purchased from
the market. In our experimental design, each of the applications is comprised of 3 software
components. Such a simplified design of software components has been adopted in previous
research to increase experimental control allowing focus on the specific objective attributes of
software components [1]. As shown in Figure 2, for example, the software application
product16 is comprised of the three components C1, C2 and C3. Similarly, the software
application product11 comprises the components C4, C5 and C6. Now let’s assume vendor P1
wants to develop a software application product1 which comprises the components C4, C6 and
C3. Vendor P1 has the choice to develop the software application with the internal resources
from scratch, or he can purchase and reuse components from other software applications if
available in the component market. If he purchases software application product16 and
product11, he could recombine component C3 from product16 with components C4 and C6
from product11 to develop product1. For the sake of simplicity, we assume that vendors incur
no cost in disassembling and re-assembling the components they have purchased on their own
development platform

One hundred and twelve undergraduate students in a business school of a U.S. public
university participated in our study. Subjects were randomly assigned to the roles of a vendor
or a client and randomly grouped into sixteen cohorts of fourteen, four vendors and ten clients
each. Each treatment was repeated four sessions, and each session used a different cohort of
participants. After the subjects came to the experimental laboratory, they were seated at
separated individual workstations that served as trading terminals for selling or buying products
in the market. No communication among subjects was permitted during the experiment, other
than posting the bids and asks in the trading periods. In both treatments vendors and clients
interactively discover the prices of the software applications through a market mechanism,
which is implemented as a version of a continuous double auction. Sellers in the market can
submit asks or accept bids, but they are not allowed to increase their own asks. Likewise, buyers
can submit bids or accept asks, but they are not allowed to decrease their own bids. Bids and
asks at the same price are matched automatically by the trading system. These rules follow the
ones used by Smith [12] in his original market experiments. We ran 4 sessions for each
treatment and 10 repeated rounds in each session. Totally, we collected observations of 40
rounds of experiments for each treatment.

5. Results and Discussion
Our preliminary results suggest that vendors can reduce production costs and increase profits
by participating in the component market, and that vendors who act strategically and adapt
quickly in the component market are able to achieve more strategic advantage. Overall, we
observed strong participation in the component market and adoption of software components
reuse strategies. All the vendors offered some software applications in the component market
and also purchased some applications for reuse from other vendors.
 As shown in Figure 3 “buy and reuse”, the most efficient state in our theoretical analysis,
accounted for 48% (on average) of production of software applications in the component market
treatment. For half of the software applications, the vendors shifted production strategy to
buying components from the market for reuse from building them from scratch. As a result, the
production costs of software applications were significantly reduced (one-way ANOVA,
p<0.01). The component market achieved substantial production cost savings of 40% for
procuring and reusing components. For the software applications that mainly developed from
scratch – product7, product11 and product16, there is no significant (p> 0.1) reduction of
production costs in the component market treatment.

ISD2018 SWEDEN

Fig. 3. The average production cost of each software application in the two treatments (upper
chart) and the percentage of developed by reuse of each software application in component

market treatment (lower chart).

The average profit per software applications in the baseline was -46 (which actually
incurred a small loss to vendors), and it increased in the component market treatment to 48 and
became profitable. As shown in Figure 4, not all the software applications increased profit for
vendors in the component market treatment. The component market exhibited high demand for
applications that included high-value components (set C), and the market helped vendors to
discover which applications to build and which applications to buy from the market.

Fig. 4. The average profit of each software application in the two treatments.

The variation of profits of software applications explains the change of vendor profit as
shown in Figure 5. In component market treatment vendor P3 were able to sell product11 (set
C) in the component market and reuse software components purchased from other vendors to
more efficiently develop the application (product9, product10 and product12) needed for their
business clients. As a result, they were able to achieve the highest profit in component market
treatment comparing to in the baseline they scored the lowest profit. Overall, we see that vendor
profit significantly (p<0.01) increased through participation in the component market. The
dramatic change in profitability can be attributed largely to higher profits of most software
applications in the component market treatment.

SHANG ET AL. STRATEGY DYNAMICS IN SOFTWARE MARKETS

Fig. 5. The average profit per round of vendor P1-P4 in the two treatments.

In the component market, vendors have to follow the dynamic changes of market demand
and available resources to set the best product launch time. Examining the product launch time,
we see that products in set C (product6, product11, and product16) in general have early launch
time than other products as shown in Figure 6. Vendors of these products have the most resource
advantages, as they are potentially highly demanded in both the consumer market and the
component market.

Fig. 6. The average product launch time of each software application in component market.

Results from our analysis demonstrated that introducing a component market for reuse
created a complex dynamic system. There was enough activity in the component market to
increase efficiency compared to the baseline. The average vendor profit attained in the
component market treatment is significantly higher than in the baseline. In addition, there are
many production strategies that vendors can take in order to increase their profits with the
component market. Vendors who acted strategically and moved quickly in the component
market were able to achieve more strategic advantage.

6. Conclusion
This paper proposed a dynamic model of a market for software components. We investigated
the market dynamics using experiments with economically motivated human subjects. Our
results suggest that the introduction of the component market for software reuse reduces
production costs and increases vendor profits. The dynamic interactions between production
strategies help vendors coordinate better their production decisions and result in production cost
savings. Therefore, component market can thrive on a balance between competition and
cooperation.
 Several areas in software development, namely, components development and software
reuse, can benefit from the findings of this study. Component marketplaces help organizations
speed up their development processes and cope with the transformational changes introduced

ISD2018 SWEDEN

with digital business. Empirical evidence on the effectiveness of component markets might
encourage vendors to transform their current development process to focus more on
incorporating reusable components from other software vendors.
 Our study is motivated by the dearth of insight into the business side of component markets,
while the technical side of component reuse has been well researched. The preliminary results
reported here can only serve as an initial step towards a more complete understanding of how
strategies in the component markets change in response to changing market dynamics. Thus,
our next step is to extract more insights by analysing the data to complete the study. For
instance, a deeper look into why vendor P3 outperformed in the component market will uncover
how to achieve strategic advantage in terms of product launch time and pricing strategies.
Furthermore, a smarter market might be able to better help market participants discover quickly
the members of the C set. Further research is required to investigate the impact of these factors.

References
1. Anguswamy, R., Frakes, W.: A Study of Reusability, Complexity, and Reuse Design

Principles. In: Proceedings of ESEM’12, pp. 161-164. Lund Sweden (2012)
2. Bertoa, M.F., Troya, J.: Measuring the Usability of Software Components. Journal of

Systems and Software. 79(3), 427-439 (2006)
3. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.: A Classification Framework

for Software Component Models. IEEE Transactions on Software Engineering. 37(5),
593-615 (2011)

4. Gartner (2017), “Gartner Says by 2020, At Least 30 Percent of Industrie 4.0 Projects
Will Source Their Algorithms From Leading Algorithm Marketplaces”,
https://www.gartner.com/newsroom/id/3646717. Accessed June 22, 2018

5. Hong, S., Lerch, F.J.: A Laboratory Study of Consumers' Preferences and Purchasing
Behavior with Regards to Software Components. The DATA BASE for Advances in
Information Systems. 33(3), 23-37 (2002)

6. Kessel, M., Atkinson, C.: Ranking Software Components for Pragmatic Reuse. In:
Proceedings of the Sixth International Workshop on Emerging Trends in Software
Metrics, pp. 63-66. Florence Italy (2015)

7. Lakshmi N.V., Hendradjaya, B.: Some Theoretical Considerations for a Suite of
Metrics for the Integration of Software Components. Information Sciences. 177(3),
844-864 (2007)

8. Mahmood, S., Niazi, M., Hussain, A.: Identifying the Challenges for Managing
Component-based Development in Global Software Development: Preliminary
Results. In Proceedings of Science and Information Conference (SAI2015), pp. 933-
938. London UK (2015)

9. Morch, A.I., Stevens, G.: Component-Based Technologies For End-User
Development. Communications of the ACM. 47(9), 59-62 (2004)

10. Pohl, K., Böckle, G.: Software Product Line Engineering: Foundations, Principles, and
Techniques. Springer (2005)

11. Sarker, S., Sarker, S., Sahaym, A., Bjørn-Andersen, N.: Exploring Value Cocreation in
Relationships between an ERP Vendor and its Partners: a Revelatory Case Study. MIS
Quarterly. 36(1), 317-338 (2012)

12. Smith, V.L.: Experimental Economics: Induced Value Theory. American Economic
Review. 66(2), 274-279 (1976)

13. Ulkuniemi, P., Seppänen, V.: COTS Component Acquisition in an Emerging Market.
IEEE Software. 21(6), 76-82 (2004)

14. Wohlin, C., Wnuk, K., Smite, D., Franke, U., Badampudi, D., Cicchetti, A.: Supporting
Strategic Decision-Making for Selection of Software Assets. In: Maglyas, A.,
Lamprecht, A. (eds.) Software Business. Lecture Notes in Business Information
Processing, Springer (2016)

SHANG ET AL. STRATEGY DYNAMICS IN SOFTWARE MARKETS

15. Younoussi, S., Roudies, O.: All about Software Reusability: a Systematic Literature
Review. Journal of Theoretical & Applied Information Technology. 76(1), 64-75
(2015)

16. Yu, Y., Lu, J., Fernandez-Ramil, J., Yuan, P.: Comparing Web Services with other
Software Components. In: Proceedings of IEEE International Conference on Web
Services (ICWS 2007), Salt Lake City, USA (2007)

	1. Introduction
	2. Related Literature
	3. Theoretical Analysis
	4. Experiment
	5. Results and Discussion
	6. Conclusion
	References

