
27TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2018 LUND, SWEDEN)

An Infrastructure Modeling Approach for Multi-Cloud Provisioning

Julio Sandobalin julio.sandobalin@epn.edu.ec
Departamento de Informática y Ciencias de la Computación, Escuela Politécnica Nacional
Quito, Ecuador

Emilio Insfran einsfran@dsic.upv.es
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València
Valencia, Spain

Silvia Abrahao sabrahao@dsic.upv.es
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València
Valencia, Spain

Abstract
Cloud Computing has become the primary model of pay-per-use used by practitioners and
researchers to obtain an infrastructure in a short time. DevOps uses the Infrastructure as Code
approach to infrastructure automation based on software development practices. Moreover, the
DevOps community provides different tools to orchestrate the infrastructure provisioning in a
particular cloud provider. However, the traditional method of using a single cloud provider has
several limitations regarding privacy, security, performance, geography reach, and vendor lock-
in. To mitigate these issues industry and academia are implementing multiple clouds (i.e., multi-
cloud). In previous work, we have introduced ARGON, which is an infrastructure modeling tool
for cloud provisioning that leverages the model-driven engineering (MDE) to provide a uniform,
cohesive, and seamless process to support the DevOps concept. In this paper, we present an
extension of ARGON to support the multi-cloud infrastructure provisioning and propose a
flexible migration process among cloud.
Keywords: Infrastructure Provisioning, Infrastructure as Code, Cloud Computing, Multi-
Cloud, DevOps, Model-Driven Engineering.

1. Introduction
In many of today’s enterprises, one of the most important challenges is how to deliver a new
idea or software artifact to customers as fast as possible. To face this issue, practitioners and
researchers are using a new trend called DevOps (Development & Operations) [6], which is
promoting continuous collaborations between developers and operation staff through a set of
principles, practices, and tools to improve the software delivery time. The cornerstone of
DevOps is the Infrastructure as Code [9], which is an approach to infrastructure automation
based on software development practices that emphasize the use of consistent and repeatable
routines for infrastructure provisioning.

On the other hand, cloud computing has become the primary model of pay-per-use used by
practitioners and researchers to obtain an infrastructure in a short time. According to Brikman
[1] the use of DevOps on cloud-based processes is causing some shifts, such as:
• Instead of managing data centers, many companies are moving to the Cloud, taking

advantage of services such as Amazon Web Services, Microsoft Azure, and Google
Computing Engine.

• Instead of investing heavily in hardware, many operations teams are spending all their time
working on software, using DevOps community tools such as Chef, Puppet, Terraform, and
Docker.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301376329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SANDOBALIN ET AL. AN INFRASTRUCTURE MODELING APPROACH FOR MULTI-CLOUD PROVISIONING

• Instead of racking servers and plugging in network cables, many sysadmins are writing
code.
Cloud-based processes that use DevOps apply the Infrastructure as Code approach and

leverage DevOps community tools for cloud infrastructure provisioning tasks. In this scenario,
developers and operation staff focus their efforts on working on software, i.e., writing code to
define the cloud infrastructure using scripts. As a result, it is possible to write and execute code
(i.e., script) to define, deploy, and update the cloud infrastructure.

Every team, department, or software application of a company have their own requirements
in terms of privacy, security, performance, or geography reach. Similarly, different cloud
providers offer different characteristics. For this reason, companies are starting to use multiple
clouds to satisfy their needs to reach flexibility and agility required by the market. In this
context, industry, and academia have begun to use the term multi-cloud to refers to the use of
multiple clouds without relying on any interoperability functionalities implemented by the
providers [5].

Despite the enormous contribution of DevOps community to bridging the gap regarding
orchestration of infrastructure provisioning for multi-cloud approaches, there still exist issues
to solve, such as:
• Manage script languages of different DevOps community tools for infrastructure

provisioning is a time-consuming and error-prone activity.
• Cloud providers do not offer the same type of infrastructure. Therefore, it is necessary to

define a custom script for infrastructure provisioning for every cloud provider.
• Lack of portability between cloud providers and vendor-lock-in are issues that should be

avoided. DevOps community tools still do not provide a flexible process to support the
migration among cloud providers.
To mitigate the issues above mentioned, in a previous work we have presented ARGON

[12], which is an infrastructure modeling tool for cloud provisioning. ARGON aims to abstract
the complexity to work with different cloud providers through a Domain-Specific Language.
ARGON allows modeling a generic infrastructure model and generates the corresponding
scripts to manage the different DevOps community tools for cloud infrastructure provisioning
(henceforth, DevOps provisioning tools). In this paper, we present an extension of ARGON
which leverages the model-driven engineering (MDE) for supporting the multi-cloud
infrastructure provisioning. The contributions of this work are: (i) a multi-cloud infrastructure
modeling approach, and (ii) a flexible migration process among cloud providers. To
demonstrate the feasibility of our proposal we use cloud providers such as Amazon Web
Services and Microsoft Azure.

The remainder of this paper is structured as follows. Section 2 discusses related works and
identifies the needs of multi-cloud infrastructure provisioning. Section 3 presents a brief
introduction to ARGON. Section 4 presents our approach of multi-cloud infrastructure
provisioning and the flexible migration process among cloud providers. Section 5 presents a
case study which demonstrates the feasibility of our proposal. Finally, Section 6 presents our
conclusion.

2. Related Work
In recent years, there has been much interest, and many approaches and strategies emerged to
support cloud infrastructure provisioning. For instance, Amazon Web Services provides
infrastructure modeling tools such as CloudFormation [16] and OpsWorks [17].
CloudFormation promotes a common language for describing and provisioning all the
infrastructure resources. OpsWorks is a configuration management service that provides
managed instances of DevOps provisioning tools such as Chef and Puppet.

CloudMF [4] is a Cloud Modeling Framework which proposes a Domain-Specific
Language (DSL) for specifying the provisioning and deployment of multi-cloud applications.
The Cloud Provider-Independent Model (CPIM) defines the provisioning and deployment in
an agnostic way. The Cloud Provider-Specific Model (CPSM) uses a model@run-time engine

ISD2018 SWEDEN

to requests cloud providers for a list of available resources and use them to refine the CPIM
into a CPSM.

MUSA [2] is a framework which provides a DevOps approach to develop multi-cloud
applications with desired security Service Level Agreements (SLAs). The MUSA Modeler Tool
relies on a specific modeling language based on CAMEL [11] to describe the application
architecture and the deployment requirements. The MUSA Risk Assessment Tool carries out a
risk assessment process to identify the security Service Level Objectives (SLOs) required by
the multi-cloud application components. Finally, MUSA generates the security Service Level
Agreement (SLA) templates for the components by means of the MUSA SLA Generator tool.

MODAClouds [10] is a European project which delivers an advanced software
engineering model-driven approach and an integrated development environment to
support systems developers in building and deploying applications towards multi-
clouds. MODAClouds allows defining the Quality of Service (QoS) requirements at the
Cloud Independent Model level (CIM). Then, cloud-specific aspects are introduced at
the Cloud-Provider Independent Model level (CPIM). Finally, the Cloud-Provider
Specific Model level (CPSM) specifies a particular provider and service for the
application, run precise QoS analyses and generate proper deployment, monitoring, and
self-adaptation scripts to support the runtime phases.

MORE [3] is a Topology and Orchestration Specification for Cloud Application
which allows modeling nodes (virtual or physical machines) and orchestrates the
deployment of Cloud-based applications. TOSCA uses DevOps community tools such
as Chef and Juju for infrastructure provisioning and cloud-based applications
implementation.

The research works mentioned above focus their efforts on providing support for
the modeling and deployment of multi-cloud applications as well as to manage both the
Provider-Independent Model (PIM) and the Provider-Specific Model (PSM). In
contrast, ARGON provides a Domain-Specific Language (DSL) for modeling the cloud
infrastructure provisioning and a process for managing the complexity of handling the
PIM and the PSM. Moreover, ARGON automatically generates scripts of infrastructure
provisioning for different DevOps provisioning tools.

3. ARGON
ARGON (An infRastructure modellinG tool for clOud provisioNing) [12] is a tool that
leverages Model-Driven Engineering and supports the DevOps ideas.

3.1. Modeling the Cloud Infrastructure Provisioning

There exist several cloud providers that provide different types of infrastructure, for instance,
Amazon Web Services and Microsoft Azure. To mitigate the complexity of working with
different providers and tools, we have developed a Domain-Specific Language (DSL) for
modeling a generic infrastructure model.

Abstract Syntax

ARGON defines a generic Infrastructure Metamodel [12], which abstracts de cloud capacities
such as computing, storage, networking, and elasticity. Fig. 1a shows an excerpt of the
Infrastructure Metamodel.
• Computing capacity allows modeling Virtual Machines with its Security Groups. A

Security Group performs like a firewall. Each Security Group enables connections from/to
Virtual Machines through Inbound and Outbound rules. A Static IP address can be assigned
to a Virtual Machine. A Load Balancer allows distributing the workload among Virtual

SANDOBALIN ET AL. AN INFRASTRUCTURE MODELING APPROACH FOR MULTI-CLOUD PROVISIONING

Machines. A Listener checks connection requests to the Load Balancer. A Health Check
validates that Virtual Machines attached to the Load Balancer are available.

• Storage capacity allows modeling Databases and File servers.
• Elasticity capacity allows modeling a Launch Configuration in which characteristics of a

Virtual Machine are specified. An Auto Scaling Group determines the minimum and the
maximum number of Virtual Machines to be created. Creation or elimination of Virtual
Machines is done based on a Scaling Policy in which is executed an Alarm that monitors a
metric at a time frame.

• Networking capacity allows modeling the associations among metaclasses.

Fig. 1. (a) Infrastructure Metamodel. (b) ARGON: graphical notation.

Concrete Syntax

We use Eugenia [8] to render the Infrastructure Metamodel in a modeling editor such as
Graphical Modeling Framework [18] (GMF).

Eugenia is a tool which facilitates to generate the models needed to implement a GMF
editor in Eclipse from a single annotated Ecore metamodel, i.e., Infrastructure Metamodel.
Eugenia allows automatically create the models required to accomplish the concrete syntax
(i.e., graphical notation) in GMF. Fig. 1b depicts an Infrastructure Model in which a Virtual
Machine is connected to a Security Group. Moreover, Fig. 1b shows the infrastructure elements
palette which should be used to model an Infrastructure Model.

4. Multi-Cloud Infrastructure Modeling
Each cloud provider has a different type of infrastructure making more difficult to define a
generic infrastructure provisioning solution. In this context, we take advantage that each cloud
provider specifies their infrastructure following the same general cloud capacities (i.e.,
computing, storage, networking, and elasticity). Thus, we abstract these capacities at a higher-
level of abstraction to define a generic infrastructure model. In addition, to provide support to
a multi-cloud approach is also necessary to specify all the features of each cloud provider. For
this reason, we have defined a platform-specific metamodel for each cloud providers such as
Amazon Web Servers and Microsoft Azure.

4.1. Multi-Cloud Architecture

ARGON follows the Model-Driven Architecture (MDA) principles. According to MDA, we
define several layers to abstract the complexity of working with different cloud providers and
also different DevOps provisioning tools. Fig. 2 introduces the ARGON architecture at
different abstraction layers. Following we describe each layer in more detail.

ISD2018 SWEDEN

Requirements

It is the most abstract layer of MDA, which represents the context, requirements, and purpose
of the solution without any binding to cloud providers. Fig. 2a shows the layer in which the
criteria to get a cloud, and multi-cloud infrastructure provisioning approaches are captured. As
a result, we have defined the structure and behavior of the respective platform-independent
model (which is unique and generic) and the platform-specific models (one for each cloud
platform) by defining their metamodels.

Fig. 2. Multi-Cloud Architecture

Platform-Independent Model (PIM)

In this layer, we define the behavior and structure of a generic solution to model the cloud
infrastructure by means of an Infrastructure Metamodel (see Fig 1a) regardless of the cloud
providers. Fig. 2b represents a generic Infrastructure Model which abstract the cloud capacities
(i.e., computing, storage, networking, and elasticity) specifying the requirements using the
ARGON's Domain-Specific Language (see Section 3). The Infrastructure Metamodel was
defined using the metamodeling language Ecore [13].

Platform-Specific Model (PSM)

In this layer, we have two cases: (i) PIM to PSM, where an Infrastructure Model is transformed
into an Amazon Web Services Model (based on an Amazon Metamodel) or into a Microsoft
Azure Model (based on an Azure Metamodel); (ii) PSM to PSM, where an Amazon Model is
transformed into an Azure Model (see Fig. 2c). Both Amazon Metamodel and Azure
Metamodel are modeled using the metamodeling language Ecore. The transformation language
for performing the Model-to-Model (M2M) transformations is ATL [7]. To perform the
transformation from an Amazon Model to an Azure Model, we define a transformation module
(e.g., Amazon2Azure.atl) that contains the transformation mapping rules which represent the
correspondences among concepts between the Amazon Metamodel and Azure Metamodel. The
M2M transformation process (see Fig. 2c) begins when the ATL transformation engine takes
an Amazon Model (i.e., source model) and apply a set of transformation rules to obtain the
Azure Model (i.e., target model).

SANDOBALIN ET AL. AN INFRASTRUCTURE MODELING APPROACH FOR MULTI-CLOUD PROVISIONING

It is worth noting that we can interchange the source and target models, meaning that an
Azure model can be transformed into an Amazon model given that the correspondences among
concepts are bidirectional. In addition, another cloud provider model can be used by defining
the respective metamodel and transformation module, e.g., for Google Computing Engine,
Rackspace, etc.

Scripts for Provisioning Tools (Instances)

In this layer, we generate the corresponding scripts for a particular DevOps provisioning tool
(i.e., Ansible, Terraform, Chef, Puppet, etc.) by means of Model-to-Text (M2T)
transformations. The source for this transformation process is a PSM (e.g., Amazon model or
Azure model) and the output is an Instance layer (see Fig. 2). The scripts are used to manage
the orchestration of the infrastructure provisioning in the cloud providers. Each DevOps
provisioning tool uses a specific type of script, for instance, the Ansible tool uses a script called
playbook, the Puppet tool uses a script called manifest, etc. Moreover, the DevOps provisioning
tools use different script languages to define instructions for infrastructure provisioning, for
instance, the Ansible tool uses the YAML language, the Terraform tool uses the HashiCorp
Configuration Language (HCL), etc.

We abstract the specific features of each script language to define transformation rules in
templates, which allow us to generate the specific scripts. These templates are defined
according to the Acceleo [15] tool. The M2T transformation process (see Fig. 2d) takes as input
a cloud provider-specific model (i.e., Amazon model or Azure model) and apply a set of
transformation rules to generate scripts, as output, for a DevOps provisioning tool selected. As
a result, thanks to this layered architecture, we can generate scripts for a variety of DevOps
provisioning tools.

4.2. Cloud providers metamodeling

In order to achieve the multi-cloud modeling, it is necessary to abstract the cloud capacities
(i.e., computing, storage, networking, and elasticity) of each cloud provider. To show the
feasibility of our proposal, we have abstracted the cloud capacities of providers such as Amazon
Web Services and Microsoft Azure.

Amazon Web Services Metamodel

Fig. 3 shows the Amazon Web Services Metamodel, which has a central metaclass called
Service. The Service metaclass has the role of a container for infrastructure elements, and it
allows setting the region in which the infrastructure will be deployed in Amazon Web Services.
Element is an abstract metaclass that has fundamental attributes (e.g., name) which will be
inherited by the rest of infrastructure elements. Tag is a metaclass to put data in the key-value
style. The rest of infrastructure elements are explained according to cloud capacities.

In terms of computing capacity, we can model Virtual Machines with its Security Groups.
A Security Group performs like a firewall. Each Security Group allows connections from/to
Virtual Machines through Inbound and Outbound rules. An Elastic IP address can be assigned
to a Virtual Machine. A Volume which is like an external disk can be attached to a Virtual
Machine. A Load Balancer allows distributing the workload among Virtual Machines. A
Listener checks the connection requests to the Load Balancer. A Heath Check validates that
Virtual Machines attached to Load Balancer are available. A Zone allows distributing Virtual
Machines across multiple availability zones, and one instance fails. Cloud Profile is an abstract
metaclass which provides general attributes corresponding to Virtual Machines of others cloud
providers. However, an Azure Profile metaclass provides specific attributes corresponding to
Virtual Machines from Microsoft Azure. To provide support for others cloud providers should
be added new metaclasses which inherit from Cloud Profile.

In terms of storage capacity, we can model Databases and Buckets.

ISD2018 SWEDEN

In terms of elasticity capacity, we can model a Launch Configuration in which
characteristics of a Virtual Machine are specified. An Auto Scaling Group determines the
minimum and the maximum number of Virtual Machines to be created. Creation or elimination
of Virtual Machines is done based on a Scaling Policy in which is executed an Alarm that
monitors a metric at a time frame.

Finally, networking capacity is modeled through associations among metaclasses.

Fig. 3. Amazon Web Services Metamodel

Fig. 4 shows the Microsoft Azure Metamodel, which has a central metaclass called
Resource Group. The Resource Group metaclass has the role of a container for infrastructure
elements, and it allows setting the location in which the infrastructure will be deployed in
Microsoft Azure. Moreover, Resource Group is one more element of the infrastructure. Element
is an abstract metaclass that has fundamental attributes (e.g., name) which will be inherited by
the rest of infrastructure elements. Tag is a metaclass to put data in the key-value style. The rest
of infrastructure elements are explained according to cloud capacities.

Fig. 4. Microsoft Azure Metamodel.

Regarding computing capacity, we can model Virtual Machines with its Security Groups.
A Security Group performs like a firewall. Each Security Group allows connections from/to
Virtual Machines through Inbound and Outbound rules. A Public IP address can be assigned to
a Virtual Machine. A Disk which is like an external disk can be attached to a Virtual Machine.
A Load Balancer allows distributing the workload among Virtual Machines. A Load Balancing
Rule checks the connection requests to the Load Balancer. A Heath Probe validates that Virtual
Machines attached to Load Balancer are available. An Availability Set ensures that the Virtual
Machines are distributed across multiple isolates hardware nodes in a cluster.

Regarding storage capacity, we can model Databases and Storages.
Regarding elasticity capacity, we can model a Scale Set in which characteristics of a Virtual

Machine are specified and should be set the minimum and the maximum number of Virtual

SANDOBALIN ET AL. AN INFRASTRUCTURE MODELING APPROACH FOR MULTI-CLOUD PROVISIONING

Machines to be created. Creation or elimination of Virtual Machines is done based on a Scale
Condition in which is executed a Scale Rule that monitors a metric at a time frame.

Regarding networking capacity, we should model a Virtual Network which enables Azure
resources to communicate with each other in a network securely. A Virtual Network can be
segmented into multiples Subnets. Finally, a Network Interface allows a Virtual Machine to
interact with others resources in a Virtual Network.

Multi-cloud Infrastructure Provisioning Modeling

In order to illustrate the feasibility of our proposal, first, we have modeled an Infrastructure
Model (see Fig. 5) of a Virtual Machine. Next, the Infrastructure Model (PIM) will be
transformed into an Amazon Model (PSM). Finally, the Amazon Model will be migrated
toward an Azure Model through Model-to-Model (M2M) transformations.

Fig. 5. Infrastructure Model of a virtual machine.

Fig. 5 shows an Infrastructure Model of a virtual machine modeled by ARGON. In this case,
by using M2M transformations, the Infrastructure Model is specified as an Amazon Model
(PIM to PSM, see Fig. 2). The Infrastructure Model has a webserver connected to a security-
group, which performs like a firewall. The security-group has an outbound rule (all) which
enables all outgoing connections of the webserver. Moreover, the security-group has two
inbound rules which enable the ingoing connections to HTTP protocol and Remote Desktop
Connection (RDC) for a Windows Server. The webserver has connected an external-disk and
an elastic-ip.

The webserver (see Fig. 5) has settings corresponding to a virtual machine from Amazon
Web Services, however, to add features for a virtual machine from Azure platform (such as
publisher, offer, and SKU) is necessary to use an azure-profile element.

Fig. 6 shows specifications of M2M transformation to migrate a virtual machine from
Amazon Web Services to Microsoft Azure. Following are explained changes:
• Service2Network and Service2ResourceGroup specify that for each Service container in the

Amazon Model should be created a Resource Group container and a Virtual Network with
its Subnet in the Azure Model.

• Tag2Tag specifies that for each Tag found in an element in the Amazon Model should
create the same Tag in the corresponding element in the Azure Model.

• SecurityGroup2SecurityGroup specifies that for each Security Group with its Inbound rules
and Outbound rules in the Amazon Model should be created the corresponding Security
Group with its Inbound rules and Outbound rules in the Azure Model.

• Volume2Disk specifies that for each Volume attached to a virtual machine in the Amazon
Model should be created the corresponding Disk connected to the virtual machine in the
Azure Model.

• VirtualMachine2VirtualMachine specifies that for each Virtual Machine in the Amazon
Model should be created the corresponding Virtual Machine with its Network Interface in
the Azure Model.

ISD2018 SWEDEN

• ElasticIP2PublicIP specifies that for each Elastic IP assigned to a virtual machine in the
Amazon Model should create the corresponding Public IP assigned to the virtual machine
in the Azure Model.

Fig. 6. Specification of M2M transformations for a Virtual Machine.

Fig. 7 presents in a hierarchical tree view the matching among infrastructure elements of
the Amazon Model (see Fig. 7a) and the Azure Model (see Fig. 7b). In this context, the
infrastructure Service called virtual-machine is a container in the Amazon Model (group A),
which is matched to a Resource Group that is a container and also a Virtual Network with its
Subnet in the Azure Model (group A’). The Virtual Machine called webserver, and its Azure
Profile in the Amazon Model (group B) are matching to Virtual Machine and its Network
Interface in the Azure Model (group B’). The rest of the infrastructure elements correspond one
by one in the matching between the Amazon Model and the Azure Model.

Fig. 7. Matching of elements between virtual machine models.

5. Case Study Description
In order to illustrate our approach, we refer to the case of a small company called MODAFIN
(adapted and extended from [9]). MODAFIN is specialized in IT applications for financial
services. Its main product line is a proprietary solution for stock market operations, cash
administration, and lending management. MODAFIN most profitable activities are software
customization and life-cycle management for this product line. Customization involves the
development of custom modules to accommodate new functional requirements.

The consultancy team has been working for a long time on a software application, which
will be deployed on Linux Servers in Amazon Web Services. However, the consultancy team
is worried about issues such as vendor lock-in, security, and application performance. For this
reason, the consultancy team has decided to use multiple clouds (i.e., multi-cloud) to deploy
the software application. Consequently, Microsoft Azure has been selected as an alternative
platform to deploy the application.

The infrastructure requirements to deploy the software application are the following:
Req. 1: A load balancer should distribute the workload between two virtual machines. The

load balancer should check the connection requests to port 80 and validate that all virtual
machine attached are available.

SANDOBALIN ET AL. AN INFRASTRUCTURE MODELING APPROACH FOR MULTI-CLOUD PROVISIONING

Req. 2: A firewall should enable ingoing connections only for the SSH protocol (port 22)
and the HTTP protocol (port 80). The SSH protocol allows establishing a connection among
virtual machines. The HTTP protocol allows establishing connections with the software
application. Moreover, all outgoing connections should be enabled.

Req. 3: For security reason, connections to servers that are outside of cloud provider should
not be enabled to virtual machines attached to the load balancer. In this case, a jumpbox server
should be created to secure management of the virtual machines connected to the load balancer.
The jumpbox server enables connections between servers that are outside the cloud provider
and virtual machines attached to the load balancer.

The multi-cloud requirements to deploy the infrastructure are the following:
Req. 4: The proposed solution should support a deployment process in multi-cloud. Cloud

providers selected are Amazon Web Services and Microsoft Azure.
Req. 5: The proposed solution should provide a flexible migrate process for cloud

providers. In this case from Amazon Web Service to Microsoft Azure.
Following, we explain how to provide a solution for the infrastructure requirements:
Solution to Req. 1: Fig. 8 shows an Infrastructure Model, which has a load-balancer that

distribute the workload between two virtual machines. Fig. 9a shows the webserver properties
in where the count property has the value 2. It means that two virtual machines will be deployed
and attached to the load-balancer. Moreover, the rule element is a listener which checks the
connection requests to the load-balancer through Port 80. Finally, the health-probe element
validates that virtual machines attached to load-balancer are available.

Solution Req. 2: Fig. 8 shows a security-group which performs like a firewall. It has an
outbound rule called all, which enable all outgoing connections of virtual machines. Moreover,
the security-group has two inbound rules (i) SSH rule (port 22) allows establishing connections
among virtual machine, and (ii) HTTP rule (port 80) allows establishing connections with the
software application.

Solution Req. 3: Fig. 8 shows a jumpbox server, which has connected a public IP
(jumpbox-ip) to enable connections with servers that are outside the cloud provider. Moreover,
the jumpbox server performs like a bridge allowing connections between virtual machines
attached to the load-balancer and servers located outside the cloud provider.

Fig. 8. Load balancer with a jumpbox server.

Following, we explain how to provide a solution for the multi-cloud requirements:
Solution Req. 4: ARGON provides support for modeling a platform-independent model

(i.e., Infrastructure Model) and through model-to-model transformation obtain a platform-
specific model (i.e., Amazon Model). However, because cloud providers do not offer the same
type of infrastructure is necessary to provide extra information such as virtual machine
properties. On the one hand, the jumpbox server provides information for Amazon Web
Services, for instance, image property (see Fig. 9a) has the value ami-dc2d10a6 that means an
image of a Linux Ubuntu Server 16.04-LTS. On the other hand, jumpbox-profile gives
information for Microsoft Azure, for instance, offer, publisher, and SKU properties (see Fig.
9b) have the values Ubuntu Server, Canonical, and 16.04-LTS respectively. As a result, the
Infrastructure Model (see Fig. 8) is capable of being deployed in multi-cloud.

ISD2018 SWEDEN

Fig. 9. Virtual machine and cloud profile properties.

Solution Req. 5: ARGON gives support in a migration process based on model-driven
techniques. Fig. 10 presents in a hierarchical tree view the matching among infrastructure
elements of the Amazon Model (see Fig. 10a) and the Azure Model (see Fig. 10b). Following,
we explain the main model-to-model transformations: (i) the infrastructure Service called load-
balancer is a container in the Amazon Model (group A), which is matched to Resource Group
container, and a Virtual Network with its Subnet in the Azure Model (group A’). (ii) the Load
Balancer, Listener, and Health Check in the Amazon Model (group B) are matching with Load
Balancer, Load Balancing Rule, and Heath Probe in the Azure Model (group B’). Also, it is
necessary assigned a Public IP address for the Load Balancer to enable connection requests
outside of the Azure platform. (iii) the Virtual Machines called webserver and its Azure Profiles
in the Amazon Model (group C) are matching with Virtual Machines and its Network Interfaces
in the Azure Model (group C’). Also, it is necessary to provide an Availability Zone to the
Virtual Machines in the Azure platform to isolate hardware nodes in a cluster. (iv) the Virtual
Machine called jumpbox and its Azure Profile in the Amazon Model (group D) are matching
with a Virtual Machine and its Network Interface in the Azure Model (group D’). (v) the rest
of the infrastructure elements are matching one by one between the Amazon Model and the
Azure Model.

Fig. 10. Elements are matched between load balancer models.

6. Conclusion
In this paper, we have presented an extension of ARGON to demonstrate the feasibility of

a multi-cloud infrastructure modeling and a flexible migration approach. The purpose is to
provide a novel approach to managing the infrastructure as code in multiple clouds based on
model-based techniques. Finally, we believe that our work is aligned with current trends in
cloud development and in particular to DevOps as a way to abstract and automate the cloud
provisioning of resources given the increasing demand of new applications and the need to
reduce the time-to-market.

As future work, we plan to run experiments with practitioners and students with experience
in provisioning resources in the cloud to identify new needs and to improve the user experience
when dealing with multi-cloud infrastructure provisioning.

SANDOBALIN ET AL. AN INFRASTRUCTURE MODELING APPROACH FOR MULTI-CLOUD PROVISIONING

Acknowledgements

This research is supported by the MINECO within the Value@Cloud (TIN2013-46300-R) and
Adapt@Cloud (TIN2017-84550-R) projects, and SENESCYT.

References
1. Brikman, Y.: Terraform: Up and Running. O’Reilly Media (2017)

2. Casola, V., De Benedictis, A., Rak, M., Villano, U., Rios, E., Rego, A., Capone, G.:
MUSA deployer: Deployment of multi-cloud applications. In: Proceedings - IEEE 26th
Int. Conf. on Enabling Technologies, WETICE. pp. 107–112. IEEE (2017)

3. Chen, W., Liang, C., Wan, Y., Gao, C., Wu, G., Wei, J., Huang, T.: MORE: A model-
driven operation service for cloud-based IT systems. In: Proceedings - IEEE 13th
International Conference on Services Computing, SCC. pp. 633–640. IEEE (2016)

4. Ferry, N., Rossini, A.: CloudMF: Model-Driven Management of Multi-Cloud
Applications. ACM Trans. Internet Technol. 18 (2), 16–24 (2018)

5. Grozev, N., Buyya, R.: Multi-Cloud Provisioning and Load Distribution for Three-Tier
Applications. ACM Trans. Auton. Adapt. Syst. (2014)

6. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley Professional (2010)

7. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci.
Comput. Program. 72 (1–2), 31–39 (2008)

8. Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards
disciplined and automated development of GMF-based graphical model editors. Softw.
Syst. Model. 16 (1), 229–255 (2015)

9. Morris, K.: Infrastructure As Code: Managing Servers in the Cloud. O’Reilly (2016)

10. Nitto, E. Di, Matthews, P., Petcu, D., Solberg, A.: Model-Driven Development and
Operation of Multi-Cloud Applications. Springer Inter. Publishing, Cham (2017)

11. Rossini, A.: Cloud Application Modelling and Execution Language (CAMEL) and the
PaaSage Workflow. In: Proceedings - European Conference on Service-Oriented and
Cloud Computing, ESOCC. pp. 437–439. Springer Verlag, Italy (2016)

12. Sandobalin, J., Insfran, E., Abrahao, S.: An Infrastructure Modelling Tool for Cloud
Provisioning. In: Proceedings - IEEE 14th International Conference on Services
Computing, SCC. pp. 354–361. , Hawai (2017)

13. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. (2008)

14. Wettinger, J., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining DevOps
automation for Cloud applications using TOSCA as standardized metamodel. Futur.
Gener. Comput. Syst. Volume 56 317–332 (2015)

15. Acceleo, https://www.eclipse.org/acceleo/, Accessed: April 22, 2018

16. CloudFormation, https://aws.amazon.com/cloudformation/, Accessed: April 21, 2018

17. OpsWorks, https://aws.amazon.com/opsworks/, Accessed: April 21, 2018

18. Graphical Modeling Framework (GMF) Tooling, https://www.eclipse.org/gmf-tooling/,
Accessed: April 22, 2018

	An Infrastructure Modeling Approach for Multi-Cloud Provisioning
	1. Introduction
	2. Related Work
	3. ARGON
	3.1. Modeling the Cloud Infrastructure Provisioning
	Abstract Syntax
	Concrete Syntax

	4. Multi-Cloud Infrastructure Modeling
	4.1. Multi-Cloud Architecture
	Requirements
	Platform-Independent Model (PIM)
	Platform-Specific Model (PSM)
	Scripts for Provisioning Tools (Instances)

	4.2. Cloud providers metamodeling
	Amazon Web Services Metamodel
	Multi-cloud Infrastructure Provisioning Modeling

	5. Case Study Description
	6. Conclusion
	Acknowledgements

	References

