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Abstract 
Cloud Computing has become the primary model of pay-per-use used by practitioners and 
researchers to obtain an infrastructure in a short time. DevOps uses the Infrastructure as Code 
approach to infrastructure automation based on software development practices. Moreover, the 
DevOps community provides different tools to orchestrate the infrastructure provisioning in a 
particular cloud provider. However, the traditional method of using a single cloud provider has 
several limitations regarding privacy, security, performance, geography reach, and vendor lock-
in. To mitigate these issues industry and academia are implementing multiple clouds (i.e., multi-
cloud). In previous work, we have introduced ARGON, which is an infrastructure modeling tool 
for cloud provisioning that leverages the model-driven engineering (MDE) to provide a uniform, 
cohesive, and seamless process to support the DevOps concept. In this paper, we present an 
extension of ARGON to support the multi-cloud infrastructure provisioning and propose a 
flexible migration process among cloud. 
Keywords: Infrastructure Provisioning, Infrastructure as Code, Cloud Computing, Multi-
Cloud, DevOps, Model-Driven Engineering. 

1. Introduction  
In many of today’s enterprises, one of the most important challenges is how to deliver a new 
idea or software artifact to customers as fast as possible. To face this issue, practitioners and 
researchers are using a new trend called DevOps (Development & Operations) [6], which is 
promoting continuous collaborations between developers and operation staff through a set of 
principles, practices, and tools to improve the software delivery time. The cornerstone of 
DevOps is the Infrastructure as Code [9], which is an approach to infrastructure automation 
based on software development practices that emphasize the use of consistent and repeatable 
routines for infrastructure provisioning.   

On the other hand, cloud computing has become the primary model of pay-per-use used by 
practitioners and researchers to obtain an infrastructure in a short time. According to Brikman 
[1] the use of DevOps on cloud-based processes is causing some shifts, such as: 
• Instead of managing data centers, many companies are moving to the Cloud, taking 

advantage of services such as Amazon Web Services, Microsoft Azure, and Google 
Computing Engine.  

• Instead of investing heavily in hardware, many operations teams are spending all their time 
working on software, using DevOps community tools such as Chef, Puppet, Terraform, and 
Docker.  
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• Instead of racking servers and plugging in network cables, many sysadmins are writing 
code. 
Cloud-based processes that use DevOps apply the Infrastructure as Code approach and 

leverage DevOps community tools for cloud infrastructure provisioning tasks. In this scenario, 
developers and operation staff focus their efforts on working on software, i.e., writing code to 
define the cloud infrastructure using scripts. As a result, it is possible to write and execute code 
(i.e., script) to define, deploy, and update the cloud infrastructure. 

Every team, department, or software application of a company have their own requirements 
in terms of privacy, security, performance, or geography reach. Similarly, different cloud 
providers offer different characteristics. For this reason, companies are starting to use multiple 
clouds to satisfy their needs to reach flexibility and agility required by the market. In this 
context, industry, and academia have begun to use the term multi-cloud to refers to the use of 
multiple clouds without relying on any interoperability functionalities implemented by the 
providers [5]. 

Despite the enormous contribution of DevOps community to bridging the gap regarding 
orchestration of infrastructure provisioning for multi-cloud approaches, there still exist issues 
to solve, such as:  
• Manage script languages of different DevOps community tools for infrastructure 

provisioning is a time-consuming and error-prone activity. 
• Cloud providers do not offer the same type of infrastructure. Therefore, it is necessary to 

define a custom script for infrastructure provisioning for every cloud provider. 
• Lack of portability between cloud providers and vendor-lock-in are issues that should be 

avoided. DevOps community tools still do not provide a flexible process to support the 
migration among cloud providers. 
To mitigate the issues above mentioned, in a previous work we have presented ARGON 

[12], which is an infrastructure modeling tool for cloud provisioning. ARGON aims to abstract 
the complexity to work with different cloud providers through a Domain-Specific Language. 
ARGON allows modeling a generic infrastructure model and generates the corresponding 
scripts to manage the different DevOps community tools for cloud infrastructure provisioning 
(henceforth, DevOps provisioning tools). In this paper, we present an extension of ARGON 
which leverages the model-driven engineering (MDE) for supporting the multi-cloud 
infrastructure provisioning. The contributions of this work are: (i) a multi-cloud infrastructure 
modeling approach, and (ii) a flexible migration process among cloud providers. To 
demonstrate the feasibility of our proposal we use cloud providers such as Amazon Web 
Services and Microsoft Azure. 

The remainder of this paper is structured as follows. Section 2 discusses related works and 
identifies the needs of multi-cloud infrastructure provisioning. Section 3 presents a brief 
introduction to ARGON. Section 4 presents our approach of multi-cloud infrastructure 
provisioning and the flexible migration process among cloud providers. Section 5 presents a 
case study which demonstrates the feasibility of our proposal. Finally, Section 6 presents our 
conclusion. 

2. Related Work 
In recent years, there has been much interest, and many approaches and strategies emerged to 
support cloud infrastructure provisioning. For instance, Amazon Web Services provides 
infrastructure modeling tools such as CloudFormation [16] and OpsWorks [17]. 
CloudFormation promotes a common language for describing and provisioning all the 
infrastructure resources. OpsWorks is a configuration management service that provides 
managed instances of DevOps provisioning tools such as Chef and Puppet. 

CloudMF [4] is a Cloud Modeling Framework which proposes a Domain-Specific 
Language (DSL) for specifying the provisioning and deployment of multi-cloud applications. 
The Cloud Provider-Independent Model (CPIM) defines the provisioning and deployment in 
an agnostic way. The Cloud Provider-Specific Model (CPSM) uses a model@run-time engine 
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to requests cloud providers for a list of available resources and use them to refine the CPIM 
into a CPSM. 

MUSA [2] is a framework which provides a DevOps approach to develop multi-cloud 
applications with desired security Service Level Agreements (SLAs). The MUSA Modeler Tool 
relies on a specific modeling language based on CAMEL [11] to describe the application 
architecture and the deployment requirements. The MUSA Risk Assessment Tool carries out a 
risk assessment process to identify the security Service Level Objectives (SLOs) required by 
the multi-cloud application components. Finally, MUSA generates the security Service Level 
Agreement (SLA) templates for the components by means of the MUSA SLA Generator tool. 

MODAClouds [10] is a European project which delivers an advanced software 
engineering model-driven approach and an integrated development environment to 
support systems developers in building and deploying applications towards multi-
clouds. MODAClouds allows defining the Quality of Service (QoS) requirements at the 
Cloud Independent Model level (CIM). Then, cloud-specific aspects are introduced at 
the Cloud-Provider Independent Model level (CPIM). Finally, the Cloud-Provider 
Specific Model level (CPSM) specifies a particular provider and service for the 
application, run precise QoS analyses and generate proper deployment, monitoring, and 
self-adaptation scripts to support the runtime phases. 

MORE [3] is a Topology and Orchestration Specification for Cloud Application 
which allows modeling nodes (virtual or physical machines) and orchestrates the 
deployment of Cloud-based applications. TOSCA uses DevOps community tools such 
as Chef and Juju for infrastructure provisioning and cloud-based applications 
implementation. 

The research works mentioned above focus their efforts on providing support for 
the modeling and deployment of multi-cloud applications as well as to manage both the 
Provider-Independent Model (PIM) and the Provider-Specific Model (PSM). In 
contrast, ARGON provides a Domain-Specific Language (DSL) for modeling the cloud 
infrastructure provisioning and a process for managing the complexity of handling the 
PIM and the PSM. Moreover, ARGON automatically generates scripts of infrastructure 
provisioning for different DevOps provisioning tools. 

3. ARGON 
ARGON (An infRastructure modellinG tool for clOud provisioNing) [12] is a tool that 
leverages Model-Driven Engineering and supports the DevOps ideas. 

3.1. Modeling the Cloud Infrastructure Provisioning 

There exist several cloud providers that provide different types of infrastructure, for instance, 
Amazon Web Services and Microsoft Azure. To mitigate the complexity of working with 
different providers and tools, we have developed a Domain-Specific Language (DSL) for 
modeling a generic infrastructure model. 

Abstract Syntax 

ARGON defines a generic Infrastructure Metamodel [12], which abstracts de cloud capacities 
such as computing, storage, networking, and elasticity. Fig. 1a shows an excerpt of the 
Infrastructure Metamodel. 
• Computing capacity allows modeling Virtual Machines with its Security Groups. A 

Security Group performs like a firewall. Each Security Group enables connections from/to 
Virtual Machines through Inbound and Outbound rules. A Static IP address can be assigned 
to a Virtual Machine. A Load Balancer allows distributing the workload among Virtual 
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Machines. A Listener checks connection requests to the Load Balancer. A Health Check 
validates that Virtual Machines attached to the Load Balancer are available.  

• Storage capacity allows modeling Databases and File servers. 
• Elasticity capacity allows modeling a Launch Configuration in which characteristics of a 

Virtual Machine are specified. An Auto Scaling Group determines the minimum and the 
maximum number of Virtual Machines to be created. Creation or elimination of Virtual 
Machines is done based on a Scaling Policy in which is executed an Alarm that monitors a 
metric at a time frame. 

• Networking capacity allows modeling the associations among metaclasses. 

 
Fig. 1. (a) Infrastructure Metamodel. (b) ARGON: graphical notation. 

Concrete Syntax 

We use Eugenia [8] to render the Infrastructure Metamodel in a modeling editor such as 
Graphical Modeling Framework [18] (GMF).  

Eugenia is a tool which facilitates to generate the models needed to implement a GMF 
editor in Eclipse from a single annotated Ecore metamodel, i.e., Infrastructure Metamodel. 
Eugenia allows automatically create the models required to accomplish the concrete syntax 
(i.e., graphical notation) in GMF. Fig. 1b depicts an Infrastructure Model in which a Virtual 
Machine is connected to a Security Group. Moreover, Fig. 1b shows the infrastructure elements 
palette which should be used to model an Infrastructure Model. 

4. Multi-Cloud Infrastructure Modeling 
Each cloud provider has a different type of infrastructure making more difficult to define a 
generic infrastructure provisioning solution. In this context, we take advantage that each cloud 
provider specifies their infrastructure following the same general cloud capacities (i.e., 
computing, storage, networking, and elasticity). Thus, we abstract these capacities at a higher-
level of abstraction to define a generic infrastructure model. In addition, to provide support to 
a multi-cloud approach is also necessary to specify all the features of each cloud provider. For 
this reason, we have defined a platform-specific metamodel for each cloud providers such as 
Amazon Web Servers and Microsoft Azure. 

4.1. Multi-Cloud Architecture 

ARGON follows the Model-Driven Architecture (MDA) principles. According to MDA, we 
define several layers to abstract the complexity of working with different cloud providers and 
also different DevOps provisioning tools. Fig. 2 introduces the ARGON architecture at 
different abstraction layers. Following we describe each layer in more detail. 
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Requirements 

It is the most abstract layer of MDA, which represents the context, requirements, and purpose 
of the solution without any binding to cloud providers. Fig. 2a shows the layer in which the 
criteria to get a cloud, and multi-cloud infrastructure provisioning approaches are captured. As 
a result, we have defined the structure and behavior of the respective platform-independent 
model (which is unique and generic) and the platform-specific models (one for each cloud 
platform) by defining their metamodels. 

 
Fig. 2. Multi-Cloud Architecture 

Platform-Independent Model (PIM) 

In this layer, we define the behavior and structure of a generic solution to model the cloud 
infrastructure by means of an Infrastructure Metamodel (see Fig 1a) regardless of the cloud 
providers. Fig. 2b represents a generic Infrastructure Model which abstract the cloud capacities 
(i.e., computing, storage, networking, and elasticity) specifying the requirements using the 
ARGON's Domain-Specific Language (see Section 3). The Infrastructure Metamodel was 
defined using the metamodeling language Ecore [13]. 

Platform-Specific Model (PSM) 

In this layer, we have two cases: (i) PIM to PSM, where an Infrastructure Model is transformed 
into an Amazon Web Services Model (based on an Amazon Metamodel) or into a Microsoft 
Azure Model (based on an Azure Metamodel); (ii) PSM to PSM, where an Amazon Model is 
transformed into an Azure Model (see Fig. 2c). Both Amazon Metamodel and Azure 
Metamodel are modeled using the metamodeling language Ecore. The transformation language 
for performing the Model-to-Model (M2M) transformations is ATL [7]. To perform the 
transformation from an Amazon Model to an Azure Model, we define a transformation module 
(e.g., Amazon2Azure.atl) that contains the transformation mapping rules which represent the 
correspondences among concepts between the Amazon Metamodel and Azure Metamodel. The 
M2M transformation process (see Fig. 2c) begins when the ATL transformation engine takes 
an Amazon Model (i.e., source model) and apply a set of transformation rules to obtain the 
Azure Model (i.e., target model). 
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It is worth noting that we can interchange the source and target models, meaning that an 
Azure model can be transformed into an Amazon model given that the correspondences among 
concepts are bidirectional. In addition, another cloud provider model can be used by defining 
the respective metamodel and transformation module, e.g., for Google Computing Engine, 
Rackspace, etc. 

Scripts for Provisioning Tools (Instances) 

In this layer, we generate the corresponding scripts for a particular DevOps provisioning tool 
(i.e., Ansible, Terraform, Chef, Puppet, etc.) by means of Model-to-Text (M2T) 
transformations. The source for this transformation process is a PSM (e.g., Amazon model or 
Azure model) and the output is an Instance layer (see Fig. 2). The scripts are used to manage 
the orchestration of the infrastructure provisioning in the cloud providers. Each DevOps 
provisioning tool uses a specific type of script, for instance, the Ansible tool uses a script called 
playbook, the Puppet tool uses a script called manifest, etc. Moreover, the DevOps provisioning 
tools use different script languages to define instructions for infrastructure provisioning, for 
instance, the Ansible tool uses the YAML language, the Terraform tool uses the HashiCorp 
Configuration Language (HCL), etc.  

We abstract the specific features of each script language to define transformation rules in 
templates, which allow us to generate the specific scripts. These templates are defined 
according to the Acceleo [15] tool. The M2T transformation process (see Fig. 2d) takes as input 
a cloud provider-specific model (i.e., Amazon model or Azure model) and apply a set of 
transformation rules to generate scripts, as output, for a DevOps provisioning tool selected. As 
a result, thanks to this layered architecture, we can generate scripts for a variety of DevOps 
provisioning tools. 

4.2. Cloud providers metamodeling 

In order to achieve the multi-cloud modeling, it is necessary to abstract the cloud capacities 
(i.e., computing, storage, networking, and elasticity) of each cloud provider. To show the 
feasibility of our proposal, we have abstracted the cloud capacities of providers such as Amazon 
Web Services and Microsoft Azure. 

Amazon Web Services Metamodel 

Fig. 3 shows the Amazon Web Services Metamodel, which has a central metaclass called 
Service. The Service metaclass has the role of a container for infrastructure elements, and it 
allows setting the region in which the infrastructure will be deployed in Amazon Web Services. 
Element is an abstract metaclass that has fundamental attributes (e.g., name) which will be 
inherited by the rest of infrastructure elements. Tag is a metaclass to put data in the key-value 
style. The rest of infrastructure elements are explained according to cloud capacities. 

In terms of computing capacity, we can model Virtual Machines with its Security Groups. 
A Security Group performs like a firewall. Each Security Group allows connections from/to 
Virtual Machines through Inbound and Outbound rules. An Elastic IP address can be assigned 
to a Virtual Machine. A Volume which is like an external disk can be attached to a Virtual 
Machine. A Load Balancer allows distributing the workload among Virtual Machines. A 
Listener checks the connection requests to the Load Balancer. A Heath Check validates that 
Virtual Machines attached to Load Balancer are available. A Zone allows distributing Virtual 
Machines across multiple availability zones, and one instance fails. Cloud Profile is an abstract 
metaclass which provides general attributes corresponding to Virtual Machines of others cloud 
providers. However, an Azure Profile metaclass provides specific attributes corresponding to 
Virtual Machines from Microsoft Azure. To provide support for others cloud providers should 
be added new metaclasses which inherit from Cloud Profile. 

In terms of storage capacity, we can model Databases and Buckets. 
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In terms of elasticity capacity, we can model a Launch Configuration in which 
characteristics of a Virtual Machine are specified. An Auto Scaling Group determines the 
minimum and the maximum number of Virtual Machines to be created. Creation or elimination 
of Virtual Machines is done based on a Scaling Policy in which is executed an Alarm that 
monitors a metric at a time frame. 

Finally, networking capacity is modeled through associations among metaclasses. 

 
Fig. 3. Amazon Web Services Metamodel 

Fig. 4 shows the Microsoft Azure Metamodel, which has a central metaclass called 
Resource Group. The Resource Group metaclass has the role of a container for infrastructure 
elements, and it allows setting the location in which the infrastructure will be deployed in 
Microsoft Azure. Moreover, Resource Group is one more element of the infrastructure. Element 
is an abstract metaclass that has fundamental attributes (e.g., name) which will be inherited by 
the rest of infrastructure elements. Tag is a metaclass to put data in the key-value style. The rest 
of infrastructure elements are explained according to cloud capacities. 

 
Fig. 4. Microsoft Azure Metamodel. 

Regarding computing capacity, we can model Virtual Machines with its Security Groups. 
A Security Group performs like a firewall. Each Security Group allows connections from/to 
Virtual Machines through Inbound and Outbound rules. A Public IP address can be assigned to 
a Virtual Machine. A Disk which is like an external disk can be attached to a Virtual Machine. 
A Load Balancer allows distributing the workload among Virtual Machines. A Load Balancing 
Rule checks the connection requests to the Load Balancer. A Heath Probe validates that Virtual 
Machines attached to Load Balancer are available. An Availability Set ensures that the Virtual 
Machines are distributed across multiple isolates hardware nodes in a cluster. 

Regarding storage capacity, we can model Databases and Storages. 
Regarding elasticity capacity, we can model a Scale Set in which characteristics of a Virtual 

Machine are specified and should be set the minimum and the maximum number of Virtual 
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Machines to be created. Creation or elimination of Virtual Machines is done based on a Scale 
Condition in which is executed a Scale Rule that monitors a metric at a time frame. 

Regarding networking capacity, we should model a Virtual Network which enables Azure 
resources to communicate with each other in a network securely. A Virtual Network can be 
segmented into multiples Subnets. Finally, a Network Interface allows a Virtual Machine to 
interact with others resources in a Virtual Network. 

Multi-cloud Infrastructure Provisioning Modeling 

In order to illustrate the feasibility of our proposal, first, we have modeled an Infrastructure 
Model (see Fig. 5) of a Virtual Machine. Next, the Infrastructure Model (PIM) will be 
transformed into an Amazon Model (PSM). Finally, the Amazon Model will be migrated 
toward an Azure Model through Model-to-Model (M2M) transformations. 

 
Fig. 5. Infrastructure Model of a virtual machine. 

Fig. 5 shows an Infrastructure Model of a virtual machine modeled by ARGON. In this case, 
by using M2M transformations, the Infrastructure Model is specified as an Amazon Model 
(PIM to PSM, see Fig. 2). The Infrastructure Model has a webserver connected to a security-
group, which performs like a firewall. The security-group has an outbound rule (all) which 
enables all outgoing connections of the webserver. Moreover, the security-group has two 
inbound rules which enable the ingoing connections to HTTP protocol and Remote Desktop 
Connection (RDC) for a Windows Server. The webserver has connected an external-disk and 
an elastic-ip.  

The webserver (see Fig. 5) has settings corresponding to a virtual machine from Amazon 
Web Services, however, to add features for a virtual machine from Azure platform (such as 
publisher, offer, and SKU) is necessary to use an azure-profile element. 

Fig. 6 shows specifications of M2M transformation to migrate a virtual machine from 
Amazon Web Services to Microsoft Azure. Following are explained changes: 
• Service2Network and Service2ResourceGroup specify that for each Service container in the 

Amazon Model should be created a Resource Group container and a Virtual Network with 
its Subnet in the Azure Model. 

• Tag2Tag specifies that for each Tag found in an element in the Amazon Model should 
create the same Tag in the corresponding element in the Azure Model. 

• SecurityGroup2SecurityGroup specifies that for each Security Group with its Inbound rules 
and Outbound rules in the Amazon Model should be created the corresponding Security 
Group with its Inbound rules and Outbound rules in the Azure Model. 

• Volume2Disk specifies that for each Volume attached to a virtual machine in the Amazon 
Model should be created the corresponding Disk connected to the virtual machine in the 
Azure Model. 

• VirtualMachine2VirtualMachine specifies that for each Virtual Machine in the Amazon 
Model should be created the corresponding Virtual Machine with its Network Interface in 
the Azure Model.  
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• ElasticIP2PublicIP specifies that for each Elastic IP assigned to a virtual machine in the 
Amazon Model should create the corresponding Public IP assigned to the virtual machine 
in the Azure Model. 

 
Fig. 6. Specification of M2M transformations for a Virtual Machine. 

Fig. 7 presents in a hierarchical tree view the matching among infrastructure elements of 
the Amazon Model (see Fig. 7a) and the Azure Model (see Fig. 7b). In this context, the 
infrastructure Service called virtual-machine is a container in the Amazon Model (group A), 
which is matched to a Resource Group that is a container and also a Virtual Network with its 
Subnet in the Azure Model (group A’). The Virtual Machine called webserver, and its Azure 
Profile in the Amazon Model (group B) are matching to Virtual Machine and its Network 
Interface in the Azure Model (group B’). The rest of the infrastructure elements correspond one 
by one in the matching between the Amazon Model and the Azure Model. 

 
Fig. 7. Matching of elements between virtual machine models. 

5. Case Study Description 
In order to illustrate our approach, we refer to the case of a small company called MODAFIN 
(adapted and extended from [9]). MODAFIN is specialized in IT applications for financial 
services. Its main product line is a proprietary solution for stock market operations, cash 
administration, and lending management. MODAFIN most profitable activities are software 
customization and life-cycle management for this product line. Customization involves the 
development of custom modules to accommodate new functional requirements. 

The consultancy team has been working for a long time on a software application, which 
will be deployed on Linux Servers in Amazon Web Services. However, the consultancy team 
is worried about issues such as vendor lock-in, security, and application performance. For this 
reason, the consultancy team has decided to use multiple clouds (i.e., multi-cloud) to deploy 
the software application. Consequently, Microsoft Azure has been selected as an alternative 
platform to deploy the application.  

The infrastructure requirements to deploy the software application are the following:  
Req. 1: A load balancer should distribute the workload between two virtual machines. The 

load balancer should check the connection requests to port 80 and validate that all virtual 
machine attached are available. 
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Req. 2: A firewall should enable ingoing connections only for the SSH protocol (port 22) 
and the HTTP protocol (port 80). The SSH protocol allows establishing a connection among 
virtual machines. The HTTP protocol allows establishing connections with the software 
application. Moreover, all outgoing connections should be enabled. 

Req. 3: For security reason, connections to servers that are outside of cloud provider should 
not be enabled to virtual machines attached to the load balancer. In this case, a jumpbox server 
should be created to secure management of the virtual machines connected to the load balancer. 
The jumpbox server enables connections between servers that are outside the cloud provider 
and virtual machines attached to the load balancer. 

The multi-cloud requirements to deploy the infrastructure are the following: 
Req. 4: The proposed solution should support a deployment process in multi-cloud. Cloud 

providers selected are Amazon Web Services and Microsoft Azure. 
Req. 5: The proposed solution should provide a flexible migrate process for cloud 

providers. In this case from Amazon Web Service to Microsoft Azure. 
Following, we explain how to provide a solution for the infrastructure requirements: 
Solution to Req. 1: Fig. 8 shows an Infrastructure Model, which has a load-balancer that 

distribute the workload between two virtual machines. Fig. 9a shows the webserver properties 
in where the count property has the value 2. It means that two virtual machines will be deployed 
and attached to the load-balancer. Moreover, the rule element is a listener which checks the 
connection requests to the load-balancer through Port 80. Finally, the health-probe element 
validates that virtual machines attached to load-balancer are available. 

Solution Req. 2: Fig. 8 shows a security-group which performs like a firewall. It has an 
outbound rule called all, which enable all outgoing connections of virtual machines. Moreover, 
the security-group has two inbound rules (i) SSH rule (port 22) allows establishing connections 
among virtual machine, and (ii) HTTP rule (port 80) allows establishing connections with the 
software application. 

Solution Req. 3: Fig. 8 shows a jumpbox server, which has connected a public IP 
(jumpbox-ip) to enable connections with servers that are outside the cloud provider. Moreover, 
the jumpbox server performs like a bridge allowing connections between virtual machines 
attached to the load-balancer and servers located outside the cloud provider. 

 
Fig. 8. Load balancer with a jumpbox server. 

Following, we explain how to provide a solution for the multi-cloud requirements: 
Solution Req. 4: ARGON provides support for modeling a platform-independent model 

(i.e., Infrastructure Model) and through model-to-model transformation obtain a platform-
specific model (i.e., Amazon Model). However, because cloud providers do not offer the same 
type of infrastructure is necessary to provide extra information such as virtual machine 
properties. On the one hand, the jumpbox server provides information for Amazon Web 
Services, for instance, image property (see Fig. 9a) has the value ami-dc2d10a6 that means an 
image of a Linux Ubuntu Server 16.04-LTS. On the other hand, jumpbox-profile gives 
information for Microsoft Azure, for instance, offer, publisher, and SKU properties (see Fig. 
9b) have the values Ubuntu Server, Canonical, and 16.04-LTS respectively. As a result, the 
Infrastructure Model (see Fig. 8) is capable of being deployed in multi-cloud. 
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Fig. 9. Virtual machine and cloud profile properties. 

Solution Req. 5: ARGON gives support in a migration process based on model-driven 
techniques. Fig. 10 presents in a hierarchical tree view the matching among infrastructure 
elements of the Amazon Model (see Fig. 10a) and the Azure Model (see Fig. 10b). Following, 
we explain the main model-to-model transformations: (i) the infrastructure Service called load-
balancer is a container in the Amazon Model (group A), which is matched to Resource Group 
container, and a Virtual Network with its Subnet in the Azure Model (group A’). (ii) the Load 
Balancer, Listener, and Health Check in the Amazon Model (group B) are matching with Load 
Balancer, Load Balancing Rule, and Heath Probe in the Azure Model (group B’). Also, it is 
necessary assigned a Public IP address for the Load Balancer to enable connection requests 
outside of the Azure platform. (iii) the Virtual Machines called webserver and its Azure Profiles 
in the Amazon Model (group C) are matching with Virtual Machines and its Network Interfaces 
in the Azure Model (group C’). Also, it is necessary to provide an Availability Zone to the 
Virtual Machines in the Azure platform to isolate hardware nodes in a cluster. (iv) the Virtual 
Machine called jumpbox and its Azure Profile in the Amazon Model (group D) are matching 
with a Virtual Machine and its Network Interface in the Azure Model (group D’). (v) the rest 
of the infrastructure elements are matching one by one between the Amazon Model and the 
Azure Model. 

 
Fig. 10. Elements are matched between load balancer models. 

6. Conclusion 
In this paper, we have presented an extension of ARGON to demonstrate the feasibility of 

a multi-cloud infrastructure modeling and a flexible migration approach. The purpose is to 
provide a novel approach to managing the infrastructure as code in multiple clouds based on 
model-based techniques. Finally, we believe that our work is aligned with current trends in 
cloud development and in particular to DevOps as a way to abstract and automate the cloud 
provisioning of resources given the increasing demand of new applications and the need to 
reduce the time-to-market.  

As future work, we plan to run experiments with practitioners and students with experience 
in provisioning resources in the cloud to identify new needs and to improve the user experience 
when dealing with multi-cloud infrastructure provisioning. 
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