
27TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2018 LUND, SWEDEN)

A Tool for Supporting the Co-Evolution of Enterprise Architecture
Meta-models and Models

Nuno Miguel Silva nuno.miguel@tecnico.ulisboa.pt
Universidade de Lisboa/INOV Inesc Inovação
Lisboa, Portugal

Miguel Mira da Silva mms@tecnico.ulisboa.pt
Universidade de Lisboa/INOV Inesc Inovação
Lisboa, Portugal

Pedro Sousa pedro.manuel.sousa@tecnico.ulisboa.pt
Universidade de Lisboa/Link Consulting SA
Lisboa, Portugal

Abstract
Enterprise architecture models capture the concepts and relationships that together describe the
essentials of the various enterprise domains. This model of the enterprise is tightly coupled to a
domain-specific modeling language that defines the formalisms for creating and updating such
model. These languages are described as meta-models by the model-driven engineering field.
Results from surveys on enterprise architecture tool analysis showed a lack of support
concerning the co-evolution of enterprise architecture meta-model and models. This paper
presents a tool that automates enterprise architecture models co-evolution according to a set of
meta-model changes. A Portuguese governmental organization used and validated the tool using
observational, analytical and descriptive evaluation methods.

Keywords: Enterprise architecture, Meta-model, Model, Co-Evolution, Tool.

1. Introduction
A model captures the concepts and relationships within a given domain. The Enterprise
Architecture (EA) field uses models to express, through diagrammatic descriptions, the various
organizational domains, from the business domain to the information systems and the
information technology domains. The structure and semantics of these models must obey a set
of formalisms defined by a domain-specific modeling language. These languages, known as
meta-models by the model-driven engineering community [5, 6, 10, 11, 20], tend to
continuously evolve due to new modeling requirements that enforce changes to these meta-
models [9].
 In the EA context, meta-models and models are also the targets of the evolutionary pressure
with meta-model changes often occurring due to the iterative nature of the meta-model and
model construction process [9]. A typical reason for these changes has to do with the EA
modeling language no longer being able to express the stakeholders' needs in its models. In this
case, the evolution of a meta-model drives the call for addressing those needs and changing
requirements. The evolution of the meta-model is not always adding new elements. Often
involves specializing, redefining or revising existing elements. One of the risks associated with
this redefinition is naturally dependent on the existing model and reports, as they may no longer
reflect the needs of the different stakeholders. Thus, the evolution of the EA meta-model, when
there is already an existing repository containing the EA model, reports, and analysis made of
such model, is always complex because typically it is intended on the one hand to maintain
compatibility with the old model, while on the other to support a more expressive model.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301376289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SILVA ET AL. A TOOL FOR SUPPORTING THE CO-EVOLUTION…

Fig. 1. MM-M co-evolution.

As referred above, changes on the meta-model have a high probability of impacting all
models that conform to it. Meta-model-Model (MM-M) co-evolution occurs when an element
from the meta-model changes and the model no longer conforms to the new meta-model, as
Figure 1 illustrates. After performing an evolution Δ of a meta-model MM into MM', the goal
is to co-evolve model m that conforms to MM, to m' that conforms to MM', by applying a set
of model transformations T aligned with evolution Δ [5, 9].

Co-evolution of models is strictly related to the notion of information preservation [20]
from which additive, subtractive, and refactoring meta-model changes are distinguished.
Therefore, changes that occur on a meta-model may have different effects on the related models.
These changes are classified as follows [5, 6]: Non-breaking changes - This type of changes
occurring on the meta-model does not break model conformance to the corresponding meta-
model; Breaking and resolvable changes - This type of changes occurring on the meta-model
break model conformance to the corresponding meta-model, however, they can be
automatically resolved; and Breaking and unresolvable changes - This type of changes
occurring on the meta-model break model conformance to the corresponding meta-model and
cannot be automatically resolved, therefore human intervention is required.

In model-driven engineering approaches, the meta-models MM and MM’ are two different
versions of the meta-model. When replacing MM with MM’, model m must be transformed
into m’, otherwise MM-M conformance ceases to be valid. The authors theorize a different
approach. Instead of being two different versions, MM and MM’ are two states in the life-cycle
of a single meta-model. Meta-model elements can have one of three states in their life-cycle:
"conceived", "alive", or "dead". The born date property establishes the transition from
"conceived" to "alive" and the death date property sets the transition from "alive" to "dead”. In
these conditions, the evolution from state MM to state MM’ at a time instant t, consists of
marking t as the death date of elements that no longer exist in MM’ and as the born date of the
elements that did not appear in MM’ but do exist in MM.

Fig. 1. DSR method steps applied to this research – adapted from [15].

 In this paper the authors present a functional version of a tool prototype that fully automates
EA model migration when breaking and resolvable meta-model changes occur, complementing
preliminary descriptions of this tool [16]. A set of operations adapted from the meta-model
breaking and resolvable changes presented in [5, 6, 12, 18, 20] enable the automation. In the
presented tool, MM and MM’ are two different life-cycle states of the same meta-model against

ISD2018 SWEDEN

which all existing models must conform. Hence, models that are not yet conformant with the
MM’ state can still exist and be used in the repository. The Design Science Research (DSR)
method was used throughout this research as shown in Figure 1.

The remainder of the paper is structured as follows. Section 2 describes the current EA tool
support and limitations regarding MM-M co-evolution. Then, Section 3 presents the
requirements and a detailed description of the EA MM-M co-evolution tool. Afterward, Section
4 describes a performed field experiment within a Portuguese governmental organization to
demonstrate the tool in practice with Section 5 presenting the results of the evaluation phase.
Finally, Section 6 presents related work on the topic and Section 7 concludes the paper and
enumerates future efforts.

2. EA Tool Meta-Model Flexibility and MM-M Co-Evolution Support
EA tools provide model visualizations and support strategic decisions concerning the
enterprise. Existing solutions restrict the means of extending and refactoring the EA meta-
model, to commit data flexibility and data management, thus simplifying the process of
managing data visualization and reporting.

Table 1. Analyzed EA tools with a focus on meta-model flexibility and MM-M co-evolution.

Company Tool Meta-model Flexibility MM-M Co-Evolution
Niche Players

Erwin Erwin EA YES NO
Unicom Systems System Architect YES NO

BOC Group ADOIT NO (ArchiMate) NO
Visionaries

Planview Troux YES NO
Challengers

Sparx Systems Enterprise Architect YES NO
Orbus Software iServer YES NO

 Leaders
BIZZdesign Enterprise Studio YES NO
Avolution Abacus YES NO
QualiWare QualiWare EA YES NO

MEGA Hopex EA YES NO
Software AG ALFABET YES NO

Other
Obeo SmartEA YES NO

EA Composer WhiteCloud Software YES NO

 This approach has the downside of forcing the organization’s structure to fit the EA meta-
model and not the opposite. Gartner’s magic quadrant for EA tools [3] also pinpoints as a
minimum requirement of an EA tool a robust yet flexible repository and metamodel(s) that
support often-changing relationships between objects within and between multiple viewpoints
or architectures, as well as capturing temporal relationships and changes. Nonetheless, the
reviews of the vendor’s EA solutions lack a detailed explanation of the tool’s capabilities
concerning meta-model evolution and management [3].

Table 1 shows the results of an EA tool survey with a focus on two metrics: meta-model
flexibility and MM-M co-evolution features. The considered tools constitute Gartner’s magic
quadrant for EA tools plus other two meta-model-based EA tools. The authors planned the
conduction of the survey in two parts. The first part consisted of an extensive read of the
available free online documentation regarding each tool's features with emphasis on meta-
model customization, extensibility, and MM-M co-evolution. The second part of the survey
was to use available demo versions of each tool to corroborate the available meta-model
extensibility and customization features, as well as MM-M co-evolution features. Results show
that all EA tools surveyed do provide meta-model customization and extensibility to give
architects control over the meta-model they use, and the ability to customize and adjust such

SILVA ET AL. A TOOL FOR SUPPORTING THE CO-EVOLUTION…

meta-model as the business and IT requirements evolve. Nonetheless, to the best of the authors'
knowledge and according to the surveyed information, none of the analyzed tools provide MM-
M co-evolution features together with their meta-model customization and extensibility
features.

3. The EA Meta-model and Model Co-Evolution Tool
This section describes relevant aspects of the developed tool prototype, starting from
requirements gathered from surveys and interviews with experts. Section 3.1 enumerates each
requirement as well as the rationale behind the definition of each requirement, followed by a
description of the tool (Section 3.2).

3.1. Requirements

Two surveys [13, 14] and two rounds of seven interviews with both practitioners and
researchers were the foundation in which the following tool requirements were defined
(objectives of a solution in DSR – see Figure 1):

1. A solution should allow meta-model edition based on predefined operations;
2. A solution should allow traceability of metamodel transformations, hence maintaining a

meta-model change history;
3. A solution should allow the undo and redo of meta-model transformations;
4. A solution should provide analysis mechanisms concerning meta-model editions, namely

the impact of altering a meta-model element on other existing elements;
5. A solution should allow automatic migration of EA models after EA meta-model changes;
6. A solution should enable interactive edition of the visualizations;
7. A solution should allow annotations on visualizations to add semantic;
8. A solution should have value usability above average (Bangor et al. 2008b).

 To understand the current state of progression regarding EA transformation support,
analysis, and management within the EA tool’s industry, the authors gathered information from
two tool surveys [13, 14]. In the first analysis, nine EA tools were evaluated by three different
teams [13]. The evaluation process was based on the analysis of functional criteria and EA task
criteria. For each criterion, different test scenarios were created, complemented by online
questionnaires. The findings were then processed, presented, and rated for each task. The rating
scale range from 0 to 7, being seven the highest score possible. Later the same analysis was
complemented, using the same evaluation process, with four additional EA tools [14].
Regarding the EA meta-model, the functional criteria assessed the meta-model’s flexibility.
The analysis showed that four tools scored above five, incorporating a solution to manage the
meta-model. These data binds to the types of tools analyzed in [13], categorized according to
flexibility and guidance: meta-model driven, methodology driven, and process driven.
 Meta-model driven tools allow the user to change the underlying meta-model, giving more
flexibility and semantics to the models. On the other hand, process driven tools focus on the
process and guidance concerning the management of EA instead of flexibility, thus not allowing
the edition of the underlying meta-model. Nevertheless, even though most EA tools showed
concerns regarding the meta-model flexibility, any considerations towards impact analysis of
EA models, migration support, and visualizations affected by those changes were mentioned.
The main points and issues that the authors took from this analysis are as follows: lack of
interaction with EA artifact visualizations; annotating visualizations is relevant since it provides
more semantic to the model’s visualizations; and the need for manual changes to EA model
visualizations to access changes to the EA metamodel. These points suggest the need for
automatic migration of models (Requirement 5) and for annotating the visualizations with more
semantic to better share information (Requirement 7). There is also the need for more
interaction with EA artifacts visualizations, allowing to create a more interactive modeling task
(Requirement 6).

ISD2018 SWEDEN

 To support the definition of the solution’s requirements, we performed two rounds of
interviews with four practitioners and three researchers. The practitioners had 2 to 15 years of
EA experience in both public institutions and private companies. The researchers with expertise
in the modeling field had 2 to 5 years of experience in modeling and participation on European
projects, with focus on EA.
 Results gathered from both rounds suggested that organizations evolve the EA meta-model
and co-evolve the existing EA model in an iterative basis, usually done by a team, with a team
element or client being responsible for validating the meta-model. In this case, visualization
and traceability of all changes are required to share information between different members
(Requirement 2).
 When meta-modelling, the users need to perform impact analysis to understand which
elements are impacted by a particular change (Requirement 4), allowing the roll-back of actions
if some changes need to be undone (Requirement 3). One of the main aspects also pointed by
the interviewees was a description of typical meta-modeling errors: wrong relations between
meta-model elements; properties with wrong names; and elements with wrong properties.
These typical errors reinforce the need for a tool capable of providing proper edition support
regarding meta-model relations, properties, or elements (Requirement 1), in a straightforward
and user-friendly manner (Requirement 8).

3.2. Tool Description

The tool prototype features a set of co-evolution operations that alter the meta-model
component’s life-cycle. The developed tool is agnostic to the meta-model specificities, i.e., is
not configured to fully process a specific EA modeling language, such as ArchiMate, UML,
and BPMN. The meta-model elements processed by the tool are classes, relations, and relation
types expressed in a graph-based structure. This design option allows for more language
flexibility and broader coverage at the cost of more language-specific expressiveness, meaning
that not all characteristics of a specific EA modeling language are accounted. The authors leave
this assessment for future reference.
 The authors implemented seven co-evolution operations adapted from [18]: Create EA
Class, Rename EA Class, Create EA Relation, Change EA Relation Type, Move EA Relation,
Delete EA Class and Delete EA Relation. Table 2 shows an example of a co-evolution
operation. This operation changes the life-cycle state of a meta-model class from “alive” to
“dead” and then propagates that same change to all model elements in the EA repository that
are instances of that class. The implementation details and correctness of each co-evolution
operation can be found in [18].

Table 2. Delete EA Class Specification.

Params name: String, deathDate: Date, retirementDate: Date
Pre-
conditions

this.gestationDate != null && this.birthDate != null &&
this.deathDate = null && this.retirementDate = null

Post-
conditions

this.gestationDate != null && this.birthDate != null &&
this.deathDate != null && this.retirementDate != null

Statements 1. this.deathDate -> deathDate
2. this.retirementDate -> retirementDate
3. forAll(instance | this.getInstances())

 instance.deathDate -> deathDate
 instance.retirementDate -> retirementDate

4. forAll(relation | this.getRelations())
 Delete_EA_Relation(deathDate, retirementDate, this)

 Different meta-model evolution scenarios can be created and tested by creating multiple
projects using the same EA Repository; meaning each project can then apply different sets of
operations to the same EA meta-model. After executing the operations, the user should choose
which project to apply to the EA Repository in use. The tool’s user interface is composed of
two main screens:

SILVA ET AL. A TOOL FOR SUPPORTING THE CO-EVOLUTION…

• Projects Screen. This screen depicts a list of all projects created by the user. This screen
provides feedback to the user concerning the state of the project. The possible states are:
Not Submitted - no editions submitted for approval; Submitted - meaning that the project
was submitted for approval; Accepted/Rejected - if approved, the state of the project
becomes “Accepted”, otherwise “Rejected”; and Sent - when accepted, the user can then
send both the EA meta-model and model updates to the EA tool’s repository integrated with
the tool.

• Edition Screen. Allows for the creation of a new project (“New project”), opening a specific
project (“Open project”), or the submission of a working project for approval (“Submit”).
These actions can be performed by clicking on the respective buttons on the top-left corner
of the screen. Changes to the meta-model can be performed as follows: On the screen’s left
side, one can apply three different operations: create/edit/delete relation types. Each
operation allows the user to create the relation types that are best suited to each scenario. On
the center of the screen, an interactive view illustrates a comparison between the as-is meta-
model state, i.e., before the execution of the operations, and the to-be meta-model state, i.e.,
after applying the co-evolution operations. The view is dynamic, meaning that the addition
or removal of operations will update the viewpoint, thus displaying the impact of new
operations in real time. Here it is also possible to switch the view to a graph-based
visualization (see Figure 2) of the EA meta-model; however, this visualization is not
interactive like the previous one. On the screen’s right side, an activity list of all performed
operations is shown as an edition history, aggregating all the operations made by the user.
This activity list is shown as a tree, where inside each operation is possible to observe all
the sub-operations made.

Fig. 2. Tool’s graph-based view of the enterprise architecture meta-model.

The tool also implements a transactional feature composed of two operations: undo and
redo. Both operations refer to each co-evolution operation stored in a persistent activity list.
The logic is analogous to word-processing or spreadsheets editors undo and redo features.
When operating the EA meta-model, that operation is stored in the activity list using a first-in-
first-out approach. For example, if the user wants to undo the last three operations, (s)he could
do so by clicking three times on the undo button on the upper-right side of the system’s user
interface. The undo feature will roll back the last operation made by the user and then update
the activity list accordingly (see Figure 3). If the operation is composed of more than one
change, all changes in that operation are also undone. The same rationale applies to the inverse
(redo) operation. By clicking on the redo button (next to the undo button), the user can roll back

ISD2018 SWEDEN

to the previous action made. So, assuming the user only wanted to undo a single operation
instead of two operations, (s)he can redo the last undo operation.

Fig. 3. Tool's view with emphasis on the activity list presenting the next three co-evolution

operations to undo.

The element’s color follows the scheme defined in [17], where different colors represent
different life-cycle states of the meta-model elements.

4. Demonstration

The authors applied the developed tool inside a Portuguese governmental organization with the
purpose of assessing its effectiveness in addressing the research problem. The organization
recognizes that EA can benefit its enterprise transformation initiatives. However, the numerous
EA projects conducted by the organization have created architectural silos that hinder overall
analysis, thus diminishing the value of EA. An EA project was conducted with the collaboration
of the organization’s EA team to support the organization towards the consolidation of its
architecture. The project aimed to achieve two primary goals:

• Evolving the organization’s EA proprietary meta-model, which at the time was scattered
into three different meta-models, by unifying all elements and relationships into one single
meta-model while extending it with any missing information.

• Perform an impact analysis in the existing EA models before migration to estimate the
migration effort.

The followed approach consisted of dividing the evolution task into two stages. The first
stage was composed of two steps: 1) mapping the common elements of the three meta-models,
and 2) creating a single meta-model containing all the necessary elements and relationships
presented in each one, as well as extending the new meta-model. The concept mapping allowed
us to understand the overlapping elements of all three meta-models and from there apply the
list of co-evolution operations required to co-evolve both the meta-model and existing models.
Table 3, on the second column, contains all the operations applied to the meta-model (and
models) on stage one.

SILVA ET AL. A TOOL FOR SUPPORTING THE CO-EVOLUTION…

Table 3. Number of co-evolution operations used on each stage.

Co-Evolution Operations #
First Stage Second Stage

Create EA Class 6 7
Rename EA Class 8 10

Create EA Relation 14 59
Delete EA Relation 16 3

Change EA Relation Type 1 1
Number of co-evolution operations executed (per type): 5
Number of co-evolution operations executed: 125
Number of failed co-evolution operation executions: 0

The second stage consisted of further extending and refactoring the meta-model while
performing a model impact analysis based on the updated version of the EA meta-model. Table
3, on the third column, contains all the operations applied to the meta-model and models on
stage two.

The meta-model was based on a subset of the ArchiMate 3.0 meta-model. The initial meta-
model consisted of 18 classes (8 from Technology Layer, 4 from Application Layer, 4 from
Business Layer, one from Implementation and Migration Layer, and Location), 81 relations,
and 14 relation types. At the end of stage two, the final meta-model had 31 classes (8 from
Technology Layer, 4 from Application Layer, 12 from Business Layer, 2 from Implementation
and Migration Layer, 4 from Motivation Layer, and Location), 135 relations, and 16 relation
types.

The application of the developed tool allowed the EA team to discuss and test the different
implications of the meta-model operations to the existing models without potentially
compromising the EA repository. In the end, the co-evolution rules applied to the EA repository
resulted in the migration of 287 model elements and 537 model relations.

5. Evaluation

In DSR, artifact validation concerning the objectives of a solution is done by applying design
evaluation methods. The authors applied the following evaluation methods: Observational –
EA project inside a governmental organization; Analytical – dynamic Analysis with user tests
(scholars and practitioners); and Descriptive – two focus groups; one with practitioners and
another with the organization’s EA team (Section 4), as well as, interviews with 10 EA
practitioners.

5.1. Observational

A field experiment is typically done with the goal to empirically examine an intervention in the
real world rather than in the laboratory. The EA Project presented in Section 4 provided a real
experimental case to validate the tool's applicability and efficacy towards solving the research
problem.

5.2. Analytical

The authors applied user testing as an analytical method to assess the tool’s performance and
usability. A sample of 20 EA academic and four practitioner subjects were used, each one
performing a total of 12 tasks. The user tasks incorporated the use of different types of
operations, as well as exploring the tool by using the supported information visualization
features. Afterward, the subjects were asked to answer a survey regarding the tool’s usability.
The survey consisted of 10 questions using a scale of 1 to 5 (1 meaning that the subject strongly
disagrees and five meaning he/she strongly agrees with the statement) and one more question
to evaluate the overall user perception concerning the tool’s usability.
 The survey was based on [4] questionnaire with the addition of a seven-point adjective-
anchored Likert scale question from [2]. From the entire user sample, 75% of users gave a score

ISD2018 SWEDEN

above 80 points which correspond to a B grade in the SUS survey [1]. The analysis of each
question concluded that: 87.5% of users (strongly) agree that they would like to use the tool;
83.3% of users (strongly) disagree that the tool is unnecessarily complicated; 79.1% of users
(strongly) favor the tool as easy to use; 91.6% of users (strongly) disagree they would need the
support of a technical person to be able to use this tool; 87.5% of users (strongly) agree on the
various functions in the tool were well integrated; 95.8% of users (strongly) disagree there was
too much inconsistency on the tool; 87.5% users (strongly) agree with that most people would
learn to use the tool quickly; 83.3% of users (strongly) disagree the tool is very cumbersome to
use; 70.8% of users (strongly) agree they fell very confident using the tool; 91.6% of users
(strongly) disagree they would need to learn many things before they could get going with the
tool; 75% of the users rated the user-friendliness of the tool as "Excellent" or "Best Imaginable".

5.3. Descriptive

Two focus groups and interviews with practitioners were also conducted to evaluate the
effectiveness of the tool. The first group was composed of five elements of the organization’s
EA team (see Section 4) while the second group included three EA practitioners with six, ten,
and fifteen years of experience respectively. Results from the first focus group suggested that
future improvements should focus on the tool's impact analysis feature. The impact analysis
should be more visually comprehensive regarding the impact of deleting a relation and a class
in the meta-model to the model. Moreover, the group also suggested that would be interesting
to understand the reason behind a particular model change (or set of changes), such as a form
of the rationale of what is impacting what. Despite those issues, the group agreed on the tool’s
effectiveness in supporting the meta-model and model co-evolution by providing a
straightforward and interactive edition of the meta-model elements, a comprehensive
visualization of the meta-model changes, and a mechanism for automating model migration.
 The second focus group also mentioned the tool’s lack of a more thorough impact analysis
feature. In particular, it was not intuitive for each practitioner to understand which architectural
elements were indeed impacted from a holistic multi-artifact perspective; although, consensus
was also reached regarding the tool’s effectiveness in addressing the co-evolution problem by
enabling a safe modeling environment with minimal modelling effort and no errors which could
potentially lead to architectural inconsistencies. Moreover, they found visualization support for
meta-model changes to be helpful in supporting meta-model changes over time.
 The authors conducted interview sessions with ten different EA practitioners from different
companies and organizations, from consultancy and audit to telecommunications companies.
The tool was presented to each practitioner followed by a discussion of the tool's features and
how they adequately address the research problem and comply with the defined objectives of a
solution. Eight out of ten practitioners acknowledged the practical relevance of the tool in
addressing the co-evolution problem. Table 4 presents both the pros and cons of the system
according to the interviews’ results.

Table 4. Tool’s pros and cons identified during the interviews and focus groups.

Pros Cons
• The activity list, working as a log of all
transformations and changes made.
• Good user interaction.
• Diagram with the meta-model relations.
• Workflow with administration review, thus
reducing the probability of errors.
• Number of impacted objects when deleting
a class.

• Lack of a more descriptive model impact
analysis.
• Visualization of impacted objects.
• Not keeping a standard color pattern associated
with class changes to all elements.
• Inability to resume and quantify changes.
• Unable to filter by class’ neighbors or domain in
the meta-model relationship view.

SILVA ET AL. A TOOL FOR SUPPORTING THE CO-EVOLUTION…

6. Related Work

Model-driven engineering approaches have addressed the MM-M co-evolution challenge with
a focus on two strategies [5]: identifying the differences between the baseline and target meta-
models or applying a set of transformations on the model to be conformant to the new meta-
model. The first strategy uses a declarative evolution specification to define a difference meta-
model which can be calculated from identified changes in the meta-model [5] whereas the
second approach specifies meta-model evolution and model co-evolution through a sequence
of operations in which each operation is then applied on meta-model and model level [6, 12].
 One approach to model co-evolution classifies the changes in atomic changes and defines
the process of co-evolution [5]. Then, creates a differential meta-model with the identified
changes, and it is classified into two new meta-models, the ones that are breaking and resolvable
and the ones that are breaking and unresolvable. If there are no relations between the two meta-
models, each one is executed independently. If relations between the two meta-models do exist,
the co-evolution is done stepwise using user intervention.
 COPE is a language used to satisfy two requirements: 1) reuse of recurring migration
knowledge and 2) expressiveness to support domain-specific migrations. COPE allows creating
coupled transactions that are a combination of meta-model adaptation and model migration
[12]. COPE solves the co-evolution problem by executing those coupled transactions, and its
execution does not require user intervention.
 Another approach addressed the co-evolution problem by applying a set of automatic
transformations thus solving the problem in one of three categories: addition, delete or rename
[10]. When a breaking and unresolvable change is found, the user should specify the way that
the elements are going to change by creating a set of transformation rules using ETL.

As stated in Section 1, model-driven engineering approaches on MM-M co-evolution, like
the ones described above, are built on the premise that MM and MM' are two different meta-
models. The developed tool, however, deals with MM-M co-evolution taking into account the
life-cycle principle. In this case, MM and MM' are both the same meta-model but with different
life-cycle states regarding each element and relation. The use of life-cycle of artifacts to deal
with the evolution of EA models was initially developed in [19], allowing the minimization of
the necessary effort to maintain EA models. In the tool prototype developed, the same technique
applies to the elements of the meta-model.
 In the EA context, Florez et al. [9] developed a platform capable of addressing breaking
and unresolvable changes in model co-evolution sustained on two hypothesis: i) a meta-modeler
that knows the rationale behind meta-model changes and capable of providing guidelines for
model co-evolution, ii) a modeler as the only one allowed to make the final decisions about his
models. Their proposed language for meta-modelers allows to specify changes in the meta-
models and to propose corresponding changes in the models, which in turn are executed by an
engine that automatically solves the changes in models that can be automatically solved.
 Farwick et al. stated, based on a survey among EA practitioners, that despite the necessity
of manual data input as the primary source of changes to EA repositories, the next step to
increase productivity, efficiency, and ROI of EA initiatives can be reached by automating the
maintenance processes for EA models, with minimal human intervention [8]. The results of the
survey reinforced the idea of using automated model maintenance as a means to reduce EA
modeling efforts, thus contributing to meet better desired EA element coverages. As a step in
that direction, they have proposed several processes for (semi-)automated enterprise
architecture model maintenance, based on the requirements mentioned above and research
efforts on Living Models, that reduce manual work for EA model maintenance and increase
data quality attributes such as consistency and actuality [7].

ISD2018 SWEDEN

7. Conclusion

In this paper, the authors presented a tool prototype that supports EA MM-M co-evolution by
achieving the eight requirements presented in Section 3.1. The tool prototype was applied in a
Portuguese governmental organization to support the conduction of an EA project and validated
with observational, analytical, and descriptive design evaluation methods. The analytical
evaluation results from SUS questionnaire reported a B score, which regarding usability
validates a system as having good usability according to [1], hence achieving requirement eight
presented in Section 3.1. The demonstration of the proposed artifact (Section 4), together with
the descriptive evaluation methods (Section 5.3) validate the achievement of requirements 1, 2,
3, 5, and 6. Requirement four could not be adequately achieved since the impact analysis feature
did not provide all the required model information comprehensively and visually. The
application of a color-based code to annotate the semantic of changes to meta-model elements,
based on the work from [17], enabled the achievement of requirement seven.
 Regarding identified limitations, according to the feedback gathered from the interviews
and focus groups, the over-simplistic way in which the impacted model elements are displayed
when evolving the EA meta-model posed a challenge in understanding the impact of meta-
model changes to the model. A more comprehensive model impact analysis should be presented
concerning the EA model elements. Although this issue was already considered before the
interviews and focus groups, the implementation of a detailed impact analysis had to be
postponed, due to time restrictions.
 In conclusion, the tool’s evaluation confirmed the achievement of the solution’s
requirements by enabling an EA MM-M co-evolution interactive and safe modeling
environment, in which co-evolution operations could be executed meta-model-wise, and then
propagated to the EA model. Future efforts consist of resolving the limitations stated by the
focus groups and interviews with a focus on extending the impact analysis expressiveness and
also complementing the tool with other relevant co-evolution operations from literature applied
to the EA context, such as Merge Class and Split Class.

Acknowledgments

The authors wish to thank the ISD reviewers for their valuable remarks. This research was
supported by the Link Consulting’s project IT-Atlas (nº 11419, under the IAPMEI, 2020
Portuguese PO CI Operational Program). The integration of the tool prototype presented here
with Link Consulting’s Atlas EA tool is ongoing.

References
1. Bangor, A., Kortum, P., Miller, J.: An empirical evaluation of the system usability scale.

International Journal of Human-Computer Interaction. 24, 6, 574–594 (2008).
2. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean:

Adding an adjective rating scale. Journal of Usability Studies. 4, 3, 114–123 (2009).
3. Brand, S.: Magic Quadrant for Enterprise Architecture Tools. Gart. RAS Core Res. Note

G. September 2014, 43 (2014).
4. Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System

Evaluation User Information. Usability Evaluation In Industry. pp. 4–7 (1996).
5. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in

model-driven engineering. In: Proceedings of the 12th IEEE International Enterprise
Distributed Object Computing Conference. pp. 222–231 (2008).

6. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Meta-model differences for
supporting model co-evolution. In: Proceedings of the 2nd Workshop on Model-Driven
Software Evolution. (2008).

7. Farwick, M., Agreiter, B., Breu, R., Ryll, S., Voges, K., Hanschke, I.: Automation
processes for enterprise architecture management. In: Proceedings of the 15th IEEE
International Enterprise Distributed Object Computing Workshop. pp. 340–349 (2011).

SILVA ET AL. A TOOL FOR SUPPORTING THE CO-EVOLUTION…

8. Farwick, M., Agreiter, B., Breu, R., Ryll, S., Voges, K., Hanschke, I.: Requirements for
automated Enterprise Architecture Model Maintenance. In: Proceedings of the 13th
International Conference on Enterprise Information Systems. pp. 325–337 (2011).

9. Florez, H., Sánchez, M., Villalobos, J., Vega, G.: Coevolution assistance for enterprise
architecture models. In: Proceedings of the 6th International Workshop on Models and
Evolution. pp. 27–32 (2012).

10. Gruschko, B., Kolovos, D., Paige, R.: Towards synchronizing models with evolving
metamodels. In: Proceedings of the International Workshop on Model-Driven Software
Evolution. p. 3 (2007).

11. Herrmannsdoerfer, M., Vermolen, S., Wachsmuth, G.: An extensive catalog of operators
for the coupled evolution of metamodels and models. In: International Conference on
Software Language Engineering. pp. 163–182 (2011).

12. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolution of
metamodels and models. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 52–
76. Springer, Heidelberg (2009).

13. Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise Architecture Management
Tool Survey 2008. (2008).

14. Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise Architecture Management
Tool Survey 2014. (2014).

15. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. Journal of Management Information
Systems. 24, 3, 45–77 (2007).

16. Rechau, T., Silva, N., da Silva, M. M., Sousa, P.: A tool for managing the evolution of
enterprise architecture meta-model and models. In: Lecture Notes in Business
Information Processing. pp. 68–81. Springer, Cham (2017).

17. Roth, S., Matthes, F.: Visualizing Differences of Enterprise Architecture Models. In:
International Workshop on Comparison and Versioning of Software Models at Software
Engineering. (2014).

18. Silva, N., Ferreira, F., Sousa, P., da Silva, M. M.: Automating the Migration of
Enterprise Architecture Models. International Journal of Information System Modeling
and Design. 7, 2, 72–90 (2016).

19. Sousa P. et, al, Lima J., Sampaio A., Pereira C.: An Approach for Creating and
Managing Enterprise Blueprints: A Case for IT Blueprints. In: Lecture Notes in
Business Information Processing. pp. 70-84. Springer, Heidelberg (2009).

20. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: The European
Conference on Object-Oriented Programming. pp. 600–624 (2007).

	A Tool for Supporting the Co-Evolution of Enterprise Architecture Meta-models and Models
	1. Introduction
	2. EA Tool Meta-Model Flexibility and MM-M Co-Evolution Support
	3. The EA Meta-model and Model Co-Evolution Tool
	3.1. Requirements
	3.2. Tool Description

	4. Demonstration
	5. Evaluation
	5.1. Observational
	5.2. Analytical
	5.3. Descriptive

	6. Related Work
	7. Conclusion
	Acknowledgments

	References

