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Abstract 
Goal-Oriented Requirement Engineering is a modeling technique that represents software 
system requirements using goals as goal models. In a competitive environment, these 
requirements may have opposing objectives. Therefore, there is a requirement for a goal 
reasoning method, which offers an alternative design option that achieves the opposing 
objectives of inter-dependent actors. In this paper, a multi-objective zero-sum game theory-
based approach is applied for choosing an optimum strategy for dependent actors in the i* goal 
model. By integrating Java with IBM CPLEX optimisation tool, a simulation model based on 
the proposed method was developed. A successful evaluation was performed on case studies 
from the existing literature. Results indicate that the developed simulation model helps users to 
choose an optimal design option feasible in real-time competitive environments. 

 
Keywords:  Goal models, Requirements engineering, Game theory. 

1. Introduction  
Any software system’s success depends upon the degree to which its requirements are met. 
During the last two decades, Requirements Engineering (RE) has progressively been developed 
as a critical area of the software development lifecycle [23]. The elicitation process (one of the 
most important phases of RE), discovers the stakeholders and identifies the goals/tasks of the 
system which in turn indicate the objectives that need to be met by the system. In requirement 
analysis phase, the requirements analyst examines information received from stakeholders to 
identify their goals from the collected requirements. Stakeholders have hardgoals which 
indicate the functions the system has to perform. The non-functional goals of the system are 
represented as softgoals which relate to the qualities desired for the system (accuracy, 
reliability, performance, etc.). Furthermore, the requirements analyst examines high-level 
alternative system design options and decides which system design to implement [10].    
Goal-Oriented Requirement Engineering (GORE) is a method that models the software 
system's requirements using goals by eliciting, elaborating, structuring, specifying, analysing, 
negotiating, documenting and modifying requirements [23]. In GORE, goals play a critical role 
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in understanding the domain and determining the stakeholders’ intentions [22]. Goals are 
elaborated at different levels of abstraction, from strategic concerns to technical matters.  
Hence, it is a significant, well-thought-out artefact during the early phases of RE [5], [ 8]. This 
use of goals is modeled on a multi-view model or goal model that illustrates the way in which 
goals, actors, states, objects, tasks, and their domain properties are inter-related for the given 
system [18].  
Ever since the mid-nineties, goal models have been prominent in software engineering 
discipline. In software engineering literature, the i* goal model is one of the popular and well-
known goal models, because it helps goal-oriented modelling of socio-technical systems and 
organisations. Organisations and socio-technical systems get support in its essential processes 
with the use of i* model, as an intentional structure of actors and their dependencies. Reasoning 
techniques in the i* goal model enable all types of qualitative analyses [11, 14] or quantitative 
analyses [9] or even both [1] to be performed.   
In real-world, competitive environments, the goals of many stakeholders of complex systems 
are of a conflicting or opposing in nature. Furthermore, each goal (functional requirement) of a 
system may have a number of different alternative design options for achieving it. In the i* goal 
model, actors have multiple conflicting goals that are dependent on each other. A requirement 
analyst has to deal with the challenges of these multiple conflicting goals.  Requirement-based 
engineering faces the challenge of identifying an optimal alternative design option for a goal 
model with conflicting goals. Hence, a novel framework is needed that captures the real issues 
behind achieving multi-objective optimisation [7]. The implementation of a realistic decision-
making process in our approach allows us to go beyond analytical tools, like game-theoretic 
concepts. This paper proposes a novel methodology based on game theory for system 
exploration which involves alternative design evaluation. Game theory is a powerful inter-
disciplinary tool for the analysis of competitive situations in multi-agent systems [17]. It can 
adequately characterise the interaction between decision-makers and find optimal solutions 
under conflicting circumstances, assuming that players are rational and behaving according to 
their interests. 
In previous research [5], game theory-based goal analysis was proposed for each actor in the i* 
goal model without considering the dependency relationships among actors. In a real-world 
competitive environment, when making decisions, decision-makers have to consider the inter-
dependent relationships among actors. In this paper, a systematic game theory-based approach 
is proposed to facilitate decision-making when there are inter-dependent actors in the i* model 
by integrating multiple opposing goals together with their significance. To discover the optimal 
alternative options, a two-person zero-sum game approach is applied to the i* goal model. In 
the proposed approach, multi-objective functions are determined to decide their significance. 
Then, the alternative options for each actor are assessed according to each conflicting softgoal 
by applying game theory. In the final phase, an optimal solution is found under the 
circumstances of conflicting goals. A case study is used to illustrate the applicability of the 
proposed approach. An overview of the existing approaches, techniques and methods related to 
GORE and more precisely, i* model, which are closely associated with our approach are 
presented in the next section. 
The paper is organized as follows. Section 2 presents the existing approaches, techniques and 
methods related to the i* model, which are closely associated with our proposed approach. The 
methodology comprising of various steps in our approach and a brief introduction of the 
methods used in the study are given in Section 3. The evaluation and simulation of the proposed 
work are described in Section 4. Finally, conclusions are drawn at the end of the paper. 

2. Background and Related works 
Recent trends in GORE recommend using goals, as a means of discovering the ‘whys’ in the 
functionality as opposed to the notion of ‘what’. In this section, an overview of the existing 
approaches, techniques and methods related to the i* model, that approximate our approach are 
presented. An interactive, iterative, qualitative analysis method for i* goal models was proposed 
by Horkoff and Yu [15]. The uncertainty of making decisions when more than one goal has the 
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same label is the main limitation of this approach. To analyse alternative design options in the 
KAOS model, Heaven et al. [12] proposed quantitative reasoning based multi-objective 
optimisation model. However, the main issue with this model is that it does not consider the 
non-functional requirements of the system. To deal with the conflicts in NFR decision analysis, 
Mairiza et al. [21] developed a Multi-Criteria Decision Analysis (MCDA) and applied TOPSIS 
as an MCDA method for prioritising the alternative options. However, the application of 
TOPSIS for the selection of preferred design solution against conflicting NFRs was not 
presented. Using the i* model [3], an inter-actor quantitative goal analysis method was 
developed for reasoning with non-functional requirements. This method is enhanced by 
applying a multi-objective optimisation method to find feasible values of softgoals for an 
alternative selection in the goal analysis process [6], [7]. This furthermore helps in preventing 
the stakeholders’ from imposing his/her subjective preference of values that are being used for 
the goal based reasoning.  However, all these proposals for goal analysis are based on either 
quantitative or qualitative values used when choosing an alternative design option based on the 
maximum satisfaction label of non-functional requirements. However, an ambiguity arises 
when two or more non-functional requirements receive the same type of label during decision-
making [15]. This limitation of the qualitative approach to the i* framework that causes 
ambiguity in decision making was overcome by Chitra et al. [6], [7]. Chitra et al. developed 
fuzzy-based optimal quantitative methods for goal analysis in the i* model. However, the 
existing literature does not include goals with opposing objective functions in reasoning goal 
models. In [5], game theory-based goal analysis was proposed but without considering the 
dependency relationships among the actors. In a real-world competitive environment, when 
making decisions, decision-makers have to consider the inter-dependent relationships among 
actors. Overall, using the i* model, previous research efforts have not been able to develop a 
systematic game theory-based reasoning approach by reciprocally balancing multiple opposing 
objectives with their significance. In the next section, the proposed methodology of reasoning 
opposing non-functional requirements in the i* goal model is presented.  

3. Game Theoretic Approach for Reasoning Opposing Non-functional 
Requirements 

This study aims to provide a more precise decision-making process in real-time competitive 
environments by integrating multiple opposing objectives with their significance. For the 
calculation convenience and easy presentation, a two-person zero-sum game [2] is applied in 
this paper. In the proposed approach, multi-objective functions are determined to decide their 
significance. To obtain an optimal strategy for player's having opposing objectives, a 
methodology has been proposed in this paper. The proposed methodology is presented in the 
following sub-sections. 

3.1. Generation of Multi-Objective Functions  

In this section, formalisation approach to the opposing non-functional requirements with 
respect to softgoals, goals, tasks and resource elements based on the Strategic Rationale (SR) 
model of i* framework is explained. A directed graph, G (N, R) is represented for SR model in 
such a way that N indicates softgoals, goals, tasks and resources which represents a collection 
of nodes and R indicates the links (means-end, task decomposition, dependency and 
contribution links) which shows a collection of edges [20]. The task of a decision maker is to 
choose an ideal alternative option from the given choices.  
Given an i* goal model, we aim to choose an optimal design based on its contribution on the 
softgoals. Impacts are represented as Make, Help, Hurt, Break, Some-, Some+. They are 
symbolized as fuzzy triangular numbers that indicate the extent to which an alternative option 
fulfils the leaf softgoal [4], [8], [24]. The impacts of the softgoal preferences are backward 
propagated to the uppermost softgoals in order to evaluate the scores of the same and to achieve 
the level of satisfaction. Furthermore, a weight 𝜔𝜔 is assigned to each leaf softgoals based on 
their relative significance in achieving the goal.  
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Initially, based on the inter-actor dependency relationship among actors, each top softgoal’s 
scores are evaluated. For details on how to generate scores, readers are directed to [3, 4].  
 

  
 

              Fig. 1. Directed graph of i* model 
 

Assume there are t hierarchy levels in the directed graph, G (N, R) (Figure 1). Let the 𝑖𝑖𝑡𝑡ℎ leaf 
softgoal’s weight be 𝜔𝜔𝐿𝐿𝑖𝑖𝑖𝑖 and the impact of 𝑗𝑗𝑡𝑡ℎ alternative of 𝑘𝑘𝑡𝑡ℎ actor on 𝑖𝑖𝑡𝑡ℎ leaf softgoal be 
𝐼𝐼𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖. Consider there are m softgoals, 𝑛𝑛𝑑𝑑  dependencies and 𝑛𝑛𝑐𝑐  children for the 𝑖𝑖𝑡𝑡ℎ softgoal at 
level 1. Then, at 𝑡𝑡 > 1, the score of any softgoal is calculated by multiplying its impact with 
each child’s score. Thus, a dependency relationship can be generalised in Equation 1 for any 
softgoal at level 𝑡𝑡 > 1.  
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               (1)  
Consequently, the objective functions of top softgoals are generated with the assumption that 
only softgoal inter-dependency relationships are considered in this proposed approach. For an 
actor having n alternative options, there will be n different objective functions for each top 
softgoal.  

The objective functions under nth alternative for each opposing nature (maximisation and 
minimisation) are given as, 

𝑓𝑓𝑖𝑖(𝑛𝑛) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝐼𝐼𝑖𝑖1𝑖𝑖

𝑚𝑚

𝑖𝑖=1
� �� �𝐼𝐼𝑑𝑑𝑖𝑖𝑖𝑖 × 𝐼𝐼𝑑𝑑𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖

× 𝜔𝜔𝑑𝑑𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖
�

𝑛𝑛𝑐𝑐

𝑑𝑑=1

𝑚𝑚

𝑖𝑖=1

+ � �� �𝑆𝑆𝑖𝑖𝑑𝑑𝑏𝑏𝑏𝑏
× 𝐼𝐼𝑖𝑖𝑑𝑑𝑏𝑏𝑏𝑏

�
𝑛𝑛𝑑𝑑

𝑏𝑏=1

� + � �𝑆𝑆𝑖𝑖𝑑𝑑𝑏𝑏
× 𝐼𝐼𝑖𝑖𝑑𝑑𝑏𝑏

�
𝑛𝑛𝑑𝑑

𝑏𝑏=1

𝑛𝑛𝑐𝑐

𝑦𝑦=1

� 

 



  ISD2018 SWEDEN
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Such that 0 ≤ 𝜔𝜔𝑑𝑑𝐿𝐿𝑖𝑖𝑖𝑖

≤ 100 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 = 1 𝑡𝑡𝑓𝑓 𝑛𝑛𝑐𝑐 
                    (2) 
In this paper, the two-person zero-sum game theory approach is applied to choose an ideal 
strategy for inter-dependent actors. Analogous to game theory, in this proposed approach, game 
players are considered as the top softgoals with conflicting objective functions of the system 
and game strategy is treated as the alternative design options of inter-dependent actors in the i* 
goal model. Initially, the application of game theory from the actors' perspective having 
opposing objective functions is investigated with the assumption that each actor in the goal 
model has the same set of alternative options for achieving his/her opposing objectives. 

3.2. Evaluation of the Optimal Solutions of Multi-Objective Optimization Functions 

Consider an i* goal model in which each actor is considered to have two opposing soft goals 
(SG1 and SG2) and two alternative design options (A1 and A2). Optimising the objective 
functions for soft goals individually generates two ideal solutions using Algorithm. 1. The IBM 
ILOG CPLEX optimisation tool is used for evaluating the optimisation [19].   

Let the ideal solutions for the objective functions for softgoals of an actor using two alternative 
design options, based on Equation 2, is expressed as 

 
   �𝑀𝑀𝑆𝑆𝑆𝑆1𝐴𝐴1 , 𝑀𝑀𝑆𝑆𝑆𝑆1𝐴𝐴2 , 𝑀𝑀𝑆𝑆𝑆𝑆2𝐴𝐴1 , 𝑀𝑀𝑆𝑆𝑆𝑆2𝐴𝐴2   �                               (3) 
 
Likewise, for all the actors in the given goal model, the optimal multi-objective function values 
are generated. 
 
Algorithm 1: Main Module- Optimal Selection 
 
Input: A collection of directed graphs  𝑆𝑆 = {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛} where G ⊆ S 
having same n number of tasks T, where 𝐺𝐺 = {𝐺𝐺1, 𝐺𝐺2, … , 𝐺𝐺𝑘𝑘} and each 𝐺𝐺𝑖𝑖 
represents {𝑇𝑇, 𝐿𝐿, 𝑆𝑆𝐺𝐺, 𝑇𝑇𝑆𝑆} which indicates a set of task, a set of 
Leaf softgoals, a set of in-between softgoals, a set of top 
softgoals respectively with each top softgoal associated with 
opposing variables such as Max or Min. 
 
𝐟𝐟𝐟𝐟𝐟𝐟 Gi  ∈ G 𝐝𝐝𝐟𝐟 
    𝐟𝐟𝐟𝐟𝐟𝐟 task t ∈ T 𝐝𝐝𝐟𝐟 
        𝐟𝐟𝐟𝐟𝐟𝐟 top softgoals ts  ∈  TS 𝐝𝐝𝐟𝐟 
 𝐢𝐢𝐟𝐟  ts is Min 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  
     Generate minimisation objective function; 
 𝐭𝐭𝐭𝐭𝐝𝐝 
 𝐢𝐢𝐟𝐟  ts is Max 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  
  Generate maximisation objective function; 
 𝐭𝐭𝐞𝐞𝐞𝐞𝐭𝐭 
     break; 
 𝐭𝐭𝐭𝐭𝐝𝐝 
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         𝐭𝐭𝐭𝐭𝐝𝐝 
     𝐭𝐭𝐭𝐭𝐝𝐝 
𝐭𝐭𝐭𝐭𝐝𝐝 
 Let FMax ← Max�fmax1 , fmax2 , … … , fmaxn  �;   
Let FMin ← Min�fmin1 , fmin2 , … … , fminn  �;   
𝐟𝐟𝐟𝐟𝐟𝐟 fmaxi ∈  FMax  𝐝𝐝𝐟𝐟 
     Let xmaxi ← optimal�fmaxi ,   Max�; //finding optimal solutions for 
maximum objective functions 
𝐭𝐭𝐭𝐭𝐝𝐝 
𝐟𝐟𝐟𝐟𝐟𝐟 fmini ∈  FMin  𝐝𝐝𝐟𝐟 
     Let xmini ← optimal�fmini ,   Min�; //finding optimal solutions for 
minimum objective functions 
𝐭𝐭𝐭𝐭𝐝𝐝 
Generate pay-off matrix, 𝑃𝑃𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 , for maximum objective 
function values, by integrating xmax's of all Gi ∈ G  
Generate pay-off matrix, 𝑃𝑃𝑇𝑇𝑆𝑆𝑇𝑇𝑖𝑖𝑛𝑛 , for minimum objective function 
values, by integrating xmin's of all Gi ∈ G  
Generate decision pay-off matrix P by merging pay-off matrices 
𝑃𝑃𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑃𝑃𝑇𝑇𝑆𝑆𝑇𝑇𝑖𝑖𝑛𝑛 
Generate primal linear equation using MaxMin strategy 
Generate the optimal solution by solving the primal linear 
equation  
 
Sub Module - Solving Multi-objective functions to obtain the optimal function value 
 
Define the objective functions and their constraints based on 
C; 
𝒊𝒊𝒊𝒊 𝐶𝐶 𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
    Define maximisation objective function; 
𝒕𝒕𝒕𝒕𝒆𝒆 
𝒊𝒊𝒊𝒊 𝐶𝐶 𝑖𝑖𝑖𝑖 𝑀𝑀𝑖𝑖𝑛𝑛 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
    Define minimisation objective function; 
𝒕𝒕𝒆𝒆𝒆𝒆𝒕𝒕 
𝒓𝒓𝒕𝒕𝒕𝒕𝒓𝒓𝒓𝒓𝒕𝒕 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀. 𝑖𝑖𝑓𝑓𝑐𝑐𝑠𝑠𝑐𝑐( ) → 𝑾𝑾); 
𝒕𝒕𝒕𝒕𝒆𝒆 
 

3.3. Objective Integrated Game Theoretic Approach for Pay-Off Matrix 
Transformation 

In this section, the objective function values of top softgoals are integrated for all actors in the 
goal model that are of the same nature (for example:  maximise) under each alternative to 
generate the pay-off matrix (for each nature). To understand the formation of the pay-off matrix 
according to the objective function values, let us assume that there are two actors in the same 
goal model with an inter-actor dependency relationship from X to Y. Also, assume that both 
actors have the same alternative options (A1 and A2) for reaching their opposing top softgoals 
(TS1 (Maximise) and TS2 (Minimise)). The optimal function values for each actor are 
represented in Table 1 as a ready reference.   
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Table 1. Objective functions values 

Optimal Function Values X Y 
𝐹𝐹𝑇𝑇𝑆𝑆1𝐴𝐴1 𝑀𝑀𝑇𝑇𝑆𝑆1𝐴𝐴1 𝑦𝑦𝑇𝑇𝑆𝑆1𝐴𝐴1 
𝐹𝐹𝑇𝑇𝑆𝑆1𝐴𝐴2 𝑀𝑀𝑇𝑇𝑆𝑆1𝐴𝐴2 𝑦𝑦𝑇𝑇𝑆𝑆1𝐴𝐴2 
𝐹𝐹𝑇𝑇𝑆𝑆2𝐴𝐴1 𝑀𝑀𝑇𝑇𝑆𝑆2𝐴𝐴1 𝑦𝑦𝑇𝑇𝑆𝑆2𝐴𝐴1 
𝐹𝐹𝑇𝑇𝑆𝑆2𝐴𝐴2 𝑀𝑀𝑇𝑇𝑆𝑆2𝐴𝐴2 𝑦𝑦𝑇𝑇𝑆𝑆2𝐴𝐴2 

 
Based on the optimal function values shown in Table 1, the pay-off matrices, 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇  and 𝑇𝑇𝑆𝑆𝑇𝑇𝑖𝑖𝑛𝑛 
are generated for each top softgoal by taking the summation of the objective function values 
that are of the same nature for all actors based on each alternative. Now the pay-off matrix 
𝑃𝑃𝑇𝑇𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀  for the top softgoal 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 which has to be maximised for two actors X and Y under n 
alternatives is generalised as shown below 
 
                 𝐴𝐴1    𝐴𝐴2    … …  𝐴𝐴𝑛𝑛 

𝑃𝑃𝑇𝑇𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀=    

   
𝐴𝐴1
𝐴𝐴2
⋮

𝐴𝐴𝑛𝑛

�

𝑃𝑃𝐴𝐴1𝐴𝐴1 𝑃𝑃𝐴𝐴1𝐴𝐴2         … … 𝑃𝑃𝐴𝐴1𝐴𝐴𝑖𝑖
𝑃𝑃𝐴𝐴2𝐴𝐴1 𝑃𝑃𝐴𝐴2𝐴𝐴2        … … 𝑃𝑃𝐴𝐴2𝐴𝐴𝑖𝑖
… … … …        … … … …

𝑃𝑃𝐴𝐴𝑖𝑖𝐴𝐴1 𝑃𝑃𝐴𝐴𝑖𝑖𝐴𝐴2        … … 𝑃𝑃𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖

� 

 
                                       where 𝑃𝑃𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖  = 𝑀𝑀𝑇𝑇𝑆𝑆1𝐴𝐴𝑖𝑖 + 𝑦𝑦𝑇𝑇𝑆𝑆1𝐴𝐴𝑖𝑖  , for i, j =1 to n                  (4) 

 
If there are s number of actors in an  i* goal model, in such a way that 𝑘𝑘 ≤ 𝑖𝑖 actors have the  
same set of  n  number of alternatives, then each element in the final pay-off matrix of top 
softgoal that has to be maximised is obtained as: 
 

∑ 𝑀𝑀𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟
𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖,𝑖𝑖=1  , where 𝐴𝐴𝑖𝑖 ≥ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 𝑛𝑛 𝑀𝑀𝑛𝑛𝑑𝑑 𝐴𝐴𝑟𝑟 ≥ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 𝑛𝑛 
                    (5) 

 where 𝑀𝑀𝑖𝑖𝑖𝑖 denote an element of the pay-off matrix of every combination of 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ actor of 
k resulting from choosing the 𝑐𝑐𝑡𝑡ℎ and 𝑓𝑓𝑡𝑡ℎ alternative of n. Similarly, the pay-off matrix 
𝑃𝑃𝑇𝑇𝑆𝑆𝑀𝑀𝑖𝑖𝑖𝑖  for the top softgoal 𝑇𝑇𝑆𝑆𝑇𝑇𝑖𝑖𝑛𝑛 which has to be minimised for two actors X and Y under n 
number of alternatives can be generalised. 

3.4. Decision Pay-Off Matrix Formation 

The overall objective of opposing goals simultaneously can be achieved by merging the pay-
off matrices that are obtained separately for each player. This process of integrating objectives 
with their importance based on alternatives is known as the unification process. An optimal 
strategy is obtained by analysing the unified pay-off matrices. Now, using 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 and  𝑇𝑇𝑆𝑆𝑇𝑇𝑖𝑖𝑛𝑛, 
the decision pay-off matrix P is generated as shown below: 
 
                                                𝐴𝐴1  𝐴𝐴2     … …  𝐴𝐴𝑛𝑛 

𝑃𝑃 =    

   
𝐴𝐴1
𝐴𝐴2
⋮

𝐴𝐴𝑛𝑛

�

𝑍𝑍𝐴𝐴1𝐴𝐴1 𝑍𝑍𝐴𝐴1𝐴𝐴2         … … 𝑍𝑍𝐴𝐴1𝐴𝐴𝑖𝑖
𝑍𝑍𝐴𝐴2𝐴𝐴1 𝑍𝑍𝐴𝐴2𝐴𝐴2        … … 𝑍𝑍𝐴𝐴2𝐴𝐴𝑖𝑖
… … … …        … … … …

𝑍𝑍𝐴𝐴𝑖𝑖𝐴𝐴1 𝑍𝑍𝐴𝐴𝑖𝑖𝐴𝐴2        … … 𝑍𝑍𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖

� 

 
        where 𝑍𝑍𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖  = 𝑐𝑐𝐴𝐴1𝐴𝐴𝑖𝑖  + 𝑞𝑞𝐴𝐴1𝐴𝐴𝑖𝑖 , for i, j =1 to n          (6) 
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3.5. Linear Programming Model to Obtain Optimal Strategy and Decision Making 

In the last phase, the optimal strategy is obtained by analysing the unified decision pay-off 
matrix by applying linear programming method [13] to the decision pay-off matrix, shown in 
Equation 6. 
 
In the case of top softgoal that has to be maximised, (𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇), follows the Max-Min strategy, 
the formulation of which is given below as ready reference: 
Let the value of the game is v; the strategies are A1, A2... An; the upper value of the game is 𝑠𝑠; 
the lower value of the game is 𝑠𝑠 and the range of the values of the game is =  𝑠𝑠 −  𝑠𝑠  . 
 
 𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠, 
 
 Subject to the linear constraints 

 
−𝑢𝑢 × 𝑠𝑠 + ∑ 𝑍𝑍𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖

𝑛𝑛
𝑖𝑖=𝑖𝑖=1   × 𝐴𝐴𝑖𝑖  ≥  𝑠𝑠 , 

 
   ∑ 𝐴𝐴𝑖𝑖

𝑛𝑛
𝑖𝑖=1  =1; ∑ 𝐴𝐴𝑖𝑖

𝑛𝑛
𝑖𝑖=1  =1 𝐴𝐴𝑖𝑖,𝑖𝑖  ≥ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖, 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑛𝑛                   (7) 

   
From Equation 7 all the values are in linear form, and the solution to the game can be found by 
using a linear programming method. Similarly, player 2 i.e., top softgoal (TSMin), follows the 
Min-Max strategy. The linear formulation, TSMin is the dual of TSMax,. So the solution to the 
game is found by solving either the formulation of TSMax or TSMin.  Thus, the optimal proportion 
values of the strategies are evaluated by solving either formulation and the strategy with high 
proportion value is selected. 

4. Simulation and Evaluation 
The effectiveness and feasibility of the proposed approach (of the i*goal model) were tested by 
performing experiments on different case studies from the literature namely Telemedicine 
system [26], Meeting Scheduler system [4]. The result of the Telemedicine case study is 
presented in this paper. 

 
Fig. 2 Simplified SR model for the Telemedicine system (with dependency) 

The adapted telemedicine system is shown in Figure 2 with actors, Patient and Health Care 
Provider. For more details about the telemedicine system, readers are directed to [26]. The 
objective of this system is to choose an optimal alternative option regarding its impact on each 
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of the softgoals. The defuzzified values, as shown in Table 2, are used to evaluate the objective 
functions of each top softgoal. 

       Table 2. Defuzzified values for impacts 

Impact Defuzzified value 
Make 0.8 
Help 0.64 

Some+ 0.48 
Some- 0.32 
Hurt 0.16 

Break 0 
 
The objective function values for both actors, under both alternatives, are given in Table 3 using 
Equation 2 as a ready reference. 

Table 3. Optimal values for the Telemedicine system 

Optimal values Patient Healthcare Provider 
𝐹𝐹𝑇𝑇𝑆𝑆1Patient Centered Care 51.2 30.72 

𝐹𝐹𝑇𝑇𝑆𝑆1Provider Centered Care 51.2 40.96 
𝐹𝐹𝑇𝑇𝑆𝑆2Patient Centered Care 5.24 12.8 

𝐹𝐹𝑇𝑇𝑆𝑆2Provider Centered Care 10.24 51.2 
 
An optimal strategy is obtained using a linear programming model on Equation 7, and the result 
is shown in Table 4. The results indicate that by choosing the Provider Centered Care strategy, 
the system achieves the opposing top softgoals of inter-dependent actors in the i* goal model 
reciprocally. 
 
For evaluating the optimisation model using game theory, a tool was implemented as shown in 
Figure 3 using Java Eclipse environment integrated with the IBM ILOG CPLEX optimisation 
tool. 

   Table 4. Optimal linear formulation for the Telemedicine system 

Alternatives Optimal solution 
Patient Centered Care -9.73 
Provider Centered Care 10.73 
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Fig. 3. Tool result for the Telemedicine system (with dependency) 

5. Conclusion 

A game theory-based goal analysis for the i* goal model has been proposed in this paper. The 
proposed model is tested and then evaluated based on the optimal alternative selection by 
balancing the opposing objectives of dependent actors in the i* goal model. The proposed 
approach involves a multi-objective optimisation process in a two-person zero-sum game 
situation. Further research topics include arriving at optimal solutions for conflicting goals 
among inter-dependent actors. Also, performing sensitivity analysis, for facilitating valuable 
input data to help stakeholders in the decision-analysis process. 
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