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Abstract 
Technical advances in Information and Communication Technology have enabled the collection 
and storage of large amounts of data, rising hopes of digitalising and thus potentially improving 
decision making and related support systems. Unfortunately however, the pre-existing gap 
between required decision making knowledge and the useful information provided by current 
technologies appears to increase rather than contract. Thus, the multitude of patterns presently 
provided by current data analytics techniques do not deliver an adequate set of scenarios to 
enable effective decision making by humans. This paper advocates a digital decision analytics 
solution featuring the use of Situated Logic to create ‘narratives’ describing the meaning of data 
analytics results and the use of Channel Theory in order to support adequate situational 
awareness. This approach is explained in the context of a System-of-Systems paradigm highly 
relevant to today’s typically complex clusters of distributed collaborative decision making 
centres and their associated decision support systems. 
 
Keywords: digital decision making, decision support systems, situational awareness, big data, 
data warehousing, decision model, situated reasoning, channel theory 

1. Introduction 
 
Big Data [1], the Liquid Enterprise [2], Sensing Information Systems [3] and similar concepts 
hold the promise to provide all necessary decision-making information for management in the 
adequate detail, quality and ‘freshness’ required. Conceptually, this endeavour comprises 
achieving the necessary capabilities to use the data to derive decision-making information in an 
efficient and effective manner, based on inferring knowledge that was not available (and 
attainable) before; nowadays, this assumes the presence and support of suitable data analytics. 

An essential enabler of the above-mentioned undertakings is digitalisation – defined as 
transforming physical artefacts (processes, content, objects, etc.) and converting them to a 
(partially or entirely) digital format [4]. Digitising hopes to achieve not only efficiency gains 
but also to result in increasingly customisable and flexible artefacts [5] and even a change in 
the division of work [6]. 

Due to increased competition and reduced profitability margins in the context of hyper-
competition, digitalisation requires more efficient problem solving, planning and decision 
making – which demand knowledge ‘mobilisation’ [7], i.e. transfer of knowledge (from experts 
and inferred as described above) to novices and to automated systems (so as to be able to act 
‘intelligently’); hence, effective digitalisation relies on suitable data and decision analytics. In 
addition, current findings on the use of digital data in executive boardrooms reveal that while 
it does occur, the degree of success heavily depends upon a proper synthesis and interpretation 
[8] – i.e. data analytics effectively supporting decision analytics. 
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Importantly however, it is necessary to define realistic expectations in order to avoid expensive 
mistakes. Thus, it is becoming clear that finding new ways to correctly interpret complex data 
in context is necessary [9]. For example, evidence-based medicine that relies on large scale data 
gathering through clinical trials and careful statistical analysis, after a promising start, is 
showing signs of trouble when the evidence gathered is applied in complex individual cases 
[10, 11]. 

From the above, an obvious perspective is that when intending to use large amounts of 
gathered data to create useful decision-making information, one must carefully consider the 
information needs of the intended audience (e.g. management) and importantly, how the 
interpretation of data is influenced by context.  

This paper aims to investigate and analyse from a theoretical perspective what gaps and 
barriers exist in using data warehousing and big data paradigms to support proper decision 
analytics materialised in effective decision-making, in the context of digitalisation. 

2. Research Methodology, Approach and Assumptions 
The main research question addressed by this paper is: ‘What are the main underlying causes 
of the ongoing difficulties in effective decision making, in the context of ever increasing 
digitalisation?’ A secondary research question would be ‘(How) could the application of 
decision loops, situated logic and channel theory contribute to solving these problems?’ 

In terms of Järvinen's classification [12], the research method belongs to theory creation, 
employing conceptual development as part of the constructive type of research methodology 
[13]) in the attempt to a) reveal the root causes of the problems in the effective use of data for 
effective decision-making and b) to hypothesize on the traits of potential solutions. Owing to 
the research domain, namely decision making by management with possible automated 
assistance (agents), the research adopts an anti-positivistic epistemological stance [14, 15] 
aware of the components, sources and limits of knowledge and of the justification of knowledge 
[16], so as to give a reliable qualitative answer to the research questions [17]. 

Critical realism as a higher level ‘meta-theory’ [18, 19] is also utilised, acknowledging the 
hermeneutic element in producing useful information for human decision making. Critical 
realism also allows the authors to employ a layered ontological view, allowing empirical 
findings to coexist with and be complemented by conceptual ones, as empirical findings alone 
do not necessarily represent what happens. Thus, events of interest a) may not be observed, or 
b) may not necessarily reveal the mechanisms that cause them to happen [20]. This stance is 
reflected in the analysis in Section 3 and conceptual work in the subsequent sections. 

3. From Data to Information: Concepts and Approaches 

3.1. Management and Its Information Needs  

Management typically needs to make decisions on multiple levels, such as strategic, tactical, 
operational and even real-time. This endeavour can be reasoned about in relation to the 
information flow, usage and needs, and optimised using various types of models. In the 
following, the authors will use an example of mainstream systematic model of decision making, 
namely the GRAI Grid [21] (see Fig. 1). Fundamentally, this generic model identifies 
management, command and control tasks at various levels (identified via time spans called 
‘horizons’) and the information flow between them. 
The 'exogenous and endogenous information flows feeding the Manage, Command and Control 
centre in Fig. 1 illustrate the point that in order to make successful decisions it is necessary to 
satisfy the information needs of the management functions. This means that the data gathered 
and analysed must be meaningful, properly aggregated (level of detail) and suitably expressed 
in order to meet the demands and competencies of each audience populating the decision centres 
at various horizons.  
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Fig. 1. A simplified view of a mainstream decision making model:  GRAI Grid [21] 

This is not a trivial task. To justify this point the authors shall refer to two main approaches to 
data analytics, namely data warehousing and big data. 

3.2. Data Warehousing and Big Data 

Data warehousing (an architectural concept relying on clean, integrated data of high quality) 
aims to use snapshots of operational databases and other data repositories and build an interface 
enabling the analysis (‘mining’) in order to identify management-relevant information. To build 
such a facility fast and in an affordable manner, the methodology suggested [22, 23] is to create 
it out of existing databases and possibly transaction logs so as to gain management insight [24, 
25]. The aim is to create a narrative that is characterising the present or predicted future 
situation and is essential for strategic decision making. Despite initial apparent success in 
creating meaningful insight for management, data warehousing displayed some notable failures 
to deliver on its promises [26].  

‘Big data’ is a technology that uses traditional data analysis and machine learning 
techniques to derive useful interpretations based on large and varied data sources [27, 28]. 
Brought forward by the technological advances in data gathering (cheaper, Internet-of-Things 
(IoT)-enabled and more intelligent sensors) and storage (ever cheaper and now cloud-based) 
and initially touted as the solution to the problems where traditionally implemented data 
warehousing fell short, big data is still maturing and yet to make significant inroads in decision 
support [29, 30]. This is partially owing to its very dependence on machine learning algorithms 
that attempt to predict but cannot adequately explain the predictions (an essential factor in 
gaining human trust in decision support systems [31]). 

Since big data technology is nowadays often used in data warehousing [32](e.g. in the 
creation of Enterprise Data Warehouses to support, among other functions, decision making), 
a combined analysis of their shortcomings in achieving the expected insight for decision-
making is deemed as highly relevant and presented in the next section. 

3.3. Shortcomings of Data Warehousing and Big Data 

A first drawback of the two concepts refers to the associated methodologies, which do not give 
enough weight to starting with understanding the fundamental information needs of the decision 
maker rather than rush to data collection and interpretation [33]. 
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In addition, there is minimal or inexistent correlation between internal- and external data 
sources (i.e., connecting the endogenous and the exogenous information flows - see Fig. 1). 

Further on, insufficient effort is put into realising what data is needed for being able to draw 
useful inferences, but is unavailable. Even the recent methods proposing to limit the amount of 
sensor data taken into account in situation assessment (e.g. via a facility to switch ‘on or off’ 
additional pre-stored sensor data sources) is relying on the command and control to pinpoint 
what data should be taken into account to possibly change the narrative. 

If the above deficiency is identified, then the need for data that is not available, but is 
deemed necessary, may become the source of additional data collection tasks; however, this 
can inadvertently result in poor data quality ([9, 34]). This is because the essential but 
problematic Human point of view of the data gathering task is ignored (i.e., how to avoid data 
quality problems owing to erroneous data entry by humans who consider it a chore), in favour 
of only solving the easier to manage database / computing problems (how to use various 
algorithms to identify patterns in available data, which is essentially a technical problem). This 
issue is exacerbated by the current context of emerging ubiquitous digitalisation. 

Another issue is the limited progress in transforming existing processes to produce the 
necessary data as a by-product of the production (or service delivery) process, instead of 
requiring additional data entry [34] (a main source of data quality issues as shown above). 

There has been a tendency to disregard the context of the collected data [35], and thus 
creating the danger of situation misidentification without even being aware of having committed 
this mistake [36]. 

Another important aspect is the typical reliance of big data technology on machine learning 
techniques which produce models whose uncertainty cannot be adequately assessed and 
especially whose predictions cannot be adequately explained [37]. 

Out of the above aspects, two main issues stand out when analysing the history of creating 
useful decision-making information through data warehousing using big data analytics and the 
associated business intelligence processes: 
• On each decision-making level, one must correlate internal and external data; 
• With the opportunity to collect and access very large amounts of data, due to the typically 

low density of useful content [1], it becomes difficult to identify patterns that are useful 
for decision making (too many patterns identifiable by algorithms) – unless one uses 
heuristics (i.e., the result of prior learning) to discern what is relevant (note that the 
measure of relevance may change in time and with the current interpretation of data). 

The following section aims to address the above issues using a nested and recursive decision 
making paradigm allowing correlation, explanation and learning through self-reflection. 

4. Making Effective Decisions  

4.1. The OODA Loop as an Activity Network 

The tasks that appear in each type and level of decision-making and the feedback that can be 
used to inform the filters used to selectively observe reality may be studied using a model that 
explains how successful decisions are made. This model is part of the well-known Observe, 
Orient, Decide and Act (OODA) Loop devised by John Boyd [38].  

Note that this ‘loop’ is often misunderstood to be a strict sequence of tasks [39]. OODA is 
not a strict loop, due to the feedback links inside the high level ‘loop-like’ structure that are 
responsible for learning and for decisions about the kind of filters necessary. Thus, in fact it is 
actually an activity network featuring rich information flows among the OODA activities and 
the environment. 

A brief review of Boyd’s OODA concept can be used to highlight potential development 
directions for data warehousing and/or big data methodology for decision support. Thus, 
decisions can be made by the management / command & control system of an entity, in any 
domain of action and on any level or horizon of management (i.e., strategic, tactical, operational 
and real-time, performing four interdependent tasks. 



ISD2018 SWEDEN 

  

 

 
Fig. 2. Extended OODA Loop as an activity network (based on [40])  

featuring additional Learning and Narratives Loops 

These tasks are as follows (see Fig. 2):  
• Observe (selectively perceive (filter) data – measurement, sensors, repositories, real-time 

data streams – using existing sensors); 
• Orient (recognise and become aware of the situation based on patterns in the data using 

data analytics techniques and producing a narrative to what is actually happening, or 
generate the need for more data so as to be able to disambiguate); 

• Decide (retrieve existing-, or design / plan new patterns of behaviour); 
• Act (execute behaviour, of which the outcome can then be observed, etc.). 

Note that importantly, one can only observe using existing sensors. The advent of large scale 
sensor networks and the IoT can provide in-situ data on a massive scale, however this is only a 
mere affordance; since there is no chance to observe absolutely everything, how does one know 
that what is observed is relevant and contains (after analysis) all the necessary data, which then 
can be turned into useful situational awareness [41]? Likely, one does not know a priori and it 
is only through ‘post-mortem’ learning that a decision (support) system verges on an analytics 
capability level that is timely and effective in achieving situational awareness. 

This learning has the potential to result in decisions that also emphasize relevant gaps and 
thus initiate capability improvement efforts. It is self-reflective management that typically 
engages in such learning, comparing the behaviour of the external world and its requirements 
on the system (the future predicted action space) with the action space of the current system 
(including the current system’s ability to sense, orient, decide and act). Note that in this context, 
the term ‘action space’ describes the set of possible outcomes reachable using the system’s 
current resources (technical, human, information and financial). 

The learning loop is in itself an OODA loop analogous to the one discussed above, although 
the ingredients are different and closely associated with strategic management (see Fig. 2). Thus 
the OODA-style questions are in this case: a) what to observe, b) how to orient to become 
situation-aware and c) what is guiding the decision about what to do (within constraints, 
decision variables and possible actions) so as to be able to act. The action space of this strategic 
loop consists of transformational actions (company re-missioning, change of identity, business 
model change, capability development, complete metamorphosis, etc.).  

Essentially, such strategic self-reflection compares the current capabilities of the system to 
desired future capabilities, enabling management to decide whether the change will affect the 

Learning Loop

Observations Decision 
(Hypothesis)

Narratives Loop

Main Loop
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system’s capabilities (including decision making capabilities), the system’s identity (re-
missioning), or both. Note that the management may also decide to instead decommission that 
part of the system due to its inability to fully perform the system’s mission.  

Such transformations are typically implemented using a separate programme or project 
using a similar suitable iterative paradigm, such as the so-called Plan-Do-Check-Act (PDCA) 
loop [42], possibly in a recursive manner [43] e.g. for complexity control. 

4.2. Consequences for Decision Support based on Data Warehousing and Big Data 

The above analysis has the following consequence: ‘big data’ (meaning the collective 
technologies and methods of data analysis and predictive analytics) has the potential to enable 
situational awareness (a condition of successful action) by delivering a plethora of previously 
unavailable domain-level facts and patterns relevant for decision-making. However, this data 
needs to be interpreted, which calls for a theory of situations resulting in a narrative of what is 
being identified or predicted. Without such a narrative, there is no true situational awareness or 
trust in the system, which can substantially limit the chances of effective action. 

It is therefore argued that having the ability to gather, store and analyse large amounts of 
data using only algorithms is not a guarantee that the patterns thus found in data can be turned 
into useful and trustworthy information that forms the basis of effective decision-making, 
followed by appropriate action leading to measurable success. 

Importantly, the process is similar the other way around: when interpreting available data, 
there can be multiple fitting narratives; unfortunately, it is quite difficult to choose the ‘correct’ 
one. In this case, adequate means of reasoning with incomplete information could help 
articulate a need for new data (or new types of data) that can resolve the ambiguity. 

As a result of the above reasoning, the authors argue that supporting decision-making based 
on data warehousing using ‘big data’ requires the collection of a second level of data. This 
‘second level’ is not meant to refer to particular facts, but rather to underpin the creation of an 
inventory of situation types, containing facts that must be true, facts that must be not true, as 
well as constraints and rules of corresponding causes and effects. These situation types can be 
considered models (or model prototypes) of the domain, which can be matched against findings 
on the observed data level. 

Note that due to the ever-changing nature of the Universe of Discourse, the above-
mentioned situation types are also expected to evolve; therefore, one should not aim to design 
and / or construct a facility that relies on a completely predefined ontology of situation types. 
Rather, there is a need for a capability to continuously improve and extend this type of 
knowledge, including the development and learning of new types, which are not a specialisation 
of some known type. This is required in order to ensure that the ‘world of situations’ remains 
open, as described by Goranson and Cardier [44]. 

In order to achieve adequate situation awareness for effective decision making, collected 
data needs to be filtered based on relevance [1, 45], dictated by the possible situations of 
interest. However, as the current situation is typically not unambiguously known and changes 
as data gathered is interpreted, one will have to maintain a dynamic (set of) narratives  of the 
situation, which will continually adjust the data needs [46] as well as what needs to be filtered 
out, or be kept. This constitutes yet another OODA loop, applied to the set of narratives assisting 
in the interpretation of data for decision making (see Narratives Loop in Fig. 2). 

5. The System-of-Systems Perspective to Decision Making 
In the real world, decisions are rarely made in an exclusively centralised manner. Thus, the 
process typically involves several entities acting in a distributed and cooperating style, whether 
within an enterprise (e.g. management of Strategic Business Units (SBUs)), or between 
enterprises, e.g.  in the form of collaborative networks or virtual enterprises (VEs) created by 
them via a Breeding Environment [47] (see Fig. 3). Typically, the participants in the decision-
making process form a system while being systems themselves, often in control of their own 
resources – thus constituting socio-technical Systems-of-systems (SoS) [48].  



ISD2018 SWEDEN 

  

 

 
Fig. 3. Decision making centres and their support systems in a Systems-of-Systems Paradigm 

Moreover, usually each participating system has its own identity, as well as multiple 
commitments at any given time (with one of these commitments being to belong to the SoS in 
question) and their own decision making processes, perhaps supported by a decision support 
system (DSS) [49], as shown in Fig. 3. 

The types of strategies that need to be used in such scenarios have recently been reviewed 
in an extensive state of the art report by the Committee on Integrating Humans, Machines and 
Networks [50], which calls for an interdisciplinary approach, similar e.g. to the collaborative 
networks research area [51], instead of relying on a purely computational viewpoint as a 
background discipline. 

Thus, a SoS must be robust, so as to be able to deal with a participating system not 
performing (e.g. developing a fault or otherwise unavailable, or due to communication channels 
being compromised, etc.). Therefore, successful SoS level decision-making must be framed as 
a cooperative conversation of information exchange and commitments, however with the added 
complexity that important systemic properties (e.g., availability) of the SoS need to be 
maintained, without being able to completely rely on the same property (i.e., availability) of 
individual participating systems. 

To overcome this difficulty, the authors propose that architecture of a successful SoS must 
be dynamically reconfigurable, so that the functional integrity of the SoS is preserved, including 
its mission fulfilment and its management and control. Thus, the robustness of the decision 
system is only achievable if: 

i) the decision function is built to deal with incomplete information (at least for a predefined 
limited time),  

ii) the decision function can pro-actively provide advice regarding its information needs to 
the contributing systems that ‘observe’, in order to resolve ambiguity or to replace 
information sources that became unavailable and 

 iii) the allocation of the OODA loop (see Section 4.1) functions to resources is dynamic – 
similar to how cloud computing can achieve required capacity, availability, scalability, 
and other desirable systemic properties (the ‘ilities’) [52]. 

This self-awareness requirement for a SoS is in addition to the self-reflection requirement 
discussed in Section 4, as it requires operational (and real-time) reconfiguration, based on the 
need for a timely and always available and reliable narrative.  

It must be noted that in the SoS paradigm, the OODA loops must be true both at the 
emergent level (e.g. VE in Fig. 3) as well as in the individual participants; thus, the OODA 
functions must be constructed such that they can descend to the lower level/s (populated by the 
participants and their own component systems and so on, recursively) to gather the required 
information. Note that the SoS participants may not be able to adequately observe or orient, 
however their higher level aggregation may; therefore, a distributed paradigm such as presented 
above can enable more optimised and agile decision making [53].  
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6. Design Principles for ‘Next Generation’ Decision Making 
On both existing and emergent system levels, decision making needs a timely and accurate 
narrative (as explained in Section 4) that looks behind the ‘observables’. This is because firstly, 
decision making needs an understanding of the causes and effects of events in the external and 
internal environments, in order to correctly interpret what is actually happening and be able to 
predict events that have not yet happened, or reason about a competitor’s  actions of which the 
effects are not yet visible. Secondly, in a competitive environment decision making also needs 
to reason about whether the competitor has the ability to do the same; moreover, it may even 
be possible to fabricate observables that limit or delay the competitor’s ability to discern and 
predict. An essential aspect of agile and effective decision making (whether on strategic or 
tactical level) relies on the ability of the system in question  to create and to continually update 
its situated insight, thus being able to a) deal with uncertainty and b) manufacture it to deceive 
the competition. 

Based on the above observations it is possible to define principles underpinning a ‘next 
generation’ approach to decision making and DSS. Generally, given the fast-paced 
technological developments, the authors propose that it is better to avoid framing this structure 
in terms of implementations and rather describe it as a more stable functional architecture (thus 
allowing the level of automation to evolve with time without having to make changes in the 
underlying structure).  

6.1. First Functional Principle: Employ Situated Reasoning 

Consider the following domain-level observations: O1: price of tomatoes is going up; O2: 
producer is reporting supply difficulties due to bad weather; O3: supermarket chain announces 
that supply will be supplemented through imports. Then later, O4: prices of tomatoes go down, 
however - O5: there are no announcements by any supply chain members. 

A domain-level theory would describe supply-demand rules and how these influence prices, 
by describing the production system and supply chain characteristics (e.g. best times and 
weather conditions to pick tomatoes, ways to store and distribute the product, etc.).  

Suppose that one does not know the delays in the producer’s processes (possibly weeks 
between tomatoes being picked and being shipped, or perhaps only days). Possibly one does 
not know the supermarket chain’s logistic characteristics either.  

Presume that an investor wants to invest in the tomato business and needs to make a 
decision about whether to do so or not - and if yes, then what would be the best way to do so. 
It may be possible to build a model of the tomato market from what one is able to observe 
including price movement trends on the market; however, information for the investment 
decision is incomplete. Importantly, one does not really know how to interpret what really 
caused the fluctuations in supply and demand and also in price.  

For example, it is possible that what was observed was i) the result of bad scheduling and 
planning, because the current supply chain does not share that kind of information among 
producers, wholesale and retail. It is also possible that the delays were really due to ii) bad 
weather (or not at all, because tomatoes are usually picked unripe and stored to then be ripened 
on demand, and the producer’s announcement was an excuse in order to hide bad scheduling, 
hence case i)). Further on, it is also possible that iii) the producer received an offer well above 
market price from somewhere else to satisfy a sudden need and reduced the delivery volumes 
to the supermarket chain. Finally, it is also possible that iv) the supermarket chain reduced its 
orders to purchase cheaper imported products, to then subsequently be able to exercise 
downward price pressure on the supplier. 

For the investor to make a good decision (whether to invest in the producer or not), it needs 
to be able to interpret past observed events so as to understand the competencies, motivations 
and strategies of the players. Each of these types of situations (the candidate interpretations of 
the events described) has their own logic and constraints. A good investor would be familiar 
with a repertoire of situation types and their internal logic (based on previous experience, 
cultural knowledge and the analysis of concrete situations – achieved e.g. through ethnographic 
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practice). The question is: which one of these can be used as the correct narrative of the sudden 
price changes of tomatoes? 

The investor can interpret the current situation S based on known matching situation types 
SA - the case where the producer has poor scheduling (or perhaps insufficient warehouse 
capacity), but excellent product, and SB, where the supermarket chain is playing a strategic 
game, planning to reduce the contract price thus affecting the profitability of the producer. Note 
that there may be a myriad of situation types SN, some only variations of a general type. 

The investor can employ situated reasoning in order to get to know what is the correct 
narrative so as to narrow down the question; therefore, it should find out what (perhaps very 
simple) additional fact/s would have to be discovered to disambiguate between SA and SB. The 
resulting decision would be in case of SA: invest, but improve the distributed scheduling system 
of the supply chain; and in case of SB: stay away. 

6.2. Second Functional Principle: Use Channel Theory to Enable Situation Awareness 

If situations are organised in types and their internal logic is known (like in the scenario in 
Section 6.1), then there exist possible ‘channels’ through which information in one situation 
type can be transferred (possibly in a lossy manner) to another situation type. 

A recently popularised mathematical approach of the above is the category theoretic 
treatment of situation theory [44, 54, 55]. The mechanism that allows the two levels (situation 
theory and domain level theory(ies)) to coexist is channel logic [56] - according to which, given 
the category of situations representing situation types, there is a mapping that regulates the way 
complete lines of reasoning can be ‘transplanted’ from one situation type to another. 

 

 
Fig. 4. Simplification of Category Theoretic approach of Situation Theory 

This transplanting works as follows: when there exists a logic in a known situation type SA and 
the facts suggest that the situation is of a related type SB, many (however typically not all) facts 
and inferences should also be valid in type SB (see Fig. 4). 

As a result, if we have a known situation of type SA with facts supporting this claim, and 
we only have scarce data about another situation type of interest (of type SB), channel logic 
allows us to deduce the need for data that can be used to ‘fill in the details’ about this second 
situation of type SB. The resulting mapping is a so-called morphism between categories and can 
be implemented using functional programming techniques. In Fig. 4, this (info-) morphism is 
represented by the double-headed arrows shown carrying information (while possibly losing 
some, as previously stated) from one situation type to another type to another. 
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The practical consequence is that the decision maker can use this analogical reasoning to come 
to valid conclusions in an otherwise inaccessible domain; should this not be possible, it allows 
to at least narrow down the need for specific data that can support a valid conclusion. The above 
also illustrates in a simplified way the ability of the situation theoretic logic to infer that for 
decision making, there is a need for specific, but yet unavailable data that can disambiguate the 
interpretation of what is known at the time. 

7. Conclusion and Further Work 
In the context of the increasing rate of change and the resulting flood of data, decisions will 
have ever more far-reaching consequences and will need to be made increasingly faster, often 
in real time. The right investments in technology, accompanied by articulating a coherent digital 
strategy and leveraging people as change agents can bring about a sustained competitive 
advantage through digitally-enabled decision-making. 

The work presented in this paper can be used as the basis of a solution creating an ongoing 
situational awareness capability. All application domains (business, government, military, etc.) 
typically already maintain specific ‘repertoires’ of actions that are known to work. However, 
the effective use of such patterns nowadays increasingly depends on their fast, almost 
automated deployment which is typically based on tacit skills and knowledge. 

The usefulness of the OODA loop also depends on performing it better and faster than the 
opponents(s) in order to prevail. Therefore, if one is not able to use the incoming data (to infer 
appropriate information and apply it appropriately) in a timely manner, the resulting action/s 
may become meaningless, as the opponent may have already done so and therefore, changed 
the situation. The authors argue that due to the complexity and number of situation types and 
the amount of data available, using data analytics in conjunction with situation recognition 
could dramatically speed up the loop, hence augmenting the chance of success. 

Further work will continue to focus on the principles underpinning situation theory-based 
decision making and related supporting technology. It will also aim to demonstrate their use 
towards building resilient enterprises through dynamic management, command and control of 
a large number of cooperating agents. 
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