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Abstract 

Generally, a reliable method of analyzing the quality of experience is through the subjective method, 

which is time consuming, lacks usability, lacks repeatability in real-time and near real-time. Another 

method is the objective measurement that aims at predicting the subjective measurement based on the 

estimated mean opinion score. Therefore, this study adopted the objective measurement by 

implementing a quality of experience framework, which employed predictive analytics techniques to 

analyze the mobile internet user experience dataset gathered through the mobile network. The 

predictive analytics employed the use of multiple regression, neural network, decision trees, random 

forest, and decision forest to predict the mobile internet perceived quality of experience. Result from 

the study shows that decision forests performs better than other algorithms used for the predictive 

analytics. In addition, the result indicates that the predictive analytics can be used to enhance the 

allocation of network resources based on location and time constituted in the dataset. 

Keywords: Internet service, Subscribers, Prediction, Real -Time and Machine Learning  

 

Introduction 
The use of internet has reached a historic turning-point whereby internet usage on mobile devices 

have almost replaced the use of fixed-host or server used on desktop computers. At the same time, the 

wide proliferation of different applications used on mobile devices have made the usage of mobile 

internet gain a tremendous momentum in recent years. Internet usage on mobile devices allows the 

mobile internet subscribers (i.e., users) to connect with family and friends through voice or video 

calls, web browsing, e-mail, sharing of pictures and other information through the available mobile 

applications installed on individuals’ mobile devices. Since, mobile internet subscribers have become 

the central focus of service design for the Mobile Network Operators (MNOs), Quality of Experience 

(QoE) is now a new term coined to be used by the MNOs to quantify, manage, and improve the 

perception of the mobile internet subscribers.  

 

QoE is a subjective measure that is similar but different from Quality of Service (QoS (Fiedler et al. 

2010). QoS is the threshhold of technical parameters of the MNO’s performance. The technical 

parameters involves varieties of technologies and services that can be easily measured. However, QoS 
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is not specifically linked with the subscriber’s perception (Dong et al. 2014), as such QoS alone is 

insufficient to measure the mobile internet subscribers’ perception (Qaiyum et al. 2015). QoE is a 

multidimensional concept that integrates both the subjective and objective aspects of the internet 

services provided by the MNOs (Qaiyum et al. 2015). On one hand, the subjective aspect of internet 

services provided by the MNOs aimed at subscribers’ experiences, expectation, personal and social 

background (Qaiyum et al. 2015). While, the objective aspect of the internet services is the network 

performance often represented in the form of the QoS parameters (e.g., throughput, bandwidth, loss, 

delay and jitter). QoE has become an important factor for most mobile internet subscribers when 

choosing a particular MNO. Therefore, the MNOs are faced with the challenges of  monitoring and 

measuring QoE, because the performance of individual MNO can vary between location, time of the 

day, and may not always meet the mobile internet subscribers’ expectations.  

 

Considerable amount of literatures have proposed and assessed internet QoE through subjective and 

objective methods in both fixed-server used on desktop computers and mobile devices (Chen et al. 

2016). The subjective method of measuring QoE is a form of survey usually conducted in a laboratory 

experiments through the use of Mean Opinion Score (MOS) that  represents the subjective QoE of the 

internet subscribers for a particular network service. Several studies have utilized MOS to measure the 

QoE of different internet services provided by the MNOs, the likes of video streaming (Amour et al. 

2015), Voice over Internet Protocol (VOIP (Charonyktakis et al. 2016), Skype voice calls (Spetebroot 

et al. 2015) and web-browsing (Balachandran et al. 2014; Rugelj et al. 2014). Results from these 

studies demonstrated that the subjective method is a reliable measurement because it constituted the 

conscious and unconscious aspects of the subscribers’ quality evaluation process that may not 

otherwise be captured (Barakovic and Skorin-Kapov 2013; Rugelj et al. 2014; Shaikh et al. 2010; 

Singh, et al. 2013; Tsolkas et al. 2016). Despite the reliability advantage of subjective measurement, 

previous studies have reported that the subjective measurement is expensive, time-consuming, not 

reproducible on demand and may not be adequate for in-service quality monitoring (Tsolkas et al. 

2016). The drawbacks associated with the subjective measurement bring about the objective 

measurement, which can measure and predict the internet QoE in real or near real-time. 

 

Generally, objective measurement is linked with quality estimation model related to mathematical 

and/ or comparative methods, which produce perceptible measure of the internet QoE (Alreshoodi and 

Woods 2013). Several studies have analyzed the internet QoE degration (delay, jitter, loss and 

latency) based on parametric and hybrid models using user experience data gathered through the 

network. However,  limited studies have considered context and content of internet service-related in 

mobile network (Tsolkas et al. 2016) based on the user expectation as stated in service level 

agreement (SLA) and throughput respresenting the aggregated experienced by all the users on a 

particular node. In addition, while previous studies have reported an adequate and accurate estimated 

QoE, the use of multiple possible metrics comprising of time and location of mobile internet network 

is still limited in the literature, as most studied utilized the participant in laboratory experiments to 

estimate the perceived QoE (Andrews et al. 2006; Rugelj et al. 2014; Tsiaras et al. 2014).  

 

Therefore, this study proposed an enhanced QoE framework to analyze (predict) perceived QoE 

through the use of mobile internet subscribers’ experience throughput metrics gathered from the 

MNOs’ network. The framework was implemented in Microsoft machine learning R client server 

(MMLRCS), through several machine learrning algorithms like multiple regression, neural network, 

decision trees, random forest, and decision forest to predict the mobile internet perceived QoE. 

Results from this study shows that decision forests performs better than the other machine learning 

algorithms used for the predictive analytics. In addition, the result indicates that the predictive 

analytics can be used to enhance the allocation of network resources based on location (longitude and 

latitude) and time of the day variable used as predictors. Equally, overall, this study supported the 

results of previous studies that reported employing objective measurement to estimate and predict 

perceived QoE can overcome the drawback observed while analyzing mobile internet perceived 

through the subjective method.  
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The remainder of this article is organized as follows. Firstly, the articles provided an extensive 

literature on QoE, QoE measurements, QoE previous frameworks and proposed framework. Secondly, 

the articles discussed the methodological instances of implementing the proposed framework. Thirdly, 

the results obtained from the implementation phase was presented and discussed. Fourthly, the 

theoretical and practical contribution of the proposed QoE model was discussed. Lastly, conclusion 

and futurework was discussed and highlighted respectively.  

 

Mobile Internet Quality of Experience 
In wireless communication field, mobile internet is one of the most fast-growing field because of its 

impact in peoples’ daily life and massive income generated by the MNOs. The growth was associated 

with the enormous development of different internet applications used on mobile devices. QoE is an 

essential phase of mobile internet service provisioning due to the spontaneous growth of subscribers 

who access the internet through their mobile devices. According to Qualinet white paper (Le Callet et 

al. 2012), QoE is described as the “degree of delight or annoyance of the user of an application or 

service. It results from the fulfilment of his or her expectations with respect to the utility and / or 

enjoyment of the application or service in the light of the user’s personality and current state.” This 

definition implies QoE combines the subscribers ‘perception, expectations, network performance and 

experience of the service applications. Mobile internet services provided by the MNO is influenced by 

different QoE factors that is system (e.g.,delay, throughput, jitter, loss and security), human (gender, 

age, background and education), and context (location, time of the day, costs and subscription type 

(Le Callet et al. 2012). Appraised QoE influence factors facilitates the assessment of subscribers 

perceived QoE (Barakovic and Skorin-Kapov 2013). System QoE influence factor in the form of QoS 

parameters (throughput, loss, bandwidth, delay, and jitter) are commonly examined in the literature. 

Among the QoS parameters, delay, jitter and latency are the most examined in previous studies, 

because previous studies believed quality degration affects the users’ experience (Ibarrola et al. 2010; 

Rugelj et al. 2014; Singh et al.  2013). While most studies in the field of QoE have assessed 

throughput measurement for both wireless web traffic and mobile internet applications (Diaz-Aviles 

et al. 2015; Rugelj et al. 2014; Singh et al. 2013), few studies have used aggregated throughput 

measurements experienced by the users mobile network environment. This implies that, previous 

studies examined QoE degration through the fundamental network information and performance 

dataset gathered in laboratory experiments through the desktop computers (Rugelj et al. 2014; Singh 

et al.  2013). However, Tsiaras et al. (2014) reported that results obtained from the laboratory 

experiments may not be generally suitable because of the fixed contextual factors in the QoE 

assessment. Therefore, it is essential to examine mobile internet perceived QoE based on multiple 

possible throughput metrics along with the time of the day, location, and expectation to ensure a 

generalised objective perceived QoE measurement.  

 

Quality of Experience Measurement 

Subjective and objective measurements are the two types of perceived QoE measurements. Subjective 

measurement seeks to evaluate subscribers immediate perception of the internet services provided by 

the MNOs through the use of filled out surveys with MOS quantification in a controlled environment 

(Lozano-Garzon et al. 2015).  Subjective measurement provides an accurate and reliable measurement 

through the perceptual quality scale (excellent = 5, good= 4, fair = 3, poor = 2 and bad = 1) termed 

MOS (Staelens et al. 2015). However, the subjective measurement is not visible in real-time QoE 

evaluation, time-consuming, expensive and is not reproducible on demand (Alreshoodi and Woods 

2013; Andrews et al. 2006; Barakovic and Skorin-Kapov 2013; DeMoor et al. 2010; Shaikh et al. 

2010; Singh et al. 2013; Tsolkas et al. 2016). In this case, the subjective measurement may not be 

adequate for in-service quality monitoring, whereby the subscribers experience can be gathered and 

evaluated in real or near real-time without the subscribers participation (Tsolkas et al. 2016). 

Similarly, the subjective measurement may overburden the subscribers who struggle to determine the 

approriate quality ratings based on their previous experiences (Song et al. 2012). Due to the 

drawbacks associated with the subjective measurement, objective measurement was developed to 

automaticaly predict (estimate) the perceived QoE based on the previous experience usage of the 

subscribers.   
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Objective measurement is concerned with the automatic prediction of subscribers QoE at high 

accuracy through algorithmic processing or mathematical models of the input parameters without the 

subscribers’ intervention (Alreshoodi and Woods 2013; Schatz et al. 2013; Tsolkas et al. 2016). 

Schatz et al (2013) highlighted that the objective measurement can only be appropriate when the input 

measurements closely relates with the subjective quality measurement. Thus, the basic design process 

of the objective measurement process is the derivation of quality models that correlates the 

perceptible influence factors into a predicted MOS values (Schatz et al. 2013). An example of the 

model used in objective measurement is the signal- based models used in media layers. The signal-

based model is concerned with the comparison between the orignal source signal and the degraded 

destination signal by empoying the knowledge derived from psycophysis (Tsolkas et al. 2016). 

Another example of the model type use in objective measurement is the hybrid model that is situated 

between the subjective and objective measurement (Liotou et al. 2016). The hybrid model operates as 

an automatic and objective quality estimator that is built on the previous available subjective scores. 

Oftentimes, the hybrid model employs the subjective test scores as an input to train the QoE model 

through the machine learning algorithms (Alreshoodi and Woods 2013; Liotou et al. 2016; Schatz et 

al. 2013; Tsolkas et al. 2016). This means the hybrid model is concerned with the mapping of the QoE 

influence factors to the MOS values that can be used for the real-time QoE prediction model 

(Alreshoodi and Woods 2013; Schatz et al. 2013; Tsolkas et al. 2016).  

 

Several studies have employed objective measurement for the prediction of perceived QoE in various 

applications through the machine learning algorithms (Alreshoodi and Woods 2013; Charonyktakis et 

al.  2016; DeMoor et al. 2010; Fiedler et al. 2010; Rugelj et al. 2014; Singh et al. 2013; Spetebroot et 

al. 2015). Most of these studies that used the objective measurement placed more focus on human 

factors that is concerned with the inherent characteristics (Tsolkas et al. 2016). However, the use of 

mobile internet usage data consisting of throughput metrics,  corresponding context (location and time 

of the day), content of the services, expectation  from both the user and the MNO’s perspective are 

still limited in the literature.  

 

Quality of Experience Prediction framework for Mobile Data Network 
An abstract representation and relationship of dataset gathered from the users, network, or both and 

analyzed with statistical and algorithms software for automatic prediction to get a higher accuracy is 

the process of modelling perceived QoE. Based on the drawbacks of limited use of mobile network 

diverse dataset comprising of the context and content of the internet services highlighted in the 

previous studies (Alreshoodi and Woods 2013; Machado et al. 2011; Reichl et al. 2015). Therefore, 

this study enhanced Yusuf-Asaju et al (2018) study by implementing the perceived QoE framework 

through the dataset gathered from the mobile network in MMLRCS, The enhanced perceived QoE 

framework aimed at  predicting the perceived QoE through the perceived QoE influence factors, 

perceived QoE measurements and estimations with the aim of overcoming limited use of mobile 

internet usage data consisting of throughput metrics,  corresponding context (location and time of the 

day), content of the services, expectation  from both the user and the MNO’s perspective are still 

limited in the literature.  

 

Several studies have pointed out that contextual influence factors have a direct impact on perceived 

QoE (Ibarrola et al. 2010; Tsiaras et al. 2014). Therefore, analysis of perceived QoE was based on all 

the three dimensions of the perceived QoE influence factors, which enables an adequate estimation of 

the perceived QoE in relation to mobility (such as time and location). The perceived QoE framework 

was proposed to overcome the drawbacks associated with the subjective measurement and bring about 

the objective measurement, which can measure and predict the internet QoE in real or near real-time 

without human intervention and enhance in-service quality monitoring (Tsolkas et al. 2016). In 

addition, the framework enables the prediction of perceived QoE through the use of mobile internet 

usage data consisting of throughput metrics,  corresponding context (location and time of the day), 

content of the services, expectation  from both the user and the MNO’s perspective that is limitedly 

studied in the literature. The perceived QoE modelling framework is depicted in Figure 1.  
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                          Figure 1. Perceived QoE Modelling Framework Implemented in MMLRCS 

                             

The framework is divided into four phases (Real time measurement, Descriptive analytics, predictive 

analytics, and prescriptive analytics). The first phase is the real time measurement platform of the 

mobile network where the dataset was collected. As reported in previous literatures (Barakovic and 

Skorin-Kapov 2013; Spiess et al. 2014; Zheng et al. 2016), the mobile network traffic is believed to 

consist of the QoE influence factors (System, User, and context). These factors were gathered in the 

form of dataset from the real time measurement of the mobile network.  

 

The second phase is the descriptive analytics. This phase involves the cleaning of the dataset gathered 

from the network traffic to make it suitable for the predictive analytics phase. This phase comprises of 

the data pre-processing, the data exploratory process feature selection and extraction from the dataset 

gathered from the mobile network traffic. The data pre-processing constitutes the cleaning, integration 

and transformation of the dataset to make it suitable for the predictive analytics phase. Exploration 

process of the dataset is to enable better understanding of the dataset, and this is usually conducted 

using the statistical techniques. The feature selection focus on the selection of the relevant attributes 

and the extraction process integrates attributes into a reduced set of features to be used for the 

predictive analytics phase.  

 

The third phase is the predictive analytics phase that involves modelling of the perceived QoE 

(estimating the MOS) through the machine learning algorithms. The predictive analytics model the 

perceived QoE through the observation of the dataset instances. In this study, the variables in the 
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dataset collected from the mobile network and SLA are the independent variable while the predicted 

possible values of the dependent variable (MOS) outcome. Equally, for the effective modelling of the 

perceived QoE, the predictive modelling stage involves the training and testing set as shown in Figure 

1. The fourth phase is the prescriptive analytics that involves using the results observed in the 

predictive analytics phase for allocation of network resources and other actions to improve the 

network performance of the mobile network.  

 

Implementation of Perceived QoE Modelling Framework 
The framework was implemented in MMLRCS, which is an extensible, scalable analytics platform 

that integrates machine learning tasks and tools for predictive analytics (Microsoft 2018). Based on 

the framework depicted in Figure 1, the implementation phase of the framework was divided into 

three parts, which are the data collection, data preparation and data modelling as discussed below. 

While the data collection process was conducted through Test Mobile System (TEMS), the data 

preparation and data modelling were conducted through the MMLRCS.  

 

Data Collection 

The dataset used for the implementation of the framework was collected from a major Africa 

telecommunications (telecoms) industry through the drive test measurement. The drive test 

measurement is a process used by the MNOs to evaluate the performance of different mobile network 

on predetermined parameters. According to Budhiraja and Jadon (2013), drive test can be used for 

network benchmarking, service quality monitoring, optimization and troubleshooting. Service quality 

monitoring is the related drive test usage of this study because it focus on the subscriber QoE and 

enables the MNOs to react to subjective quality degradation promptly by investigating the technical 

cause of the degradation using the time correlated dataset collected during the drive test (Budhiraja & 

Jadon 2013).  

 

An example of the software used for drive test is TEMS. TEMS is an end-to-end testing solution used 

by the MNOs to test the quality of the service delivered to their subscribers from the subscribers’ 

perspective (QoE) and network perspective (QoS). Therefore, to enable the implementation of the 

framework, Hypertext Transfer Protocol (HTTP) and File Transfer Protocol Download (FTP DL) 

dataset was collected through TEMS software. The dataset used in this study is the throughput 

parameters, time of the day, location (longitude and latitude) of subscribers, content in the form of 

different applications (HTTP and FTP DL) used by mobile internet subscribers. FTP is a protocol 

used to facilitate exchange of data between a server and clients(s) and is used as a test due to the 

specific nature of the data exchange. HTTP is the underlying protocol used in worldwide web 

(WWW) that is webpages and its data exchange is receiving and sending. Thus, the network test using 

FTP is to determine how the network fares when the user is downloading or uploading only. While, 

HTTP testing is how the network fares when downloading and uploading simultaneously. This is a 

common situation in mobile devices whereby the user sends and receive files simultaneously. Since 

FTP is specific for either downloading or uploading file, this study considers FTP download since 

most users often download applications to be used on their mobile devices. FTP simulates file 

download, HTTP simulates general browsing of the mobile applications. The dataset was collected at 

the different times of the day for different locations within a period of 3months to make a total of 

4million observations to be used for the modelling of perceived QoE.  

 

Data Preparation  

The second implementation phase is data preparation that involves data pre-processing (data cleaning, 

integration, and transformation), exploratory analysis, feature, and extraction. The data cleaning and 

integration process helps to handle the missing values and identify error instances present in the data 

set. Transformation of the dataset was conducted using standardization method, which is the process 

of scaling data attributes, to enable the data attributes fall within the smaller range. In addition, 

mapping of the dataset to the MOS scores was done through discretization, which is the process of 

replacing raw values of a numeric attributes with interval labels or conceptual labels.   
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In this case, the mapping of dataset to the MOS scores was based on the service level agreement 

(SLA), which is the subscriber expectation of mobile internet services provided by the MNOs. 

According to Techtarget (2018), high speed packet access (HSPA) for third generation (3G) mobile 

broadband communication technology offers 42Mbps of throughput per cell. Since the dataset is a  3G 

dataset, the study assumes the maximum throughput that should be offerred in a cell per second is 

42Mbps. The initiative of the DQX model proposed by C. Tsiaras and Stiller (2014) was considered 

in this study, which allows the use of maximum and minimum expected values to be defined for the 

QoE influence factors selected and extracted from the datasets. Hence, the maximum and minimum 

values used for the mapping of the SLA (expectation) is 42Mbps and 0Mbps respectively. Afterwards, 

exploratory analysis was conducted through descriptive statistics to ensure the normality of the 

dataset. Equally, feature selection was conducted using correlation analysis, which can determine the 

relationship between the variables in the dataset. Lastly feature extraction process was carried out 

through the principal component analysis. Throughput variable representing the aggregated total 

application layer throughput, time of the day and location was extracted from the dataset for the two 

applications (HTTP and FTP DL). The descriptive statistics of the TT variable observed on the node 

is presented in Table 1 below 

 

                                        Table 1. Descriptive Statistics of TT Variable 

Application 

Type 

       Variable TT 

 Maximum Minimum Intervals 

FTP DL 35.77 Mbps 0 Mbps 7.2Mbps 

HTTP  30.23 Mbps 0 Mbps 6.05Mbps 

 

Perceived QoE Modelling 

This section focused on the modelling of the perceived QoE through the abstract representation of the 

dataset observations. To achieve the modelling of the perceived QoE, this study mapped the dataset to 

the MOS based on the TT variable (aggregated total application layer throughput used by the users on 

a particular node) and the Absolute Categorical Rating (ACR) MOS scale was represented as a 

discreet value (that is 5= excellent. 4= good, 3= fair, 2 = poor, and 1= bad). In addition, the TT 

variable was also used to mapped the user expectation (SLA) into discreet value (that is 5= excellent. 

4= good, 3= fair, 2 = poor, and 1= bad) based on the maximum 42Mbps that is achievable on a node 

(Ericson 2007; Techtarget 2018). The interpretation was based on the maximum and minimum value 

of the TT variable for the ACR scale was achieved through probability mass function of the discrete 

random variable (TT). This is evident in the study of Battisti, Carli and Paudyal (2014) that shows 

throughput has a linear relationship with MOS, that is an increase in throughput corresponds to an 

increase in MOS respectively. Table 2  and Table 3 presents the descriptive statistcs of TT for both 

applications after the interpretation of the ACR scale through the probability mass function for MOS 

and SLA respective;y 

 

               Table 2. Descriptive Statistics of TT Variable Interpretation to ACR MOS Score 

FTP DL Applications HTTP Applications  

TT Variable 

Intervals 

(Mpbs) 

ACR MOS 

Score 

TT Variable 

Intervals 

(Mpbs) 

ACR 

MOS 

Score 

Scale 

Interpretation 

0 -7.2 1 0 - 6.046 1 Poor 

7.3-14.3 2 6.047 - 12.092 2 Bad 

14.4-21.5 3 12.092 - 18.138 3 Fair 

21.6-28.7 4 18.139 - 24.184 4 Good 

28.8-35.8 5 24.185 - 30.23 5 Excellent 

 



  

  

 Twenty-Second Pacific Asia Conference on Information Systems, Japan 2018  

 

                  Table 3. Descriptive Statistics of TT Variable Interpretation to SLA Scale Score  

TT Variable 

Intervals 

(Mpbs) 

ACR MOS 

Score 

Scale 

Interpretation 

0-8.4 1 Poor 

8.41-16.8 2 Bad 

16.81-25.2 3 Fair 

25.21-33.6 4 Good 

33.61-42.00 5 Excellent 

 
Correlation analysis was examined through pearson correlation between the MOS and TT variable of 

FTP DL applications given a correlation value of 0.908 (significant at p<0.000). In the case of the 

HTTP  application, correlation of TT and MOS was 0.915 (significant at p<0.000). Similarly, the 

correlation of the MOS and expectation was examined given 0.903 (significant at p<0.000) and 0.855 

(significant at p<0.000) for both FTP DL and HTTP  respectively. The correlation between the time of 

the day and MOS was -0.026 (significant at p<0.000) and 0.173 (significant at p<0.000) for both FTP 

DL and HTTP respectively. Lastly, The correlation between location and MOS was 0.332 (significant 

at p<0.000) and 0.033 (significant at p<0.000) for both FTP DL and HTTP respectively as presented 

in Table 4 and Table 5.  

 

                       Table 4. Correlation Matrix of FTP DL Application  

 Datetime Latlong TT Region SLA MOS 

Datetime 1      

Latlong -0.634 1     

TT -0.027 0.019 1    

Region -0.632 0.772 -0.007 1   

SLA -0.035 0.040 0.883 0.039 1  

MOS -0.026*** 0.332*** 0.908*** 0.010*** 0.903*** 1 

                 ***Significant at 0.000 

                 Table 5.Correlation Matrix of HTTP Application  
 Datetime Latlong TT Region SLA MOS 

Datetime 1      

Latlong -0.193 1     

TT 0.175 0.017 1    

Region -0.452 0.793 -0.080 1   

SLA 0.156 0.024 0.847 -0.076 1  

MOS 0.173*** 0.033*** 0.915*** -0.071*** 0.855*** 1 

                ***Significant at 0.000 

The multiple R squared for multiple regression was 0.871 (standard error = 0.275) and 0.861 

(standard error = 0.310) for FTP DL and HTTP respectively. The regression result was compared with 

other machine learning algorithms like, neural network, decision trees, random forest, and decision 

forest. The prediction analysis was conducted in MMLRCS platform by dividing the dataset into 

training (70%) and test (30%) sets and applying different machine learning algorithms. Evaluation of 

the resulted prediction model was carried out using (root mean squared error (RMSE) to determine the 

accuracy of the different machine learning algorithms used for the prediction model. While the actual 

MOS of FTP DL application was 1.5018 and actual MOS of HTTP was 1.6170, Tables 3 and 4 



  

  

 Twenty-Second Pacific Asia Conference on Information Systems, Japan 2018  

depicts the accuracy results of the prediction model along with the MOS of FTP DL and HTTP 

application respectively.  

           Table 6. Perceived QoE Modelling Accuracy Result for FTP Download Applications 

Machine Learning 

Algorithms 

RMSE MOS 

Multiple Linear Regression 0.274 1.5025 

Decision Trees 0.120 1.5024 

Random Forest 0.118 1.5021 

Decision Forest 0.072 1.5019 

Neural Network 0.141 1.4937 

 

Table 7. Perceived QoE Modelling Accuracy Result for HTTP Applications 

Machine Learning Algorithms RMSE MOS 

Multiple Linear Regression 0.310 1.6162 

Decision Trees 0.116 1.6172 

Random Forest 0.127 1.6169 

Decision Forest 0.091 1.6171 

Neural Network 0.148 1.6013 

 

The correlation results of MOS and throughput indicates increment in throughput will increase the 

MOS for both the FTP DL and HTTP applications. This findings supported the findings of Tsiaras et 

al. (2014) that states the effects of throughput are always felt in HTTP applications and the study of 

Battisti et al. (2014), which demonstrated increasing throughput corresponds to a linear increase in 

QoE. Overall, this result shows that the mobile internet users of HTTP and FTP DL application are 

experiencing a poor perceived QoE since the MOS is between 1.5018 and 1.6170 for FTP DL and 

HTTP  application respectively, with a correlation of 0.908 and 0.915 and highest prediction accuracy 

of Decision forest 0.072 and 0.091 for FTP DL and HTTP application respectively.  

 

 

Similarly, the correlation of MOS and expectation also depicts a linear relationship. This means an 

increase in MOS  tends towards achieving the user expectations and a decrease in MOS interpretes the 

MNO are not meeting the user expectation. This assumption of previous studies that describes 

expectation in the form of SLA as a service contract between the MNOs and users (Gozdecki, 

Jajszczyk, & Stankiewicz, 2003). Infact, (Djogatovic, Kostic-Ljubisavljevic, Stojanovic and Mikavica 

(2014) described expectation as a starting point of the perceived QOE evaluation process. However, 

the MNOs must always update the user expectation in the form of the service agreement from time to 

time as the technology improves. Following, Tsiaras et al. (2014) interpretation of MOS based on 

“expected value that either the user is paying for, or SLA defines or a service demands to perform as 

expected”,then this study can conclude that correlation of MOS and expectation corresponds to a poor 

experience at MOS 1.5 and 1.6 for both FTP DL and HTTP application respectively. 

 

In addtion, in a mobile environment, time of the day and location is an important influence on the 

perceive QoE. This was demonstrated with the correlation of the time of the day with the MOS for 

both FTP DL and HTTP applications. For example, it was observed from both raw data set and 

predicted data set that the MOS of the subscribers was low at peak time (busy time like 7am to 5pm), 

and high between 11pm and 5am. Another interesting evidence from the data is that the internet speed 

depends on the location of the subscribers for both application. However, it was observed that the 

MOS of the subscriber in the urban areas is higher than those in the rural areas based on the 

coordinates of the location present in the data set. This evidence supports the work of Tsiaras et al. 

(2014) that time of the day and location is very important for the modelling of mobile internet 

perceived QoE.  
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Evidently, the results of the perceived QoE modelling showed that decision forests have the highest 

accuracy for both the FTP DL and HTTP applications. This result support the study of Alreshoodi and 

Woods (2013) that reported decision forests often provides higher accuracy in predictive models.  

 

 

Theoretical and Practical Contribution 
To start with, the whole contribution of this study is that, to the utmost best of the researcher’s 

knowledge, is one of the first attempts to predict perceived and bring empirical evidence on System 

(throughput), Human (Expectation and Region) and Context (Time of the day and location) QoE 

influence factors that helps to build a preceived QoE prediction model. Even though the results are 

mobile internet application independent, the overall results show that throughput, expectation, region, 

time of the day and location have a direct significant influence on perceived QoE Therefore, this study 

contributes to the extant knowledge at the conceptualization stage by providing a perceived QoE 

prediction model without human intervention. This shows that the MNOs can provide a proactive 

measures to improve the network performance in areas that have a low level of perceived QoE, before 

the network performance would deteriotate and leads to large rate of mobile internet customer 

dissatisfaction Diaz-Aviles et al. (2015).   

 

Theoretically, this study incorporates all the three perceived QoE influence factors dimensions in the 

Perceived QoE modelling framework, which enables an adequate estimation of the perceived QoE in 

relation to mobility (such as time and location) that represents the context QoE influence factor, 

aggregated data transmission speed (throughputs) that represents the System QoE influence factor, 

expectation and region that represents the Human QoE influence factor. This was because of the 

limited use of time of the day, location, expectation, throughput, and region as a perceived QoE 

influence factor (Barakovic and Skorin-Kapov, 2013;  Reichl et al. 2015; Tsiaras et al. 2014). 

Afterwards,  the findings showed that all the perceived QoE influence factors have significant effect 

on mobile internet perceived QoE. 

 

Practically, the prediction perceived QoE showed that larger percentage of users were dissatisfied 

with the mobile internet services provided by both MNO. Based on the findings the MNOs can 

identify the perceived QoE of the users in real or near real-time, since the prediction method can 

capture the technical aspect of the network and performance and does not requires human 

intervention. In addition, the datasets used in this study was a traffic dataset, it can be concluded that 

the high rate of poor perceived experience can be because of lack of network resources (Longe 2011). 

This can be resolved by allocating network resources in locations that have poor rate of perceived 

experience. Because this study strongly believed good allocation of network resources will enhance 

the perceived QoE and in turn increases the customer satisfaction.  
 

Conclusion and Future works 

This study presented an overview of mobile internet QoE, enhanced the perceived QoE modelling 

framework proposed in previous study. The framework was implemented in Microsoft R platform 

through the drive test dataset collected from the mobile network in real time environment. The dataset 

comprises of the throughput aggregated metrics experienced by the mobile internet subscribers, time 

of the day and location of the subscribers. The dataset was cleaned and prepared to make it suitable 

for the modelling of the perceived QoE. Perceived QoE was modelled using different machine 

learning algorithms like neural network, decision trees, random forest, pruned tree, and decision 

forest. The accuracy of the prediction model shows that decision trees is the most suitable for the data 

set and the platform in which the perceived QoE was conducted. Evidence from this study indicated 

that, mobile internet data set collected through the drive test measurement can be used for the 

modelling of the perceived QoE based on the subscribers’ expectation in the form of SLA. Equally, 

the result of the perceived QoE showed that larger percentage of subscribers experienced a poor 

internet services from the MNO that the dataset was used for the modelling of perceived QoE. In 

addition, the results obtained from the modelling of perceived QoE clearly indicated that the MNO 

can use predictive analytics result for prescriptive analytics (such as network allocation) using 
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location and time of the day to address network issues appropriately before such issues will 

deteriorate and affect large number of subscribers. Future work, will employ the use of standard 

deviation, cumulative density functions and quartile on the dataset to maximize the perceived QoE to 

determine the diversity of satisfied and unsatisfied mobile internet subscribers.  

 

References 

 
Alreshoodi, M., and Woods, J. (2013). Survey on QOE\QOS corelation models for multimedia 

services. International Journal of Distributed and Parallel Systems (IJDPS) 4(3), 53-72. 

Amour, L., Sami, S., Hoceini, S., and Mellouk, A. (2015). Building a Large Dataset for Model-based 

QoE Prediction in the Mobile Environment. Proceedings of the 18th ACM International 

Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (pp. 313-

317). Cancun, Mexico : ACM. 

Andrews, M., Cao, J., and McGowan, J. (2006). Measuring Human Satisfaction in Data Networks. 

Proceedings of the 25th IEEE International conference on Computer Communications (pp. 1-

12). Barcelona, Spain: IEEE. 

Balachandran, A., Aggarwal, V., Halepovic, E., Pang, J., Seshan, S., Venkataraman, S., and Yan, H. 

(2014). Modeling Web Quality-of-Experience on Cellular Networks. MobiCom (pp. 213-

224). Maui, Hawaii, USA: ACM Doi: http://dx.doi.org/10.1145/2639108.2639137. 

Barakovic, S., and Skorin-Kapov, L. (2013). Survey and challeges of QoE management issues in 

wireless networks. Journal of conputer networks and communciations, 1-28. 

Battisti, F., Carli, M., and Paudyal, P. (2014 ). QoS to QoE mapping model for wired/wireless video 

communication. Euro Med Telco Conference (EMTC) (pp. 1-6). IEEE. 

Budhiraja, R., and Jadon, J. S. (2013). Study And Implementation Of Drive Test For Development Of 

GSM Network. International Journal of Engineering Trends and Technology (IJETT) 4(10), 

4352-4357. 

Charonyktakis, P., Plakia, M., Tsamardinos, I., and Papadopouli, M. (2016). On User-Centric 

Modular QoE Prediction for VoIP Based on Machine-Learning Algorithms. IEEE 

Transactions on mobile computing 15 (6) , 1443-1456. 

Chen, C. W., Chatzimisios, P., Dagiuklas, T., and Atzori, L. ( 2016). Multimedia quality of experience 

(QoE) current status and future requirements. United Kingdom : John Wiley & Sons, Ltd. 

DeMoor, K., Ketyko, I., Joseph, W., Deryckere, T., De Marez, L., Martens, L., and Verleye, G. 

(2010). Proposed framework for evaluating quality of experience in a mobile testbed- oriented 

living lab setting. Mobile Networks and Applications, 15 (3), 378-391. 

Diaz-Aviles, E., Pinelli, F., Lynch, K., Nabi, Z., Gkoufas, Y., Bouillet, E., . . . Salzwedel, J. (2015). 

Towards real-time customer experience prediction for telecommunication operators. IEEE 

International Conference on Big Data (Big Data) (pp. 1063-1072). IEEE. 

Djogatovic, V. R., Kostic-Ljubisavljevic, A., Stojanovic, M., & Mikavica, B. (2014). Quality of 

experience in telecommunication. 8th International Quality Conference (pp. 899-904). 

Kragujevac: IEEE. 

Dong, M., Sugiura, K., Kimata, T., and Zettsu, K. (2014). Quality of experience (QoE) in emerging 

mobile social network. Institute of electronics, information and communication engineers 

(IEICE) Transactions Information Systems 97 (10), 2606-2612. 

Fiedler, M., Hossfeld, T., and Tran-Gia, P. (2010). A generic quantitative relationship between 

Quality of Experience and Quality of Service. IEEE Network 24(2), 36-41. 

Gozdecki, J., Jajszczyk, A., and Stankiewicz, R. (2003). Quality of service terminology in IP 

networks. IEEE Communication Magazine 41(3), 153-159. 



  

  

 Twenty-Second Pacific Asia Conference on Information Systems, Japan 2018  

Ibarrola, E., Liberal, F., & Ferro, A. (2010). Quality of service management for ISPs: A model and 

implementation methodology based on the ITU-T recommendation E.802 framework. IEEE 

Communications magazine, 146-153. 

Le Callet, P., Möller, S., and Perkis, A. (2012, June 2). Qualinet White Paper on Definitions of 

Quality of Experience Output version of the Dagstuhl seminar 12181. Retrieved from 

Qualinet.eu: 

http://www.qualinet.eu/images/stories/whitepaper_v1.1_dagstuhl_output_corrected.pdf 

Liotou, E., Tsolkas, D., and Passas, N. (2016). A Roadmap on QoE Metrics and Models . 23rd 

International Conference on Telecommunications (ICT). IEEE. 

Longe, F. (2011). Subscribers’ Perception of the Quality of Service (QoS) of the Global System for 

Mobile Services in Ibadan, Nigeria . Computing, Information Systems and Development 

Informatics Journal 2 (2) , 1-14. 

Lozano-Garzon, C., Ariza-Porras, C., Rivera-Diaz, S., Riveros-Ardila, H., & Donoso, Y. (2015). 

Mobile Network QoE-QoS Decision Making Tool for Performance Optimization in Critical 

Web Service. International Journal of Computing and Communication 7(5), 892-899. 

Machado, V. A., Silva, C. N., Oliveira, R. S., Melo, A. M., Silva, M., Francês, C. R., . . . Hirata, C. M. 

(2011). A New Proposal to Provide Estimation of QoS and QoE overWiMAX Networks An 

approach based on computational intelligence and discrete-event simulation . IEEE Latin-

American Conference on Communications (LATINCOM) . Doi: 

10.1109/LatinCOM.2011.6107419 : IEEE. 

Microsoft. (2018, 2 2). Advanced analytics on SQL Server. Retrieved from Microsoft Machine 

Learning Services: https://docs.microsoft.com/en-us/sql/advanced-analytics/r/r-services 

Qaiyum, S., Aziz, I. A., and Haron, N. (2015 ). Quality-of-Experience Modeling in High-Density 

Wireless Network . Journal of Advanced Research Design 14(1), 10-27. 

Reichl, P., Egger, S., Möller, S., Kilkki, K., Fiedler, M., Hossfeld, T., . . . Asrese, A. (2015). Towards 

a comprehensive framework for QoE and user behavior modelling . Seventh International 

Workshop on Quality of Multimedia Experience (QoMEX). IEEE. 

Rugelj, M., Volk, M., Sedlar, U., Sterle, J., and Kos, A. (2014). A novel user satisfaction prediction 

model for future network provisioning. Telecommunication system, 56 doi: 10.1007/s11235-

013-9853-4 Springer, 417-425. 

Schatz, R., Hoßfeld, T., Janowski, L., and Egger, S. (2013). From packets to people: Quality of 

experience as a new measurement challenge. In Data Traffic Monitoring and Analysis, vol. 

7754, Biersack, E; Callegari, C; Matijasevic, M. Eds. Berlin, Heidelberg (pp. 219–263). 

Berlin Heidelberg: Springer. 

Shaikh, J., Fiedler, M., and Collange, D. (2010). Quality of Experience from user and network 

perspectives. Ann. Telecommun DOI: 10.1007/s12243-009-0142-x, Springer, 47-57. 

Singh, A., Mahmoud, A., Koensgen, A., Li, X., Göerg, C., Kus, M., . . . Grigutsch, J. (2013). 

Enhancing Quality of Experience (QoE) Assessment Models for Web Traffic. 5th 

International Conference (pp. 202-215). Cork, Ireland: Mobile Networks and Management, 

Springer. 

Song, W., Tjondronegoro, D., and Docherty, M. (2012). Understanding User Experience of Mobile 

Video: Framework, Measurement, and Optimization. 

http://www.intechopen.com/books/mobile-multimedia-user-and-technology-

perspectives/understanding-userexperience-of-mobile-video-framework-measurement-and-

optimization: intechopen.com. 

Spetebroot, T., Afra, S., Aguilera, N., Saucez, D., and Barakat, C. (2015). From network-level 

measurements to expected Quality of Experience: the Skype use case. IEEE International 

Workshop on Measurement and Networking (M&N). Coimbra, Portugal: IEEE. 



  

  

 Twenty-Second Pacific Asia Conference on Information Systems, Japan 2018  

Spiess, J., T'Joens, Y., Dragnea, R., Spencer, P., & Philippart, L. (2014). Using big data to improve 

customer experience and business performance. Bell labs technical journal 18(4) doi: 

10.1002/bltj.21642, 3-17. 

Staelens, N., Pinson, M. H., Corriveau, P., De Turck, F., & Demeester, P. (2015). Measuring of Video 

Quality in the network: From Quality of Service to User Experience. Ninth International 

Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM 2015) 

(pp. 1-6). Chandler: Video Processing and Quality Metrics for Consumer Electronics. 

Techtarget. (2018, 2 2). HSPA (high speed packet access). Retrieved from 

searchmobilecomputing.techtarget.com: 

http://searchmobilecomputing.techtarget.com/definition/HSPA-high-speed-packet-access 

Tsiaras, C., and Stiller, B. (2014). A deterministic QoE formalization of user satisfaction demand 

(DQX). Annual IEEE conference on local computer networks (pp. 227-235). Canada: IEEE. 

Tsiaras, C., Sehgal, A., Seeber, S., Dönni, D., Stiller, B., Schönwälder, J., & Rodosek, G. D. (2014 ). 

Towards evaluating type of service related Quality-of-Experience on mobile networks. 7th 

IFIP on Wireless and Mobile Networking Conference (WMNC). IEEE. 

Tsolkas, D., Liotou, E., Passas, N., and Merakos, L. (2016). A Survey on Parametric QoE Estimation 

for Popular Services. Journal of Network and Computer Applications. 

Yusuf-Asaju, A. W., Zulkhairi, M. D., and Ta’a, A. (2018). Framework for modelling mobile network 

quality of experience through big data analytics approach. Journal of Information and 

Communication Technology (JICT), 17 (1), 79-113. 

Zheng, K., Yang, Z., Zhang, K., Chatzimisios, P., Yang, K., and Xiang, W. (2016). Big data-driven 

optimization for mobile networks towards 5G. IEEE network, 44-51. 

 

 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	6-26-2018

	Implementation of Quality of Experience Prediction Framework through Mobile Network Data
	Ayisat Yusuf-Asaju
	Md. Dahalin Zulkhairi
	Ta’a Azman
	Recommended Citation


	tmp.1538374494.pdf.1iG4A

