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Abstract 

Social information services generate a large amount of data. Traditional social 

information service analysis techniques first require the large data to be stored, and 

afterwards processed and analyzed. However, as the size of the data grows the 

storing and processing cost increases. In this paper, we propose a ‘Meta-Information 

as a Service’ (MIaaS) framework that extracts the data from various social 

information services and transforms into useful information. The framework provides 

a new formal model to present the services required for social information service 

data analysis. An efficient data model to store and access the information. We also 

propose a new Quality of Service (QoS) model to capture the dynamic features of 

social information services. We use social information service based sentiment 

analysis as a motivating scenario. Experiments are conducted on real dataset. The 

preliminary results prove the feasibility of the proposed approach. 

Keywords:  Social Information Services, Big Social Data, Sentiment Analysis, Meta-

Information, Service Composition    
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Introduction 

The term big data is used to define the large amounts of data that are beyond the ability of traditional 

techniques and processes to collect, manage and process within a reasonable time-frame (Becker, 

King, and McMullen 2015). Big data is often defined on the basis of three characteristics (Zaslavsky, 

Perera, and Georgakopoulos 2013) or 3Vs: Volume, i.e., size of the data, Variety, data types e.g., 

sensor data, social data, etc., Velocity, i.e., speed of the data generation. Social information services, 

e.g., Facebook, Twitter, etc., are part of big data notion and retain an unique status. Social information 

services provide a free platform to its users for the data generation and sharing. As a result, these 

services generate a large amount of data defined as ‘Big Social Data’. 

Big social data contains rich information such as public opinion and sentiment of social media users 

(Ali et al. 2017). Researchers have successfully used big social data in various domains such as 

business, marketing, politics, health surveillance and crisis management (K. Ravi and V. Ravi 2015). 

Despite the initial success of big social data, one major challenge is to efficiently collect, process and 

analyze the staggering amounts of data (Cuzzocrea 2017). Distributed technologies such as Hadoop, 

etc., have been used for the efficient and parallel processing. However, as the data size grows, the cost 

of infrastructure, i.e., storing and processing, also increases (Katal, Wazid, and Goudar 2013) 

(Labrinidis and Jagadish 2012). For instance, many applications such as customers’ patterns detection, 

public political sentiment, etc., require to collect and store big social data for longer time periods, and 

later analyze for the information extraction. Consequently, these applications need larger storing and 

processing infrastructure. In addition, there are several online services for social information service 

analysis, however they only provide analysis for limited data size (Wan and Paris 2014). 

The Meta-Data provides the information about the data (Singh et al. 2003). It contains the information 

about the creation, transformation, meaning, types and quality of the data. The meta-data provides the 

ability to effectively manipulate the large datasets. In contrast, the notion of Meta-Information is used 

to define the actual information derived from actual data processing and analysis (Michener 2006). In 

a typical meta-information application system, the required information is extracted from the large 

datasets and stored in meta-information database (B. Liu and Xiang 2016). Later, the information is 

composed and delivered to end users on-demand. As a results, the meta-information systems provide 

two main benefits: 1) Eliminate the need to store large amounts of the data. 2) Provide on-demand 

request and composition of the required information. 

In this paper, we propose a ‘Meta-Information as a Service’ (MIaaS) framework that collects and 

transforms big social data into useful information, i.e., Meta-Information, and delivers as a service. 

Unlike existing social information service analysis techniques where the data is stored and later 

processed; our framework periodically captures the large streams of big social data, and instantly 

extracts and stores the information. Afterwards, the information is composed and delivered to end 

users as a service upon their request. Hence, the proposed framework eliminates the need to first store 

big social data and subsequently process it. The novelty of our approach is being first to utilize the 

concept of meta-information for big social data analysis. 

In this paper, we use social information service based sentiment analysis and opinion mining as an 

application scenario. However, our framework can be applied to other domains applicable to big 

social data analysis such as recommender system, prediction systems, etc. The main contributions of 

our work are as follows: 

• A service oriented framework that efficiently transforms big social data into meta-

information.  

• A new formal model to present the component and composite services required for analysis. 

A data model to store and access the meta-information. 

• A novel Quality of Service (QoS) model based on the dynamic features of big social data. 

The rest of the paper is organized as follows. Section 2 describes the motivating scenario. Section 3 

provides the related work. Section 4 provides the framework overview and Section 5 elaborates the 
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details of the framework. Section 6 provides the details of experimental results and evaluation by real 

datasets. Section 7 concludes the paper and provides the direction for future work. 

 

 

Figure 1.  Political Sentiment Analysis Scenario 

 

Motivating Scenario 

We use a political sentiment analysis as our motivating scenario. Let us assume that Sara is a social 

information service analyst working for a news agency ‘News First’. News First is interested in 

monitoring the political sentiment of general public in the all states of USA before the upcoming 

presidential election. Sara is assigned the task of developing a system to analyze the political 

sentiment from various social information services. Due to budgetary limitations, Sara is required to 

develop the system that utilizes limited computing resources, i.e., storage and processing. Moreover, 

the system needs to deliver the requested information to end users on-demand in different formats 

over the Internet. 

Sara develops the required system by using a service oriented approach (see Figure 1). She develops 

the required system by using various online services. Firstly, the system periodically collects the raw 

data from social information services by using data crawlers services. Secondly, each raw data batch 

is instantly processed with data preprocessing services (e.g., data cleansing). Afterwards, the refined 

data is analyzed by various data analysis services to extract multiple types of information such as user 

location, sentiment, etc. The analysis results are then stored in a meta-information database based on 

an extensible data model. The data model provides a structure to store, retrieve and compose the 

extracted information. Finally, end users can request the required information through service 

interface over the Internet. The information is on-demand composed from the meta-information 

database, and delivered in various formats, e.g., maps, graphs, etc. 

In this scenario, Sara composes various available services to collect, process and analyze big social 

data, and stores the analysis results for later usage. Thus, the proposed approach first eliminates the 

need for large storage space to retain the data. Secondly, it saves the local computing resources by 

using the online services, and enables the on-demand delivery of information to end users. 
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Related Work 

Social Information Services 

Social information services have become an integral part of big data. Big social data generated by 

social information services have been used in various applications. For instance, in (Y. Liu, Han, and 

Tian 2013), extracted the requirements for developing new products from social media users’ 

comments. Big social data provides the monitoring and surveillance capabilities for the epidemic 

monitoring. In (Padmanabhan et al. 2013), researchers used the blog posts to determine the trends of 

epidemic diseases among the users. The data obtained from social information services is also used 

for predicting the election results (Tumasjan et al. 2010). Social information services play an 

important part in emergency and crisis management. In (Gomide, Veloso, and Almeida 2011), a 

dengue surveillance model is proposed to identify the locations of flu victims by using the spatio-

temporal data of Twitter. However, current techniques use typical data oriented approach. These 

approaches require to collect large datasets, and later manual labeling of test dataset and training 

algorithm for the information extraction. Moreover, current systems lack the capability of on-demand 

information analysis. 

Sentiment Analysis 

A significant portion of big social data is in unstructured textual format. One mechanism to extract the 

useful information from textual data is through Natural Language Processing (NLP) (Baldwin et al. 

2013). Sentiment analysis and opinion mining are two subfields of NLP used for big social data 

analysis (Cambria et al. 2013). Sentiment analysis is used to automatically label text into three 

categories: positive, negative and neutral (Madhoushi, Hamdan, and Zainudin 2015). Whereas, 

opinion mining is considered as process to extract opinion, attitudes and emotions from the text (Med- 

hat, Hassan, and Korashy. 2014). Sentiment analysis or opinion mining process is comprised of three 

main steps: data collection, data preprocessing and cleansing, information extraction or text analysis 

(Guellil and Boukhalfa 2015). Social information service based sentiment analysis has been 

successfully utilized in various application such as financial market prediction, box office revenue 

prediction, marketing and business analytics, recommender system, and election results forecast (K. 

Ravi and V. Ravi 2015). 

Service Oriented Paradigm 

The service oriented paradigm utilizes services as building blocks to build new applications 

(Papazoglou 2003). Services provide a powerful abstraction that hides the underlying implementation 

information from end users (Neiat et al. 2014). As a result, end users are only concerned with the 

inputs and outputs of services and how to use them. The service oriented paradigm also provides the 

benefits of dynamic selection and composition of services to develop complex applications based on 

Quality of Service (e.g., price, response time) (Medjahed, Bouguettaya, and Elmagarmid 2003). Also, 

services are also used as a preferred mechanism for data delivery to various applications over the 

network (Neiat et al. 2015). 

Big Social Data and Services 

The big data service computing is an emerging research domain. Research work (Vu and Asal 2015) 

proposed a high level conceptual model for Big Data as a Service architecture. Similarly, (Demirkan 

and Delen 2013) provides an overview of three service computing models: Data-as-a-Service, 

Information-as-a-Service, Analytics-as-a-Service. However, these works only provide conceptual and 

descriptive models of big data as a service, and do not particularly focus on big social data. There are 

several online services available for social information service monitoring and analysis. For example, 

SentimentViz1, SocialMention2 and Brand243 provide the analysis of social data. However, these 

                                                      

1 https://www.csc.ncsu.edu/faculty/healey/tweet viz/tweet app/ 

2 http://www.socialmention.com/  

3 https://brand24.net/  

https://www.csc.ncsu.edu/faculty/healey/tweet%20viz/tweet%20app/
http://www.socialmention.com/
https://brand24.net/
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services gather a limited amount of data and provide basic data insights, e.g., user clicks, likes, 

trending words, etc. Moreover, many of online social information services are used for customer 

engagement and content publishing. In addition, these tools lack the flexibility to retain and analyze 

historical data. 

Meta-Information Systems 

The notion of meta-information system has been utilized in various data extensive applications. In 

(Alyami et al. 2017), researchers proposed a meta-data based health record system to organize and 

retrieve patients health records information in medical emergencies. Researchers have also explored 

the meta-data analysis of Wi-Fi traffic to estimate the demographics of users (Li, Zhu, and Ma 2017). 

In (Hoiles, Aprem, and Krishnamurthy 2017), researchers investigated the Youtube users engagement 

with video channels through various types of platform provided meta-information attributes. To the 

best of our knowledge, current meta-information systems mostly focus on meta-data properties for 

information retrieval and/or to incentivize the existing information. Moreover, there is limited work 

available for utilizing meta-information in big social data analysis. 

In contrast, our framework specifically focuses on big social data. Instead of storing the big social 

data for later processing and analysis, it instantly gathers and transforms the big social data into meta-

information. Afterwards, the information is delivered as a service to end users upon request. 

The Solution Overview: Meta-Information as a Service 

The proposed MIaaS framework is divided into two categories: 1) Service Model 2) Data Model. 

Service model describes the component and composite services required for big social data analysis. 

Also, it provides a novel QoS model for big social data analysis. The data model provides a baseline 

structure to store the analysis results as meta-information and on-demand composition of meta-

information. 

In service model, there are three types of component services: Data crawler, Data preprocessing, Data 

analysis. For each component service, we assume that there are several available candidate services 

provided by different service providers. The data crawler service is comprised of multiple data 

gathering APIs and services to collect the data from social information services. The data 

preprocessing services remove the noisy and irrelevant data from the collected data. The data analysis 

services extract various types of information from the data. The services communicate via data 

messages, e.g., XML, JSON, etc. The data model provides an eXtensible Markup Language (XML) 

based database architecture. It uses XML based documents to store and access the analysis results, 

i.e., meta-information. 

The proposed framework utilizes the service oriented paradigm to compose available services. The 

service orientation provides two main benefits for big social data analysis: separation of concerns and 

abstraction. The separation of concerns provides the benefit of dividing a system into a set of loosely 

coupled layers. Each layer has a set of services provided by various service providers. Meanwhile, 

abstraction hides the implementation complexity from end users. As a result, end users are not 

concerned with the data collection, processing and storage processes. 

Service Model 

In this section, we first present the formal service model and propose a new QoS model. Second, we 

provide the details of our data model. 

Meta-Information Service Model 

We discuss key elements of our meta-information service model. We formally define the MIaaS as a 

composite service. Later, we formalize each component service. The service model is formally 

defined as follows: 
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Definition 1: Meta-Information as a Service (MS) is defined as a tuple of <ID, SISi, T, Fi, Qi>, where 

• ID is the service id.  

• SISi presents the set of social information services < sis1, sis2, …., sis n > from which the 

analysis (i.e., meta-information) is required. 

• T is the topic of interest (e.g., entity) for analysis. 

• Fi presents a set of functions (e.g., sentiment classification) offered by the service.  

• Qi is a set of QoS properties < q1, q2 ,…, qn > offered by the service. 

Definition 2: The data crawler service (DS) gathers the data from various social information services. 

DS is a tuple of <D-id, sis, ki, int, qi>, where  

• D-id is the data crawler service id.   

• sis is target social information service for the data collection.   

• ki is the set of keywords or search terms to retrieve the data.   

• int defines the time interval for the service to collect the data.  

• qi is a set of QoS properties (e.g., throughput). 

Definition 3: The data preprocessing service (PS) removes noise from the data. PS is a tuple of < P-id, 

dt, fl, qi >, where 

• P-id is the data preprocessing service id.  

• dt is data type (e.g., tweets, comments) to be processed. 

• fl describes the appropriate types of noise removal filters.   

• qi defines the set of non-functional properties (e.g., accuracy). 

Definition 4: The data analysis service (AS) extracts information from the collected data. AS is a tuple 

of < A-id, fn, qi >, where   

• A-id is the data analysis service id.   

• fn defines the available functions (e.g., sentiment polarity) for analysis.  

• qi determines the set of QoS (e.g., precision, accuracy). 

Meta-Information Service Quality Model 

Social information services provide various features (e.g., size, geo-tagging) for the data sharing (Ali 

et al. 2017). One challenge for end users is to compose information based on appropriate features. We 

propose following novel QoS model based on the dynamic features of big social data for meta-

information service composition. 

• Volume: The volume V property determines the amount of the data (e.g., tweets, comments) 

from each social information service is analyzed. The volume is calculated as following 

function, where N is total number of data items per social information service SIS. 

 

 𝑉 = ∑ 𝑆𝐼𝑆𝑖 (𝑁)𝑛
𝑖=0  

 

• Freshness: The freshness F property determines that the information I is recent. The freshness 

provides the temporal bounds for the meta-information composition. The freshness is 

calculated as follows, where tl is the lower time bound and tu is the upper time bound. 

 

  𝐹 = ∫ 𝐼
𝑡𝑢

𝑡𝑙
 

 

(1) 

(2) 
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• Coverage: The coverage C property provides the ability to visualize the information I based 

on spatial (e.g., states) requirements. The coverage composes the meta-information based on 

geo-locations. The coverage property is determined as follows, where GLi = {gl1, gl2,…, gln} 

is the set of geo-locations. 

 

𝐶 = 𝐼 − (𝐼 ∩ 𝐺𝐿𝑖) 

 

 

 

(a) 

 

(b) 

Figure 2. (a) Master Data Document Structure (b) Summary Document Structure 

 

Data Model 

The data model is comprised of two components: Design Model, Information Composition Model. 

The design model provides the structure to store the meta-information. The information composition 

model outlines the process of composing the meta-information. 

Design Model  

The design model consists of two XML based components for data storing: Master Data Documents, 

Summary Documents. 

Master Data Document contains the meta-data of each dataset processed and analyzed. For each 

social information service, there is only one master data document. The master data documents are 

iteratively updated after each dataset of a respective service is analyzed. Figure 2 (a) shows the details 

of the master data document. The properties of master data documents are defined as follows:  

• Dataset ID: is the unique id assigned to each dataset analyzed.  

• Temp: presents the temporal information (e.g., time-date) of the dataset.   

• Volume: the number of items analyzed in the dataset. 

Summary Document contains the simplified analysis results, i.e., meta-information, extracted from 

each dataset. Consequently, there are multiple summary documents for each master data document. 

Figure 2 (b) presents the details of the summary document structure. The properties of summary 

documents are defined as below:  

• Document ID: is the unique name of the summary document which is inherited from master 

data document, i.e., Dataset ID.   

(3) 
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• Subjective Information Type: defines a set of subjective information (e.g., sentiment, 

emotions, trending words) extracted from the dataset.  

• Value: contains the values, i.e., results, of the subjective information (e.g., positive sentiment, 

negative sentiment).  

• Spatial-Info: provides the names of geo-locations for each subjective information value. 

 

Information Composition Model  

The information composition model integrates the meta-information from different summary 

documents of various social information services. The composition is a two step process. First, the 

relevant summary documents are sorted by using master data document. Second, the information from 

summary documents is integrated. 

For summary documents sorting, the freshness F and volume V requirements are used to search 

master data documents. The retrieve function 𝐹𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒 successfully returns k number of D summary 

documents, if the documents within the lower tl and upper tu time bounds have minimum required 

number of analyzed data items I. The retrieve function is defined as follows: 

 

𝐹𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒(𝐹, 𝑉) = 𝐼𝑓 {
∫ ∑ (𝐷|𝐼) ≥ 𝑉,  𝐷𝑘

𝑘
𝑖=0

𝑡𝑢

𝑡𝑙

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, ∅
 

 

In second step, the meta-information from the retrieved summary documents is integrated based on 

coverage C, i.e., geo-location requirements, by using integration function 𝐹𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒. It is possible that 

a summary document may not contain the meta-information based on the required geo-locations. In 

order to integrate the appropriate meta-information and comply with volume V requirement, the 

composer validates the geo-locations GLi from the retrieved documents with coverage parameters as 

follows: 

 

𝐹𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒(𝐷𝑘, 𝐶, 𝑉) = ∑[(𝐷𝑘|𝐺𝐿𝑖) ∩ 𝐶] ≥ 𝑉 

 

Finally, if the end user's requirements are validated, the meta-information from the collected summary 

documents is integrated as a data message and delivered into various formats. 

Experiments and Evaluation 

To evaluate our proposed approach, we implemented a prototype by using our motivating scenario. 

We collected the approval ratings of USA president `Donald Trump' through sentiment analysis. We 

performed the experiments in three fold steps: 1) We collected the data from two social information 

services: Facebook and Twitter. 2) We evaluate the performance of data preprocessing component. 3) 

We analyze the collected data and extract the sentiment with respect to geo- locations and provide the 

detailed results. The prototype system is developed in Visual Studio (2015) by using ASP.Net/C#. The 

prototype is implemented on a 3.40 GHz Core i7 processor and 8 GB RAM on Windows 7. 

Data Collection 

We collected the data from Facebook and Twitter for 7 days of interval between 19-March-2017 to 

26-March-2017. The data crawler service is set to collect the data after 24 hours period. Social 

information services provide various mechanisms to collect the data. As a result, data crawler service 

(4) 

(5) 
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is consisted of different data collection services. For Facebook, data crawler service used Facepager4 

to collect the data from Donald Trump’s official Facebook page. Facepager uses ‘Graph API’ to 

collect Facebook posts and comments from public Facebook pages. For Twitter, data crawler service 

used ‘Twitter Streaming API’ to get the random tweets for given set of keyword(s). Table 1 provides 

the details of the data collected by data crawler service. 

 

Table 1. Data Collection Results 

 Facebook (Posts) Twitter (Tweets) 

Day 1 5606 12165 

Day 2 11367 20025 

Day 3 10840 20117 

Day 4 10023 20098 

Day 5 29242 20124 

Day 6 26644 20361 

Day 7 15034 20153 

Total: 108756 133043 

 

Data Preprocessing 

The data preprocessing is used to remove irrelevant data (e.g., noise). For the data preprocessing, we 

used following three filters to exclude the irrelevant data:  

• Language Filter: filters out the data based on a human language. We removed all the non-

English data.  

• Search Term Filter: includes the data based on the context matching. The collected data may 

contains the data items which are not related to the context. We used three keywords: ‘US 

President’, ‘Trump’, ‘Donald Trump’ retain a data item.  

• Stop Words Exclusion Filter: excludes the a data item that is irrelevant to the context. For 

example, a tweet contains the term ‘Jared Trump’ holds the keyword ‘Trump’. However, it is 

not relevant to the context. Therefore, ‘Jared’ is used as a stop word to discard such data 

items.  

After the noise filtering, we filtered out the data without geo-location information. The Twitter service 

allows to geo-tag a tweet. Thus, all the tweets without geo-tags are discarded. In contrast, Facebook 

does not allow to gather the geo- locations of the data directly. As a result, the geo-locations are 

identified via data, i.e., text, parsing. We used Named Entity Recognizer (NER)5 to extract geo-

location names (e.g., cities) from data items. To evaluate the performance of our filters, we used 

Signal-To-Noise Ratio (SNR) as our evaluation measure. 

 

𝑆𝑁𝑅 =
𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒=(𝑇𝑜𝑡𝑎𝑙−𝑆𝑖𝑔𝑛𝑎𝑙)
 

 

                                                      

4 https://github.com/strohne/Facepager  

5 http://nlp.stanford.edu/software/CRF-NER.shtml  

(6) 

https://github.com/strohne/Facepager
http://nlp.stanford.edu/software/CRF-NER.shtml


A Big Social Data Analysis Framework 

 

 Twenty-Second Pacific Asia Conference on Information Systems, Japan 2018  

Where Signal is the number of relevant data items after each filtering step, and Total is the number of 

data items remaining. Table 2 provides the results of the data preprocessing. 

Table 2. Data Preprocessing SNR Results 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Facebook Noise-Filter 1.96  4.19 3.1 3.63 4.22 3.66 3.37 

Facebook Geo-Filter  0.39  1.12  0.45  0.49  0.25  0.3  0.35 

Twitter Noise-Filter 0.52  0.76 0.65 0.69 0.71 1.06 0.93 

Twitter Geo-Filter  0.009  0.012 0.013 0.01 0.014 0.01 0.008 

 

 

 

 

(a) 

 

 

(b) 

Figure 3. (a) Sentiment By Location (b) Composite Sentiment Analysis 

 

Data Analysis and Composition Results 

We analyzed the preprocessed datasets by two different sentiment analysis services: Sentistrength6 

and Alchemy API7. Sentistrength is specifically designed to analyze the twitter data. In contrast, 

Alchemy API is used to analyze text from longer text (e.g., blog reviews, news articles). The 

prototype offers two formats to view composition results: 1) Sentiment percentage bar chart. 2) 

Sentiment by location map. For sentiment visualization, we used USA as a spatial parameter. Figure 3 

(a) shows the composite sentiment analysis results on Google Maps in time-line by random date 

parameters. Figure 3 (b) shows the sentiment analysis results in a percentage bar chart. It is observed 

that USA president has highest number of negative sentiment and lowest positive sentiment on 

Twitter. In comparison, Facebook shows almost equal amount of negative and positive sentiment. In 

comparison, a few number of users have neutral sentiment on Facebook, while a large number of 

users have neutral sentiment. 

                                                      

6 http://sentistrength.wlv.ac.uk/  

7 https://alchemy-language-demo.mybluemix.net/  

http://sentistrength.wlv.ac.uk/
https://alchemy-language-demo.mybluemix.net/
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Conclusion 

We proposed a service oriented framework ‘Meta-Information as a Service’ (MIaaS) that extracts the 

big social data from social information services, analyses and transforms into information, i.e., meta-

information. Current analysis approaches first require to store the data, and later process and extract 

the required information. In comparison, MIaaS periodically collects the data and instantly analyzes 

and stores the extracted information. In addition, it enables the end users to on-demand compose the 

required information. The framework provides a service formal model to present the services required 

for big data social analysis. We proposed a data model that provides an XML based document 

structure to store and integrate the required meta-information. We also devised a new QoS model to 

analyze features of big social data for meta-information composition. We implemented a prototype 

and conducted experiments on the real-world data. We used sentiment analysis as an application 

scenario to collect the approval ratings of USA president. The preliminary results show the 

applicability of our proposed approach. 

Limitations and Future Work: Currently, we have conducted our experiments with limited data 

from two social information services. In future, we plan to integrate a larger pool of social 

information services. We also aim to incorporate new features in the proposed QoS model. Finally, 

we are interested to compare the efficiency of our framework with existing big social data analysis 

approaches. 
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