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Abstract 
Top management team might make primary usage decisions related to marketing analytics. To 

date, extant research has mostly focused on investigating the impact of marketing analytics on 

firm performance; limited research exists to examine the conditions of utilizing marketing 

analytics. Furthermore, little is known about how the combinations of conditions affect 

marketing analytics use. Drawing on upper echelons and configuration theories, this study 

proposes that small and medium-sized enterprises (SMEs) have alternative pathways to 

utilizing marketing analytics. Based on a sample of 187 managers from UK SMEs and 

employing fuzzy set qualitative comparative analysis (fsQCA), this study confirms that (1) 

configurations of antecedents exist to provide alternative pathways to utilizing marketing 

analytics, and (2) configurations for small firms are distinctively different from those for 

medium-sized firms. This study contributes to upper echelon theory and configuration theory 

by highlighting different pathways to marketing analytics use. This study also helps a firm to 

improve its analytics practice by choosing the configuration that fits best with its organizational 

context. 

 

Keywords: marketing analytics, antecedents, configurations, upper echelons, top 

management team, small to medium-sized enterprises, fsQCA 

 

1. Introduction 
Marketing analytics, a domain of business analytics (Holsapple et al. 2014), has become an 

essential and desirable tool for the success of firms and extant research indicated that firms can 

use marketing analytics to support decision-making and to stay competitive (e.g., Germann et 

al. 2013; Wedel and Kannan 2016). Despite the potential benefits from utilizing marketing 

analytics, evidence suggests that not many firms are currently using marketing analytics 

(Ariker et al. 2015; Wedel and Kannan 2016), with challenges attributed to the lack of 

substantial resources to exploit analytics, particularly evident for small and medium-sized 

enterprises (SMEs) (Gillon et al. 2014). Motivated by this debate, this study aims to examine 

the determinants of utilizing marketing analytics within SMEs, which account for around 99% 

of all UK enterprises and are considered to be the backbone of UK economy (Blackwell et al. 

2006). While existing research has mostly focused on examining the performance impact of 

marketing analytics, there is limited research on the conditions of utilizing marketing analytics. 

Two key gaps can be identified in the context of exploiting marketing analytics. 
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First, research suggests that understanding the conditions required for utilizing business 

analytics remains an important gap in the literature (Trieu 2017). Whilst some prior studies 

suggest that the use of business analytics or marketing analytics can be affected by several 

antecedents (e.g., Germann et al. 2013; Chen et al. 2015; Gupta and George 2016), however, 

little research exists to generally examine how top management team’s characteristics influence 

analytics use, albeit an organization is the reflection of its top managers’ values and cognitive 

bases (Hambrick and Mason 1984; Hambrick 2007). It follows, then, there is a need to develop 

a deeper understanding of how top managers’ characteristics affect marketing analytics use. 

 

Second, little research exists to investigate the configurations of causal conditions of utilizing 

marketing analytics. Prior studies have typically employed regression-based methods to 

examine the cause-effect relationships between analytics use and its antecedents (e.g., 

Germann et al. 2013; Chen et al. 2015; Wedel and Kannan 2016; Gunasekaran et al. 2017). 

However, such analysis ignores the complex interdependencies between variables. A 

configuration on the other hand refers to a specific combination of causal variables that 

generates an outcome of interest (Fiss 2007, 2011). Configurational approach suggests that an 

outcome of interest seldom has a single cause but is best explained through multi-causality 

considerations. In other words, “the recipe is more important than the ingredients” (Ordanini 

et al. 2014). 

 

Drawing on upper echelon and configuration theories, this study posits that SMEs could have 

alternative pathways, that is, combinations of conditions that lead to marketing analytics use. 

Thus, the goal of this study is to investigate whether or not the use of marketing analytics can 

be explained by the configurations of antecedents holistically, rather than through any single 

antecedent. Specifically, two key research questions are to be addressed: what are the 

configurations that lead to marketing analytics use, and what are the configuration similarities 

and differences, if any, between small and medium-sized firms? 

 

2. Theoretical considerations 
2.1. Marketing analytics use 

Marketing analytics use in this study refers to the extent to which a firm is employing marketing 

analytics to support marketing decision making (Ariker et al. 2015; CMO-Survey 2015, 2016). 

Although marketing analytics use is seen to enable firms to improve decision-making and 

performance, the actual use, however, is surprisingly limited (Ariker et al. 2015; Wedel and 

Kannan 2016). Thus, it is vital to understand the conditions of utilizing marketing analytics so 

that firms could benefit from utilizing marketing analytics. 

 

Prior studies have mostly focused on examining the performance effects of marketing analytics 

use; general research on the conditions of utilizing marketing analytics has not attracted as 

much attention. However, an organization is the reflection of its top managers (Hambrick and 

Mason 1984; Hambrick 2007) and they might make primary adoption decisions related to IT 

(Lewis et al. 2003). Therefore, it would be useful to develop an understanding of how top 

managers’ characteristics in SMEs may influence marketing analytics use. 

 

2.2. Top management team’s characteristics 

According to upper echelons theory, a firm’s top managers’ characteristics may greatly 

influence their interpretations of the situations they face and in turn their strategic choices 

(Hambrick and Mason 1984; Hambrick 2007). It follows then that SMEs would benefit from a 

deeper understanding of how top managers’ characteristics and their interpretations affect 

marketing analytics use. Specifically, this study will look at managerial perception and support, 



competitive pressure, data availability, and organizational readiness, which have been 

identified by prior analytics studies (e.g., Germann et al. 2013; Chen et al. 2015; Gupta and 

George 2016). 

 

First, managerial perception in IT studies generally refers to the degree to which top 

management team views IT as critical to an organization’s success (Liang et al. 2007), which 

is the primary determinant of IT adoption (Thong 1999; Oliveira et al. 2014). In line with these, 

top managers’ positive perception of employing marketing analytics is expected to lead to the 

actual use of marketing analytics. 

 

Second, managerial support refers to the extent to which top management team understands, 

appreciates, and promotes the use of marketing analytics (Germann et al. 2013). Recently, 

analytics studies demonstrate that managerial support is positively associated with big data 

analytics use (Chen et al. 2015), and necessary for the effective deployment of marketing 

analytics (Germann et al. 2013). 

 

Third, data availability refers to the extent of a firm’s access to data for analysis, data 

integration of multiple internal sources for easy access, and integration of external and internal 

data (Gupta and George 2016). It is anticipated that a firm’s top managers would ensure that 

data is available when they view data as a core strategic asset that enables the firm to make 

successful decisions and to differentiate its products (Erevelles et al. 2016).  

 

Forth, competitive pressure is understood in terms of the extent to which a firm’s competitors, 

suppliers and customers have employed IT, which may apply some coercive pressure on a 

firm’s top managers to use similar IT (Liang et al. 2007). Similarly, this study expects that 

competitive pressure will affect how top managers interpret the analytics situations they face 

and in turn their decisions about utilizing marketing analytics. 

 

Fifth, organizational readiness refers to the extent to which organizational resources are 

available for using marketing analytics, in line with prior studies (Iacovou et al. 1995; Chen et 

al. 2015). Chen et al. (2015), in the context of big data analytics, suggest that a firm’s top 

management will be more supportive when they believe that the firm has sufficient resources 

in place to promote big data analytics use. 

 

2.3. Firm size matters 

Prior studies suggest that firm size matters and tends to be associated with different patterns of 

IT investment and use (Thong et al. 1996; Thong 1999; Gillon et al. 2014). SMEs are normally 

seen as one homogeneous group to be differentiated from large firms; research has not yet 

produced conclusive evidence about the differences between small firms and medium-sized 

enterprises. However, there is evidence in the literature to suggest that small and medium-sized 

firms have differences (Laukkanen et al. 2007; Neirotti et al. 2013). Accordingly, it is possible 

that small and medium-sized firms could differ in terms of marketing analytics use. 

 

2.4. A configurational approach 

Acording to Dess et al. (1993), “a configuration represents a number of specific and separate 

attributes which are meaningful collectively rather than individually”. Thus, a configurational 

approach suggests that an outcome of interest seldom has a single cause but is best explained 

through multi-causality considerations; and that causes are interdependent rather than operating 

in isolation from each other. Fundamentally, configuration theory accomodates the principle 

of equifinalitythat is, “a system can reach the same final state from different initial conditions 



and by a variety of different paths of development” (Katz and Kahn 1978, p.30). Lately, fuzzy-

set qualitative comparative analysis (fsQCA) has gained increasing attention and application 

in organizational research, which is seen to be uniquely suitable for dealing with configurations 

(Fiss 2007; Ragin 2008; Fiss 2011; Woodside 2013). 

  

3. Research method 

3.1. Sample 

The FAME database (Financial Analysis Made Easy) was utilized to obtain a convenience 

sample of 32,118 senior and middle managers of UK firms. A survey questionnaire was 

developed and then distributed to managers electronically through Qualtrics, an online survey 

tool. Of all sent emails, 187 usable responses were received, 104 responses from small firms 

with less than 50 employees and 83 responses from firms with more than 50 but less than 250 

employees.  

 

Since data was gathered from a single key respondent within each firm, a potential for common 

method bias exists. To address this issue, first, a procedural remedy was used to improve scale 

items through defining them clearly. In addition, positively and negatively worded measures 

were also used to control for acquiescence and disacquiescence biases (Podsakoff et al. 2012). 

Secondly, the Harman single-factor test was conducted and the first factor accounting for 

13.81% of the total variance, suggesting that common method bias was not a serious concern. 

Non-response bias was also tested to ensure that the sample was representative of the panel 

population. A t-test was conducted, which showed that both groups did not differ significantly 

in their responses, indicating no systematic differences between early and late respondents. 

 

3.2. Measurement 

In line with previous analytics research, the outcome variable marketing analytics use was 

measured using Likert scales, ranging from 1 = no use to 7 = very heavy use. Three different 

types were differentiated based on 13 items reported by CMO-Surveys (2015, 2016): (1) 

customer-oriented use of marketing analytics in the areas of customer insight, customer 

acquisition, customer retention, and segmentation; (2) product-oriented use of marketing 

analytics in the areas of new product or service development, product or service strategy, 

promotion strategy, pricing strategy, marketing mix, and branding; and (3) general marketing-

oriented use of marketing analytics in relation to digital marketing, social media, and 

multichannel marketing. As regards the five antecedents examined, they were measured using 

Likert scales (1 = strongly disagree to 7 = strongly agree). Data availability was measured using 

three items adopted from Gupta and George (2016). Managerial perception was measured using 

four items adapted from prior studies (Kearns and Sabherwal 2007; Liang et al. 2007). 

Managerial support was measured based on three items adapted from prior studies (Liang et 

al. 2007; Germann et al. 2013; Chen et al. 2015). Competitive pressure was measured using 

three items adapted from Liang et al. (2007). Finally, organizational readiness was measured 

using four items adapted from prior studies (Iacovou et al. 1995; Chen et al. 2015). The 

construct validity of the measurement was assessed in terms of the internal consistency 

(composite reliability (CR)), indictor reliability, convergent validity and discriminant validity 

(Table 1). The values of CR and average variance extracted (AVE) for the constructs are all 

above the thresholds 0.7 and 0.5 respectively; thus they are adequate. 

 

Table 1.       Measurement items and descriptive statistics  

Constructs Indicators (1- strongly disagree to 7-strongly agree) Mean (SD) CR AVE 



Competitive 

pressure (Liang 

et al. 2007) 

Our competitors have implemented marketing analytics to 

collect, manage, and analyze data to extract useful insights 

Our suppliers have implemented marketing analytics to 

collect, manage, and analyze data to extract useful insights 

Our customers have implemented marketing analytics to 

collect, manage, and analyze data to extract useful insights  

 

4.39 (1.45) 

 

4.24 (1.56) 

 

4.02 (1.58) 

0.84 0.64 

Data Availability  

(Gupta and 

George 2016) 

We have access to very large, unstructured, or fast-moving 

data for analysis 

We integrate data from multiple internal sources into a data 

warehouse or mart for easy access 

We integrate external data with internal to facilitate high-

value analysis of our business environment  

 

4.01 (1.68) 

 

3.62 (1.84) 

 

3.59 (1.75) 

 

0.84 

 

0.64 

Managerial 

perception  

(Kearns and 

Sabherwal 2007) 

Top management team recognizes the strategic potential of 

marketing analytics 

Top management team is knowledgeable about marketing 

analytics opportunities 

Top management team is familiar with competitor’s 

strategic use of marketing analytics 

Top management team believes marketing analytics 

contributes significantly to firm performance  

 

5.11 (1.48) 

 

4.45 (1.52) 

 

3.85 (1.48) 

 

4.26 (1.54) 

0.89 0.68 

Managerial 

support 

(Liang et al. 

2007; Germann 

et al. 2013; Chen 

et al. 2015) 

Top management team promotes the use of marketing 

analytics in your company 

Top management team creates support for marketing 

analytics initiatives within your company 

Top management team has promoted marketing analytics as 

a strategic priority within your company  

 

4.00 (1.66) 

 

4.07 (1.65) 

 

3.73 (1.68) 

0.97 0.91 

Organizational 

readiness 

(Iacovou et al. 

1995; Chen et al. 

2015) 

 

We have the capital/financial resources to fully exploit 

marketing analytics 

We have the needed IT infrastructure to fully exploit 

marketing analytics 

We have the analytics capability to fully exploit marketing 

analytics 

We have the skilled resources to fully exploit marketing 

analytics 

 

4.01 (1.76) 

 

4.19 (1.69) 

 

3.83 (1.73) 

 

3.71 (1.70) 

0.89 0.68 

 

Customer-

related* (Ariker 

et al. 2015; 

CMO-Survey 

2015, 2016) 

We implemented marketing analytics in customer insight 

We implemented marketing analytics in customer 

acquisition 

We implemented marketing analytics in customer retention 

We implemented marketing analytics in customer 

segmentation 

3.49 (1.52) 

 

3.25 (1.59) 

3.39 (1.56) 

 

3.08 (1.60) 

0.92 0.74 

Product-related* 

(Ariker et al. 

2015; CMO-

Survey 2015, 

2016) 

We implemented marketing analytics in new product or 

service development 

We implemented marketing analytics in product or service 

strategy 

We implemented marketing analytics in promotion strategy 

We implemented marketing analytics in pricing strategy 

We implemented marketing analytics in marketing mix 

We implemented marketing analytics in branding 

 

3.46 (1.66) 

 

3.28 (1.58) 

3.47 (1.66) 

3.34 (1.60) 

3.25 (1.66) 

3.26 (1.63) 

0.94 0.73 

Marketing-

related* (Ariker 

et al. 2015; 

CMO-Survey 

2015, 2016) 

We implemented marketing analytics in digital marketing 

We implemented marketing analytics in social media 

We implemented marketing analytics in multichannel 

marketing 

3.63 (1.67) 

3.55 (1.70) 

 

2.92 (1.64) 

 

0.93 0.81 

*-measured based on a seven-point Likert scale ranging from no use, very low use, low use, moderate use, somewhat heavy use, quite 

heavy use, to very heavy use 

 

3.3. Calibration 

fsQCA 3.0 program (Ragin and Davey 2016) was used. Based on the calibration procedure 

introduced by Ragin (2008), survey data was transformed into fuzzy sets with values ranging 

from 0no set membership to 1full set membership. Since this study uses a seven-point Likert 



scale to quantify constructs, in line with the guideline of calibration for survey measurement 

(Fiss 2011; Ordanini et al. 2014; Park et al. 2017),  this study defined a value of 6 as the full 

membership anchor, 2 as the anchor for full non-membership, and 4 as the crossover point. 

 

4. Analysis 

4.1. Analysis of sufficient conditions 

In fsQCA, a causal condition is defined as sufficient if by itself it can produce a certain outcome 

(Fiss 2011; Zaefarian et al. 2017). Next, the data will be analyzed to identify which 

combinations of conditions are sufficient to obtain the outcome. This starts with the 

construction of a truth table, listing all logically possible configurations of the conditions for 

an outcome. As five antecedents were considered, the truth table consists of 25 = 32 different 

configurations. To reduce the truth table to meaningful configurations, a frequency threshold 

of four observations is chosen to exclude less important configurations. 

 

In order to define which configurations are sufficient for achieving the outcome, this study sets 

consistency for solutions at ≥ 0.77, which is above the minimum threshold of 0.75 

recommended by Ragin (2008) and Woodside (2013). The fsQCA software produces complex, 

intermediate and parsimonious solutions. In general, the number of complex solutions can be 

large and often include impractical configurations (Liu et al. 2017). For this reason, they are 

usually simplified further into parsimonious and intermediate solutions that allow core or 

peripheral conditions to be differentiated, with “core elements as those causal conditions for 

which the evidence indicates a strong causal relationship with the outcome of interest and 

peripheral elements as those for which the evidence for a causal relationship with the outcome 

is weaker” (Fiss 2011, p.394). In fsQCA, core conditions are those that are part of both 

parsimonious and intermediate solutions, peripheral conditions are those that only appear in 

the intermediate solution. 

 

Table 2 summarizes the intermediate solutions with the presence of use of customer-, 

marketing-, and product-oriented analytics as outcomes. Black circles “●” represent the 

presence of causal conditions and white circles “○” represent the absence or negation of causal 

conditions. The blank cells represent “doesn't matter” conditions. Furthermore, “large circles 

indicate core conditions, and small circles refer to peripheral conditions”(Fiss 2011). 

 

To conclude whether or not the configurations are informative, two measures are available: 

consistency and coverage. First, consistency measures the extent to which a configuration 

corresponds to the outcome. As all of the consistency scores exceed the cut-off value (≥0.75), 

all configurations can be considered as sufficient for the outcome (Fiss 2007, 2011). Second, 

the coverage scores assess the proportion of cases that follow a particular path and thus capture 

the empirical importance of an identified configuration. The raw coverage quantifies the 

proportion of outcome cases explained by a given configuration. The higher the raw coverage, 

the larger the proportion of the high use of marketing analytics can be explained by the given 

configuration, ranging from 0.32 to 0.55. Unique coverage measures the proportion of outcome 

cases that are uniquely covered by a given path (Ragin 2008), which should be larger than zero; 

otherwise the configuration does not contribute to the explanation of the outcome (Zaefarian 

et al. 2017). Table 2 indicates that this requirement is fulfilled. 

 

 

 

 

 



Table 2.   Configurations for marketing analytics use in small and medium-sized firms 

 Customer-oriented Marketing-oriented Product-oriented 

Configuration Small Medium-sized Small Medium-sized Small Medium-sized 

 a b  a b 

Competitive pressure ● ● ○ ● ● ●  ● 

Data availability ●  ● ● ● ● ●  
Managerial perception ● ● ● ● ● ● ● ● 

Managerial support ● ● 
● ● ● ● ● ● 

Organizational readiness ● ● ○ ● ● ● ○ ● 
Raw coverage 0.50 0.55 0.32 0.48 0.49 0.47 0.44 0.54 

Unique coverage 0.50 0.31 0.07 0.48 0.49 0.47 0.15 0.24 

Solution consistency 0.77 0.80 0.81 0.79 0.83 0.76 0.76 0.81 

Solution coverage 0.50 0.62 0.48 0.49 0.47 0.68 

Solution consistency 0.77 0.78 0.79 0.83 0.76 0.76 

Note. ●= core causal condition present; ● = peripheral causal condition present; ○ = peripheral causal condition absent 

 

Finally, the solution coverage of the overall model refers to the joint importance of all 

configurations. For example in small firms, the overall solution coverage accounted for 0.50 

for customer-oriented analytics use, 0.48 for marketing-oriented and 0.47 for product-oriented. 

Thus, they are seen to be informative. 

 

4.2. Configurations for the presence of marketing analytics use 

Overall, the solution in Table 2 shows that the configurations differ by firm size. For small 

firms, there is only one configuration for marketing analytics use across customer-, marketing-, 

and product-oriented areas. However, multiple configurations exist for marketing analytics use 

in medium-sized firms. With respect to customer- and product-oriented areas, there are two 

configurations leading to analytics use. However, there is only one configuration leading to the 

use of marketing-oriented analytics. 

 

The results also indicate the presence of different patterns of core and peripheral conditions of 

utilizing marketing analytics. Specifically, for small firms, the combination of data availability 

and organizational readiness is core and all other antecedents are peripheral conditions. For 

medium-sized firms, the combination of managerial support and organizational readiness is 

core for utilizing customer- (configuration a) and product-oriented (configuration b) analytics, 

and data availability is core for utilizing customer- (configuration b) and product-oriented 

(configuration a) analytics; and the combination of data availability and organizational 

readiness is core for utilizing marketing-oriented analytics. 
 

5. Discussion and implications 
5.1. Theoretical discussion and implications 

Prior studies have examined discrete antecedents to business or marketing analytics use (e.g., 

Germann et al. 2013; Chen et al. 2015; Wedel and Kannan 2016; Gunasekaran et al. 2017). 

These studies usually suggest that firms tend to use business or marketing analytics to improve 

decision-making and organizational performance when certain antecedents or conditions are 

present or satisfied. Given that an organization is the reflection of its top managers (Hambrick 

and Mason 1984; Hambrick 2007), it is anticipated that a firm’s top management team 

characteristics may significantly influence marketing analytics use. Yet, such research is 

lacking. Drawing on upper echelons theory (Hambrick and Mason 1984; Hambrick 2007), this 

study empirically examined five conditions of utilizing marketing analytics and confirmed that 



a firm’s use of marketing analytics is greatly influenced collectively by its top managers’ 

perception of the importance of marketing analytics, their interpretations of the pressure from 

business partners and customers to utilize marketing analytics, their support for the use of 

marketing analytics, data being integrated and available, and that the firm being ready to use 

marketing analytics. This study provides additional empirical evidence to support the need and 

significance of examining the determinants of IT use in organizations (Lewis et al. 2003; 

Oliveira et al. 2014; Veiga et al. 2014) in the context of marketing analytics. Additionally, it 

confirms and complements prior analytics studies to the degree that antecedents indeed play an 

important role in influencing marketing analytics use (e.g., Germann et al. 2013; Chen et al. 

2015; Wedel and Kannan 2016; Gunasekaran et al. 2017). 

 

More importantly, this study has further extended the scope of research on the relationship 

between antecedents and marketing analytics use based on a configurational approach. Prior 

analytics studies typically investigate the net effects of individual antecedents on the use of 

marketing analytics. However, there is a lack of research considering the interdependencies 

among multiple antecedents. Configuration theory points to the importance and the possibility 

of understanding which factors are relevant to achieving a desired outcome and what 

combinations of these factors will lead to that outcome (Fiss 2007, 2011). Drawing on 

configuration theory and employing fsQCA, this study is among the first empirical studies 

applying configuration theory to investigating marketing analytics use. This study 

simultaneously analyzes key antecedents of utilizing marketing analytics and shows how 

combinations of antecedents jointly influence marketing analytics use. Specifically, this study 

looks at different configurations of antecedents and their effects on utilizing marketing 

analytics in SMEs. The results provide evidence that there are multiple configurations for 

utilizing marketing analytics, shaped by the combinations of multiple antecedents rather than 

by individual conditions. 

 

Specifically, the findings show that for medium-sized firms, data availability is a core condition 

for most configurations for the use of marketing analytics. The combination of organizational 

readiness with either managerial support or data availability is another core condition for most 

configurations of marketing analytics use. This is consistent with the idea that lacking 

necessary resources is a significant issue for IT adoption in SMEs (e.g., Thong et al. 1996). 

 

Finally, this study’s finding provides new insights into how small firms use marketing 

analytics. This study suggests that there is only one sufficient configuration leading to 

marketing analytics use, which is shaped collectively by five conditions with data availability 

and organizational readiness as two core conditions. This suggests that for those small firms 

wishing to employ marketing analytics successful, a more holistic approach is necessary to 

make sure that all key conditions are satisfied. 

 

5.2. Managerial implications 

This study offers several implications for managerial practice. Firstly, firms should be aware 

of the fact that marketing analytics use is influenced holistically by the interaction of 

conditions. This implies that unless all conditions are satisfied, SMEs will most likely fail in 

their efforts to implement marketing analytics. In order for firms to use marketing analytics 

effectively to support decision-making and to stay competitive, they need to consider 

organizational conditions as a whole. 

 

Secondly, multiple configurations exist for marketing analytics use in medium-sized firms; 

hence a medium-sized firm should choose the configuration that fits best with its organizational 



context. However, for small firms, this study suggests that there is only one sufficient 

configuration for utilizing marketing analytics: they need to holistically satisfy several 

conditions simultaneously. Top management team must be aware of and responding to 

competitive pressure from suppliers, customers and competitors, with positive perception of 

the strategic value of, and support for, marketing analytics use, and ensure that resources are 

in place for the use of marketing analytics. 

 

Thirdly, data availability and organizational readiness are two core conditions for almost all 

configurations leading to marketing analytics use. Thus, a firm’s top management team needs 

to make sure that resources are directed to meeting the two core conditions, without which the 

firm would not be able to utilize marketing analytics effectively. 

 

5.3. Limitations and future research 

There are several limitations in this study, which offer opportunities for future research. First, 

the study includes five antecedents that jointly influence the use of marketing analytics. The 

identified antecedents focused on top management team’s characteristics and might not cover 

the full range of conditions affecting the use of marketing analytics. Therefore, one potential 

avenue for future research is to extend this study by adding additional antecedents or different 

set of conditions, thereby to either test the usefulness of the configurations identified in this 

study or identify new configurations 

 

Secondly, this study’s sample restricted to small and medium-sized firms in the U.K. Thus the 

findings should be understood in this context and its applicability to other countries needs to 

be tested. Future research could be conducted to investigate whether or not the configurations 

identified in this study are likely to differ in different research contexts. 

 

Finally, this study used a single key-informant method to collect subjective data from each 

firm. Although this study followed relevant procedure and conducted the Harman single-factor 

test to make sure that common method bias was not a main concern, future research could 

collect objective data if it is available and/or use multiple informants from each firm to limit 

potential subjective bias. 

 

5.4. Conclusions 

This study suggests that configurations of antecedents are likely to offer a holistic 

understanding of how the combination of conditions leading to marketing analytic use. While 

marketing analytics use can be influenced by individual antecedents such as top management 

support, ultimately it is the configuration of various conditions that determines the success or 

failure of the implementation. The implication for SMEs is that in order to utilize marketing 

analytics effectively to support decision-making, they should focus on selecting the 

configuration that best fits their own organizational context. The implication for research is 

that a configurational approach is suitable for examining configurations that allow holistic 

understanding of analytics phenomenon to be developed. 
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