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Abstract 

Mobile collaboration is an emerging kind of collaboration that adopts mobile devices (i.e., 

laptops, PDAs, and smart phones) and social media software to improve the efficiency and 

productivity of collaboration. However, many collaborative teams suffer from an anti-social 

behavior called social loafing. Social loafing will hinder knowledge exchange within the team 

and further influence team performance and project outcomes. Moreover, the state of an 

individual’s social loafing is unobservable and changes overtime, making it difficult to be 

identified in real time. Therefore, our research aims to investigate the evolution of social loafing 

and its impact on knowledge contribution in the mobile collaboration context. We propose a 

machine learning model to infer individuals’ unobserved and evolving social loafing state from 

the series of task behaviors (quantity and quality of the contributed knowledge). Also, we explore 

how one’s centrality in a social network affects his/her knowledge contribution behavior when 

he/she is in different social loafing states. We conduct an empirical study and the results show 

that individuals with high or low social loafing state are very ‘sticky’ to maintain the previous 

state and the centrality in the network only positively influences individuals in medium social 

loafing state. In conclusion, our research adopts a machine leaning method to infer the evolution 

of individuals’ social loafing and provides a comprehensive understanding of knowledge 

contribution in team work.  
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1. Introduction 

Collaboration is very common in a variety of professions and businesses. With the rapid 

development of telecommunications and computing, many organizations give up offline meetings 

to discuss their team work within sectors or across sectors and adopt mobile devices (laptops, 

PDAs, and smart phones) to improve the efficiency and productivity of collaboration (Ali-Hassan 

et al., 2010; Cheng et al., 2016). Such collaboration based on mobile devices is called mobile 

collaboration. According to a recent survey by International Data Corporation (IDC), the U.S. 

mobile worker population is expected to go up steadily from 96.2 million in 2015 to 105.4 

million in 2020. By the end of 2020, IDC forecasted that the number of mobile workers will 



 

occupy nearly three quarters (72.3%) of the total U.S. workforce. Mobile collaboration has 

extended to various industries including energy, education, manufacturing, health and insurance. 

One of the significant features of the mobile collaboration is that individuals can communicate 

without face to face interaction and exchange knowledge related to team work through mobile 

devices and social media software. In this case, mobile devices and social media act as 

collaborative work facilitators in workers’ collaboration. Many companies have adopted social 

media to support mobile collaboration, such as Cozy and Rdio. 

Although technology-supported teams (such as social media-supported mobile collaborations) 

work in a flexible way, many collaborative teams suffer from an anti-social behavior which is 

called social loafing (Alnuaimi et al., 2010). Social loafing means that individuals tend to reduce 

motivation and effort in team work compared to individual work, which has negative impact on 

knowledge sharing (Wasko & Faraj, 2005) and hinder the success of mobile collaboration within 

company(Suleiman & Watson, 2008). The collaborative technology is perceived to be less useful 

when there are social loafers in the collaboration; and collective social loafing will negatively 

influence the teams’ potency assessments (Turel & Zhang, 2011). Thus, it is very important for 

academics and practitioners to recognize and lower individuals’ social loafing state in mobile 

collaboration (Voyles et al., 2015). However, social loafing is a hidden state which is hard to be 

directly observed by team leaders, and will change overtime during mobile collaboration. Most 

researchers designed and adopted questionnaires to study social loafing in team work, 

contributing a lot to collaboration management research (George, 1992; Liden et al., 2004). 

However, this traditional method is inadequate at studying individuals’ real time social loafing 

and inferring it in the future. Our first research objective aims to recognize individuals’ social 

loafing state by adopting a machine learning method. 

A working team is a social network of employees who often collaborate with each other. 

According to the social network theory, the structure of network will influence individual’s social 

behaviors (Granovetter, 1985). One of the important properties to describe network structure is 

centrality, which indicates an individual’s position in the network and measures linkages between 

this individual and other people in the same network (Ahuja et al., 2003). Previous studies 

explored the impact of centrality on knowledge contribution in the collaboration, but no 

consistent results have been achieved. For example, Wasko and Faraj (2005) shows that workers 

with high network centrality will contribute more knowledge in the team. However, Zhi and 

Chang (2009) indicated that medium (neither high or low) centrality is positively related to 

knowledge contribution. To investigate the reasons behind these contradictory conclusions, the 

second aim of this study is to understand how one’s centrality in a social network affects his/her 

knowledge contribution behavior by introducing the moderating role of social loafing. 

Our research makes some theoretical contributions. First, we adopt a machine learning method to 
dynamically infer individuals’ social loafing that extends the research outputs on static social 

loafing previously because of the limitation of questionnaires. Second, we enrich the field of 
knowledge management by unifying the contradictory results about the influence of network 

centrality on knowledge contribution. For practical implications, our research helps companies 

reorganize a mobile collaborative group to better exchange knowledge and achieve greater 

achievements. 

 

 



 

2. Literature review 

2.1. Social network-based knowledge contribution 

A social network is "a set of nodes (individual actors involved in a group) and specific ties 

between nodes, which can be used to explain the social behavior of these involved individuals" 

(Mitchell, 1969). Nodes and ties constitute the structure of the network, and the social network 

theory describes that the network structure will influence individuals’ social behaviors (Baker, 

1990). Network centrality is an important property of network structure, which indicates one’s 

position in the social network and measures how this individual is linked with others in the same 

network (Ahuja et al. 2003). Network centrality is a kind of resources for individuals’ social 

actions, providing abundant and positive information (Bizzi, 2017). It will influence how people 

interact with others in the network and will still affect people’s interactions in a different way 

once the structure changes (Zhang et al., 2008).   

In virtual communities, knowledge contribution is one of critical factors to the success of 

knowledge sharing (Yang & Chen, 2008). Knowledge contribution within sectors or across 

sectors is very helpful to solve problems and complete tasks. An individual's position in the 

network influences his/her knowledge contribution behavior  (Shuang et al., 2016). Marques et 

al. (2008) showed that central individual share knowledge amongst themselves and tend to share 

more knowledge. However, Zhi and Chang (2009) indicated that medium (neither high or low) 

centrality will be positively related to knowledge contribution. The results of existing research on 

the role of centrality are contradictory, and there are few studies on how centrality affects 

individuals’ knowledge contribution behavior. 

Wasko and Faraj (2005) showed that quality and quantity are two basic parts of knowledge 

contribution. For mobile collaborative teams within the company, quantity alone is not enough to 

complete the task and the quality of the contributed knowledge is more important sometimes. 

However, most previous studies about knowledge contribution focused only on the quantity and 

ignored the quality of the knowledge (Kankanhalli et al., 2005; Ma & Agarwal, 2007). 

2.2. Anti-social behavior and social identity in mobile collaboration 

Social loafing refers that individuals will withhold his/her effort when they are working in a team 

compared with working individually (Chidambaram & Lai, 2005) and it is an anti-social behavior 

(Alnuaimi et al., 2010). Researches have approved the existence of social loafing in a variety of 

tasks such as brainstorming, shouting, or rope pulling, its antecedents and effects within the 

laboratory, classroom, especially in the workplace (Karau & Williams, 1994; Piezon & Ferree, 

2008). Hernandez et al. (2010) created a construct, called knowledge withholding (the likelihood 

that individuals contribute less knowledge in the collaboration than they could), and analyze the 

antecedents of it. Social loafing has negative influence on team performance and outcomes 

(Karau & Williams, 1994) . In the recent years, researchers have turned to focus on the social 

loafing in online team, Alnuaimi et al. (2010) found that social loafing exists in technology-

supported teams. Moreover, Turel and Zhang (2011) found that collaborative technology will be 

perceived less useful if there are social loafers in the collaboration. 

Social loafing is identified as a moderator which indirectly influence knowledge contribution 

behavior in technology-supported distributed teams. For those in the higher level of social 

loafing, they will perceive a less valued outcomes which makes it more difficult to motivate them 

to compensate for the poor team performance (Hart et al., 2004). For this reason, increasing their 



 

network centrality (a kind of resources for their social action) may have less influence on 

knowledge contribution in the collaboration. And there are few researches directly exploring the 

moderating role of social loafing. Social loafing is a hidden state which is hard to be observed 

directly. Many previous researchers adopted questionnaires to study social loafing in team work 

(George, 1992; Liden et al., 2004). This traditional method has some limitations, such as being 

inadequate at studying individuals’ real time social loafing. 

Individuals’ social loafing state can be indicated from their behaviors in collaboration (e.g., 

knowledge contribution) based on the social identity theory. Individuals’ task behavior will 

indicate their unobserved self-identities (posters or lurkers) (Ashforth, 2001). Tajfel and Turner 

(1986) gave the definition of social identity as “the individual knows that he belongs to certain 

social groups and influence his group members in terms of emotion and value”.  Bergami and 

Bagozzi (2000) indicated that individuals will categorize themselves into specific group 

according to the cognitive dimension of social identity theory. Specifically,  in the team work, 

individuals will define themselves as contributor or lurker with different social loafing state, and 

these roles will guide their behaviors which is line with their self-identities  (Bruijn et al., 2012). 

Moreover, Ashforth (2001) pointed that task behaviors (quantity and quality of contributed 

knowledge) can serve as the observable indicators of self-identity (posters and lurkers). 

 

3. Machine learning model for anti-social behavior in mobile collaboration 

Zhang et al. (2017) proposed a conceptual S-O-R framework to explain anti-social behavior 

states in collaboration. Developed from the above framework, in this paper, we further conducted 

an empirical study to examine the transitional possibility of participants between different social 

loafing states in mobile collaboration. This study uses previous individuals’ knowledge 

contribution to analyze the dynamically social loafing in mobile collaboration, and our model has 

two features: (1) infer the evolution of social loafing during the process of collaboration, (2) 

account for the influence of network centrality on knowledge contribution and the moderating 

role of social loafing.  

Figure 1 shows how our model works. In the period t, an individual belongs to a social loafing 

state with a probability, 0 representing the lowest social loafing state and n representing the 

highest state. This member is influenced by the environmental condition in t and choose to move 

to a higher state, keep the same state or become a lower state in the period t+1. Then, his/her 

social loafing state in the period t+1 determine several knowledge contribution behaviors with 

different probability. He/she is also influenced by the environmental condition in t+1 which will 

cause the change or maintain of their social loafing state in the period t+2. Figure 2 is our theory 

framework which is based on social network theory and social identity theory. Individuals’ 

centrality will influence their knowledge contribution and the relationship is moderated by the 

social loafing state. 

 

 

 

 



 

4. Empirical application 

4.1. Data description 

We collected real world behavioral data from a mobile collaboration project in China. At the 

beginning of the experiment, all participants were divided into 10 mobile collaboration teams. 

Each team was assigned a team work different from other teams’ work at the beginning, and they 

had to finish it by the end of the project. Participants were required to discuss their task through 

social media APPs at mobile device (lagtop, PDAs, and smart phones). In this case, we 

downloaded their chat contents in three time periods, then our data set has 4137 chat contents. 

Table 1 is the detailed description of data.  
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Fig 1: Machine learning model in our research 

 

Centrality

Social loafing 

Knowledge 

contribution

 

Fig 2: Our research framework 

4.2. Variables description 

In this section, we describe the variables used in the research model. Succinct definition of these 

variables are provided in Table 2. 

RecordNumt: RecordNumt is a count variable, when a participant send a message through social 

media in a session, his/her record will be added 1 in this session. In this study, we divided the 

whole period of the course into three sections. Recordt represents the number of messages sent by 

a participant during the period between time t and time t+1, t=0, 1, 2. And we use the LgRecordt 

to do regression analysis. 

RecordQuat: RecordQuat is a continuous variable which measures the quality of knowledge 

contributed by participants. During the period between time t and time t+1, we calculate the sum 



 

of products of weight and normalized number of different kinds of chat contents, called 

RecordQuat. 

Centrality: In this paper, a participant’s centrality means the eigenvector centrality, which is the 

sum of centralities of other nodes to which they are linked, and the weight is the strength of 

connection (Bonacich, 1972). In the social network, we use minimum method to symmetrize 

symmetric ties (Borgatti et al., 2002), in which the connecting strength between A and B is 

determined by the smaller connecting strength from A to B and B to A. Formally, eigenvector 

centrality is the principal eigenvector of the network data matrix C, where cij represents the 

strength of the tie from node i to node j. An eigenvector x meets the equation λx =Cx, where λ is 

the eigenvalue of x. The largest λ correspond with the principal eigenvector. We use UCINET to 

analyze these collected data (Borgatti et al., 2002), calculating individual eigenvector centrality 

scores. 

Table 01: Data description 

 
Variables Types Definition 

Centrality Continuous The disparity in eigenvector centralities between nodes 

 

RecordNumt Count The number of messages sent by a participant during the period between time t and time 

t+1. (t=0,1,2) 

 

LgRecordNumt Continuous The logarithm of Recordt to base 10.(t=0,1,2) 

 

RecordQuat Continuous The sum of the weighted sum of the records of each participant between time t and time 

t+1. (t=0,1,2) 

Table 02: Model variables 

4.3. Text analysis of messages 

We define a session for a period of information exchange between persons. Each observation 

contains a person’s chat contents, uploading downloading records. Then, we use text analysis to 

infer each person’s contribution during each session and the method used for each session is the 

same. During model building, we use Jieba Chinese NLP module in Python to divide these chat 

contents into words. Then, we count the number of different words as the vector of one chat 

content and use TF-IDF algorithm to extract the word matrix to make feature matrix (BaezaYates 

et al., 1999). In the next step, we use Bayesian algorithm to make classification (Tirunillai & 

Tellis, 2011). In order to count the number of different kinds of chat contents of each person, we 

use previous tables of chats and PivotTable. As a result of the classification process we obtain the 

Data The number of data (number and percentage) 

Total number of 

chat contents 
4137 

Three period First Second Third 

Number 3340 508 289 

Percentage 80.73% 12.28% 6.99% 

Team name 1 2 3 4 5 6 7 8 9 10 

Number of 

participants 
16 16 16 16 15 15 16 15 15 15 

Number of chatting 

contents 
548 42 758 355 254 732 544 0 386 518 

Percentage of 

chatting contents 

13.2

5% 
1.02% 18.32% 8.58% 6.14% 17.69% 13.15% 0% 9.33% 12.52% 



 

number of different kinds of chat contents for each person and normalize them. Finally, we set up 

weights for each classification of chat contents respectively. Each person will get a score by 

summing products of weight and normalized number of different kinds of chat contents. We 

classify people into low, medium and high engagement in the collaboration according to their 

score, which is represented by 0, 1, 2 respectively. 

As for chat contents, through the classification model we divided them into three or two 

categories: high, medium and low or high and low. We use chat contents from 1th, 6th, 10th team 

as the training dataset and we label these chat contents by hand. Then we use the classification 

model to train these two cases separately and obtain their accuracy, recall and F1-scores, which 

are shown in Table 3. 

Model Number of kinds Accuracy Recall F1-score 

Classification Model 2 0.706 0.687 0.669 

3 0.770 0.772 0.753 

Table 03: Results of comparison of three-kind and two-kind Case 

As shown in Table 3, the three-kind classification model is better than two-kind model on 

accuracy, recall and F1-score. So, we choose the three-kind model. Then, we explain the detailed 

process and results of this case. We divide chat contents into three categories--high, medium and 

low, with counts 2478, 949 and 710. After that, we divide them into three period of time so there 

are three categories in each session. According to the result of classification of chat content of 

each session, we get the number of chat contents of each participant and then normalize the 

number, which means the scores is equal to the count of chatting contents in each team divided 

by the count of chat contents of each participant in this team. Finally, we get the result of each 

participant in each session through the weight of chat contents of different kinds and the 

threshold. The final results of participants’ classification is shown in Table 4. 

 High Medium Low 

Session1 47 45 46 

Session2 47 18 73 

Session3 47 3 72 

Table 04: Results of participants’ classification 

There are 47 participants of high status, 46 participants of medium status and 45 participants of 

low status in session 1. There are 47 participants of high status and 91 participants of medium 

status in session2. There are 47 participants of high status and 75 participants of medium status in 

session 3. Because there are no chat contents of team 7 in session 3, the number of participants in 

session 3 is smaller than other two sessions. 

4.4. Estimation results 

4.4.1. Selecting the number of states  

The first step in estimating the model is choosing the number of states by model selection 

measures. Greene and Hensher (2003) suggest to use Bayesian Information Criterion (BIC) to 

compare models with different states and decide which number is better. 

                                                  (1) 



 

In the equation, Size is the total number of parameters in the model and Par is the quantity of 

participants. We estimated 2 models imposing a different number of states at a time. Two states 

includes low and high social loafing. Three states include low, medium and high social loafing. 

These two scenarios are run separately and we get each of their log-likelihood values. The results 

are shown in Table 5. According to the BIC, the three-state model performs better. 

 

 

 

Model Number of 

states 

Log-likelihood BIC Variables 

estimate 

HMM 2 -534.835 -703.809 12 

3 -431.591 -638.619 21 

Table 05: Comparison of models 

4.4.2. Model estimates 

Table 6 is the A matrix in model mentioned before which summarizes the estimation results for 

the three intent states. At the beginning, most participants (77.48%) are in the medium social 

loafing state and one quarter of the whole participant group (21.96%) is in the low state. High 

state is extremely ‘sticky’ (98.44%), that is once a participant moves up to the high social loafing 

state, he/she is more likely to keep this state, while low state is ‘sticky’ (75.15%) as well. There is 

69.61% probability of jumping from medium state to high state if a jump occurs, while jumping 

from medium to high is only at 4.46% probability. 

t - t+1 Low state Medium state High state 

Starting probabilities 21.96% 77.48% 0.56% 

Transition 

Matrix 

Low state 75.15% 0.26% 24.59% 

Medium state 4.46% 25.93% 69.61% 

High state 1.08% 0.48% 98.44% 

Table 06: Estimates for the three-state model 

Table 7 is the B matrix in model mentioned before which shows the possibility of a participant’s 

engagement in the team work under different social loafing state.  Participant with high, medium 

or low social loafing sate are more likely to keep low (75.03%), medium (40.85%) or high 

(89.63%) engagement in a team work respectively. On the other hand, about 40.4% participants 

with medium social loafing state tend to be involved in the low engagement in the collaboration 

and 23.07% participants with high state tend to behave high engagement. 

t Low engagement Medium engagement High engagement 

Low state 4.07% 6.30% 89.63% 

Medium state 40.4% 40.85% 18.75% 

High state 75.03% 1.90% 23.07% 

Table 07: Emission matrix 

4.4.3. Regression analysis 



 

We use a linear regression model to analyze how an individual’s centrality influences the 

quantity and quality of messages sending of him/her when they are in different types of social 

loafing state. 

                                        (2) 

                                                                              (3) 

The results for the impact of centrality on messages sending are in Table 8. From the intercept 

estimates, we find as expected that individuals with low social loafing state are more likely to 

send more messages with higher quality. However, the centrality will only positively and 

significantly influence the quantity and quality of knowledge shared by individuals with medium 

social loafing state. 

Variables High social 

loafing state 

Medium social 

loafing state 

Low social 

loafing state 

Quality(Qi) 

Quantity(Qt) 

Qi Qt Qi Qt Qi Qt 

interception -0.06 -0.17 -0.01 0.41 0.76 1.08 

centrality 0.38 1.52 0.19* 1.99* 0.35 0.97 

Table 08: Results of linear regression model 

5. Discussion 

Figure 3 shows the social loafing state transition probability. At the beginning, nearly 77.48% 

individuals are in medium social loafing state. And there is a 69.61% probability of jumping from 

medium state to high state if a jump occurs, which means it is more likely for them to perform 

even worse. Most social loafing behaviors occur for team members feel that they cannot get 

rewards matching their efforts. If their efforts are not discriminated from others’, they may tend 

to conduct social loafing behaviors. In the dataset in our study, members in one team will get 

similar final scores given by the instructor, which doesn’t adequately reflect different efforts. For 

this reason, most participants in medium social loafing state choose to jump to higher state and 

spend less effort. 

Figure 4 shows the knowledge contribution behavior that are chose by participants when they are 

in different social loafing states. If someone contributes more quantity of and more relevant 

knowledge, he/she is more engaged in the mobile collaboration. Individuals with high, medium 

and low social loafing will have low, medium and high engagement respectively. 

Individuals who are in the central position of the network will have stronger relationships with 

others which can increase the amount and diversity of resources that they can get (Stam & 

Elfring, 2008). Thus, they can learn more about their tasks and get help from other members 

easily, finding opportunities to make a contribution.  

As suggested by the result of regression model, only participants with medium social loafing 

state can be positively influenced by network centrality. The reason is that both individuals with 

high and low state are very sticky. For those in the high state, the task exceeds their current 

ability. Increasing their connections with others hardly strengthens their ability. For those in low 

state, they are capable enough so that they do not need information from others, or they are 

already in the central position. Individuals in medium state are self-motivated to study and 



 

improve their ability but they also need help from others, that’s why improving their network 

centrality helps them contribute more knowledge with greater quality. 

 

6. Implications and Conclusion 

In this paper, we develop a machine learning model to infer social loafing evolution in the mobile 

collaboration. We get available data from social media platforms and questionnaires. We identify 

three-state model, which reveals internal structures underlying social loafing dynamics. We also 

examine the transitional possibility of participants between 3 states and the how network 

centrality influences the quality and quantity of knowledge contributed by individuals in different 

social loafing state. 

98.44%

75.15%

25.93%

Low state

Medium 

state
High state

Social 

loafing

 

Fig 3: Social loafing state transition 
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Fig 4: Probability of engagement under different social loafing state  

For theoretical implications, we infer the evolution of social loafing states which is regarded as a 

static notion previously. We unify the contradictory results about the influence of social capital 

on knowledge contribution by examining the moderating role of social loafing.  

For practical implications, this study helps companies re-organize a mobile collaborative team to 

exchange knowledge better. In a mobile collaboration in real industry, most team members are in 

medium social loafing state, and it is much easier to motivate them to behave better compared to 

motivating those with high social loafing state. For those who are in medium state, improving 

their centrality in the network and giving them opportunities to build connections with other 

members help them contribute more knowledge with greater quality. In terms of the design of 



 

social media within company, functions of inferring individuals’ social loafing state by 

knowledge contribution behaviors should be added. After the identification, the software can 

automatically recommend team members to those individuals in medium social loafing state, 

which can help them get more connections and move them from the edge to the center in the 

social network. 

There are two main limitations of this study. First, the text analysis is not automatic enough. In 

the future research, we will increase the quantity of data and choose other text classification 

model such as SVM and so on. Through this way, we can compare the different results calculated 

by different models to choose the best one.  Secondly, we only consider the eigenvector centrality 

which measure one’s interaction with others in their team. In the future, we tend to consider other 

types of centrality, such as interactions with skilled individuals within team or interactions with 

others out of the team.  
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