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ABSTRACT 

Community structure identification has been an important research area for biology, physics, information systems, and social 
sciences for studying properties of networks representing complex relationships. Lately, Genetic Algorithms (GAs) are being 
utilized for community detection. GAs are machine-learning methods that mimic natural selection. However, previous 
approaches suffer from some deficiencies: redundant representation and linearity assumption, that we will try to address.  in. 
The algorithm presented here is a novel framework that addresses both of these above issues. This algorithm is also flexible 
as it is easily adapted to any given mathematical objective. Additionally, our approach doesn’t require prior information 
about the number of true communities in the network. Overall, our efficient approach holds potential for sifting out 
communities representing complex relationships in networks of interest across different domains. 
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BACKGROUND 

Networks are popular modeling tools for researchers in diverse fields because they can be used to represent many real world 
systems. For example, applications in the field of Information Systems include large social or preference-based customer 
association networks for e-commerce, where users with common behaviors could be identified easily to target different 
advertisements and provide personalized product recommendation tools (Chen et al. 2017). In the area of cybersecurity, 
network packets may be modeled into a graph-based model and clustering would potential help identify malicious packets; 
the cybersecurity strategies themselves can be analyzed using a network model (Kolini 2017).  

Nodes in a network are generally connected to one another in a way that represents certain pairwise relationships of a given 
domain. One of the most important network properties to investigate is the community structure. Community structure 
captures collections of nodes with high densities of pairwise relationships, resulting in the formation of distinct communities, 
which are also referred to as clusters. These clusters can reveal information about the interactions of the central forces of the 
system being modeled and how those forces affect the physical objects represented by nodes.  

The problem of accurately detecting these communities is a pressing issue to extract useful information from big data, with 
numerous different community detection approaches proposed. Some available software, such as DBSCAN (Ester et al. 
1996), are algorithmic, with no precise objective function defined, while others aim to optimize specific objectives. Several 
objective functions are proposed for community detection in the literature, such as K-Means clustering (Jain 2010) and 
Newman-Girvan’s Modularity (Newman 2006). A basic assumption of K-Means is that clusters have a relatively spherical 
shape, resulting in incomplete exploration of structural properties of the network and partitioning of elongated clusters. 
Modularity is a quantitative definition used for assessing the partitioning of a network into clusters that does not assume 
sphericity. Note that identification of optimal solutions for either Modularity or K-Means is NP-hard and consequently 
approximation algorithms are utilized. 

Some of the widely used approximation algorithms include Lloyd’s algorithm (Lloyd 1982) for K-Means and Genetic 
Algorithms (GAs) for Modularity (Newman 2006; Tasgin et al. 2007). GAs are randomized search and optimization 
techniques guided by the principles of evolution and genetics. The solution space is expressed in the form of chromosomes 
(strings of genes). A collection of chromosomes forms a population. Initially, a random set of solutions is generated, 
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represented by a population of chromosomes. These chromosomes are then evaluated using a fitness function, which is the 
objective function, to assess the quality of the solutions. Then, the breeding cycle to evolve a new generation of the 
population is performed by using crossover and mutation operators. Traditional crossover operators use a single crossover 
point and all the genes after that selection point are exchanged between chromosomes. This exchange of genes results in 
introducing bias towards maintaining linearity of structures, which is not a property of clusters. Another problematic issue 
with existing algorithms is the representation of cluster information by labelling the vertices, leading to redundancy. Figure 1 
shows an example network with three clusters represented by six distinct encodings. This representation clearly is not 
efficient since it expands the search space by an order of k! 

 
Figure 1. Methods of representing chromosomes. (a) The table shows six distinct ways that the clustering indicated by colors in the 
network (b) could be encoded when labelling nodes with cluster numbers. In general, if there are k clusters, then there would be k! 
possible chromosomes representing identical clustering of the nodes. (c) ERBGA’s mapping of an example chromosome to edges. 

OVERVIEW 

In this paper, we introduce an efficient and flexible GA which addresses the linearity and ambiguous labelling issues. Our 
approach provides four important contributions. First, our novel two-level method of representing chromosomes drastically 
reduces redundancies in the solution space generated by other GA approaches. Second, it is optimized for reduced memory 
consumption with increasing complexity of the networks, resulting in an efficient execution environment. Third, our 
approach is flexible and can be readily adapted for any arbitrary objective function. We demonstrate this Efficient Reduced-
Bias GA (ERBGA) using Modularity. We compare our outcomes with previously published results for benchmark instances 
(Li & Liu 2016). 

METHODS 

Our algorithm is based on the optimization of a given community detection objective function using a set of distinct islands 
of populations that evolve over a predefined number of generations (iterations). An initial population of chromosomes is 
randomly created, and subsequent populations are produced, using selection across evolved chromosomes. ERBGA is 
generational, where we maintain two populations, one corresponding to the ith and the other to the i+1th generation. 

Network model. The network is defined by an undirected graph G = (V, E) where V is a set of vertices and E is a set of edges 
connecting those vertices. A list of nodes adjacent to 𝑢 is known as an adjacency list and is denoted by Adj(u) = (list of end 
points of edges incident to vertex u) and vice-versa.  

We generate unique edge identification eid using a function j (u, v) = V * u + v, where u and v are the endpoints. Furthermore, 
we define a sorted list, EdgeList of unique edge IDs generated using j. This list is used to map chromosomes back to the 
network structure. To decode eid back to edge representation E (u, v) we use an inverse function j’. j’(eid) = (eid / V, eid % V). 

Chromosome representation. In our approach, clustering is defined by a set of removed edges RE = {e1, e2, …, ep} when 
removed from the network breaks the network to separate it into clusters. These separated components indicate the current 
clustering of the network. We define a dual layer representation of the chromosomes for representing the solution space. In 
contrast to the traditional approach of using cluster assignment numbers (Figure 1a), this representation serves us in 
identifying ‘physically’ unique individuals after breeding.  

Each chromosome is a bit string with a sequence of 0’s and 1’s. The length of each chromosome is equal to the number of 
edges in the network. Let the chromosome c: {b1b2b3…bE}, where bi of 0 denotes that the edge is present in the clustering 
scheme and 1 denotes that the corresponding edge is removed. That is to say that the removed edges are used to physically 
separate the clusters in the current clustering scheme. The edges are mapped from chromosomes to edges using EdgeList, 
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where j’(EdgeListi) for each bit at index i in the chromosome. Figure 1(b) shows an example chromosome mapped to the 
edges using the EdgeList. 

Initialization. GA is initialized by randomly generating Population Size (Psize) bit strings of size equal to the number of edges 
in the network. The Random Population Rate (Prate) ensures the minimum percentage of 1’s in the chromosome.  

Elitism. Elitism refers to moving the best Erate * Psize individuals from previous generation to the next unaltered. This strategy 
guarantees that the solution quality doesn’t decrease from one generation to the next.  

Selection. Selection is used to select chromosomes that participate in the crossover and mutation breeding phases. We use a 
Tournament-based selection operator, where a predefined number of chromosomes are arbitrarily selected and put into the 
Tournament Pool (TPool). The two chromosomes with highest fitness move to Crossover phase.  

Non-Linear Crossover. Because nodes in clusters are not linearly ordered, for each pair of chromosomes derived via 
Tournament Selection, we arbitrarily generate a list of crossover points and single genes are exchanged only at these points. 
This approach breaks the linearity of traditional crossover and facilitates exploration of remote regions of the search space. 

Mutation. Following crossover, we arbitrarily mutate some bits in the chromosomes, resulting in adding/removing the 
corresponding edge in the network. Mutation rate Mrate varies in the range from 0 to 1. 

GA Islands. ERBGA uses islands of populations evolving independently (Whitley et al. 1999), which helps in exploring 
more regions of the search space as each population may follow unique trajectories into the search space. We use the best of 
all islands to benchmark the results.  

Efficiency. We have implemented our algorithm using C++ and, as shown in the Results section, our implementation is 
computationally efficient. It also scales well for complex networks as we use a 3-dimensional bit array to represent 
chromosomes. Effective size of a G (V, E) dataset with population size 𝑃#$%&  is: 𝑃#$%& × (𝐸/8	 +	¬(𝐸	%	8)), where ¬ is the 
logical negation operator.  

Fitness Function. ERBGA is flexible for acceptance of any community detection-based objective for evaluating the fitness 
of chromosomes. Also, the algorithm doesn’t require prior information about the number of clusters in the network. If a 
situation arises when a particular number of clusters is desired, this can typically be accomplished by building the value into 
the objective function. 

RESULTS 

The experiments were run on an i7 2.1GHz machine running Linux with 8GB of RAM. Using the parameters shown in 
Figure 2(a), we tested four standard benchmarking datasets, namely Zachary’s Karate club (Zachary 1977), Dolphin Social 
Network (Lusseau et al. 2003), American College Football (Girvan & Newman 2002), and US Politics Books (Krebs 2004). 
We also tested two networks, 660k and Omni, that have arisen in our research of genetic markers associated with 
Alzheimer’s Disease. Finally, in order to test the scalability of our approach, we tested a network comprised of email 
correspondence, namely Enron (Agarwal et al. 2012). 

Accuracy. We compare our results with the fitness reported for the four benchmark instances in the paper by Zhangtao Li (Li 
& Liu 2016) and CC-GA (Said et al. 2018). ERBGA results in achieving 0.420 for Karate Club and 0.465 for Dolphin Social 

 
Figure 2. Parameters and results. (a) Parameters used to run the experiments using ERBGA. (b) Memory consumption and computation 

time trends as the nodes and edges scale. (c) Memory consumed by the program with respect to the scaling of nodes. 
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Network in contrast to the reported best values for Karate 0.419 and Dolphin 0.526, respectively. Currently, our approach 
does not perform well with US Politics Books and Football, and we are in the process of analyzing the results for those 
datasets.  

Efficiency. ERBGA computation time and memory usage are shown in Figure 2(b). To visualize the amount of memory 
consumed by the runs we plot trend in Figure 2(c). Memory is efficiently allocated when nodes scale. Our implementation 
can run huge datasets like Enron email network, which consists of 78,849 nodes and 286,379 edges, with less than 1GB of 
memory. 

CONCLUSION 

A key issue for the use of GAs for community detection is a meaningful chromosomal representation that properly captures 
phenotypic characteristics in an efficient manner. Previous efforts have resulted in the search space being expanded by an 
order of k!, where k is the number of communities. Here we introduce a novel representation that uses the removal of edges to 
define each possible clustering configuration exactly once in the search space. One drawback of our current implementation 
is that the dense networks may have many edges removed yet remain connected, thus representing a single cluster. This 
behavior was observed for the US Politics Books, Football, 660k, Omni and Enron datasets. These results suggest 
development of a strategy to increase contextual removal of edges rather than removing them randomly. We are 
experimenting with methods to improve performance by considering the degree of vertices that are adjacent to a candidate 
edge. If the edge is incident to a vertex with high degree, the probability of selecting the edge for removal would be reduced. 
This strategy may help to break up large dense networks into distinct clusters. Also, computing more islands and possible 
migration of chromosomes between islands could be beneficial to increase accuracy. It should be noted that these trials can 
be run in parallel and it may be possible to compute large numbers of populations, given an adequate number of processors.  

A broad issue for community detection is the selection of a meaningful objective function. The choice is dependent upon the 
characteristics of the particular network of interest. In some domains, sphericity is suitable, while in other domains, such as 
genetic associations with complex diseases, such a bias could be highly problematic. ERBGA flexibly allows any arbitrary 
objective, providing a convenient tool for comparing alternative functions.  

Another issue for community detection using GAs is the enforcement of linearity for the chromosomes during crossover 
operations. ERBGA breaks up the linearity by randomly selecting genes. Also, our approach is efficient for both time and 
space complexity. Overall, ERBGA addresses key biases introduced by previous approaches and holds potential for future 
research as well as commercial applications. 
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