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Abstract
Taking a newly collected large data set on the TCP

connection termination latency in GPRS networks we try
to identify the underlying statistical distribution. The
data extends the observed latencies to large time scales
necessitating a heavy-tail distribution. Many distribu-
tions work well for the main body of the data. However,
the heavy tail of the distribution benefits from mixing
different statistical distributions. We compare several
distributions and find that the double Pareto-lognormal
distribution and the generalized Beta distribution of the
second kind fit the data equally well.

1. Introduction

Many phenomena – technical or natural – exhibit rare
events at a much higher rate than the normal distribution:
At least one of the tails of the probability distribution
follows a power-law. Examples range from personal in-
come [1], insurance claims, wildfires, gene mutation or
network size [2] (see e. g. [3] for empirical examples
and [4] for a historical perspective).

We add the network connection termination latency
to these examples. We have collected a large data set
of time intervals between two successive server-side log
entries in the German automatic toll system. The log
entries correspond to the successful acknowledgment of
the toll data received by the central server followed by
the successful termination of the TCP connection (see
figure 1). Without further access to the system we as-
sume that at least a total of four TCP packets – one pair
each to close the two-way connection from each end –
are exchanged between the onboard unit (OBU) and the
central server. All OBU types are equipped with 2G
GSM modems up to class 10.

We recorded a total of more than 300 million data
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Figure 1: Sequence diagram of the TCP/IP communi-
cation between an on-board unit (OBU) and the central
system.

points for more than 1 000 000 OBUs operating within
the reach of one of the German mobile networks. To our
knowledge the largest data set in the literature contains
12 million data points [5], collected in seven (unnamed)
countries by passive monitoring of the connection setup.
While passive monitoring – i.e. with access to the core
network – has many advantages, the connection start ter-
minates by default after three seconds thereby severely
curtailing the observation of rare events.

In this article we take the collected data and try to
identify statistical distributions that are able to describe
the observed behavior. To that extent we limit ourselves
to the overall data set, i.e. all events regardless of the
OBU type or mobile network. We note in passing that
the data exhibits several interesting features (e.g. peaks
in the probability density function corresponding to the
retransmission of one packet or even the exponential
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Figure 2: Cumulative distribution function of the connec-
tion termination latency. Observed data (bold line) com-
pared with two statistical distributions: Double Pareto-
lognormal (dashed) and generalized Beta distribution of
the second kind (thin line).

back-off algorithm) which are not the topic of this ar-
ticle.

Figure 2 summarizes the data set as the cumulative
distribution function (CDF) of all successful connection
termination events (bold line in figure 2). Some con-
nections will not terminate successfully e.g. only after
reaching a timeout – the most pronounced occurring af-
ter about 70 seconds. In our analysis we disregard these
(few) connections and scale the data accordingly (i.e.
the CDF of the successful connection termination events
reaches up to 99.68 %).

The next sections introduce two different statisti-
cal distributions that we find to describe the data: The
double Pareto-lognormal distribution in the next section
and the generalized Beta distribution of the second kind
thereafter. The technical implementation is almost triv-
ial with some notable exceptions mentioned in section
4. The results are summarized in section 5.

2. Double Pareto lognormal distribution

The Pareto distribution is the typical power-law dis-
tribution but lacking the ability to model the body of an
empirical distribution. Many possible distributions are
listed in the literature (e.g. [6] summarizes the appli-
cation of several distributions to empirical data). For
practical purposes we choose only distributions having
a closed form for the PDF and CDF preferentially using
only readily available functions. For the Pareto distribu-
tion this leads naturally to the double Pareto-lognormal

distribution.
The double Pareto-lognormal distribution (dPlN, [7],

[8]) is a mixture of two heavy-tail Pareto distributions
and a lognormal distribution modeling the body of the
distribution. Consequently it requires four parameters
– the power-law scaling of the two Pareto-like heavy-
tails (α, β) and the mean and variance of the lognormal
distribution (ν, τ2).

From a practical point of view the dPlN distribution
has the considerable advantage of having a closed form
for the probability density function (PDF) fdPlN (equa-
tion 1) and the CDF FdPlN (equation 3) depending on
four parameters (α, β for the power-law tail behavior
and ν, τ for the body of the distribution, x > 0):

fdPlN(x, α, β, ν, τ) =
αβ

α+ β
·(

x−α−1A(α, ν, τ)Φ

(
log x− ν − ατ2

τ

)
+

xβ−1A(−β, ν, τ)Φc
(

log x− ν + βτ2

τ

))
(1)

with A(α, ν, τ) = eαν+α
2τ2/2. (2)

The equations are taken from the online version of [7]
and corrected for typographical and arithmetic errors as
noted in the appendix of [9]. A correct derivation of the
CDF is given in [10] albeit with the wrong sign in the
final result. The CDF FdPlN should read:

FdPlN(x, α, β, ν, τ) = Φ

(
log x− ν

τ

)
−

βx−α

α+ β
A(α, ν, τ)Φ

(
log x− ν − ατ2

τ

)
+

αxβ

α+ β
A(−β, ν, τ)Φc

(
log x− ν + βτ2

τ

)
(3)

where Φ is the CDF of the normal distribution:

Φ(x) =
1

2

(
erf(x/

√
2) + 1

)
and Φc(x) = 1− Φ(x).

3. Generalized Beta distribution of the
second kind

While the dPlN-distribution is often mentioned as the
better choice its direct competitor seems to be the much
older generalized Beta distribution of the second kind
(GB2): First developed in the 1980s [11] (for recent
summaries see [12], [13] or [14]) it also uses four pa-
rameters (α, β, p, q all of which we choose to be posi-
tive) and produces a power-law tail.
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The GB2-distribution is a generalization that reduces
for specific parameters to a number of well-known dis-
tributions: The beta distribution of the second kind, the
generalized gamma distribution, two different Burr type
distributions, the lognormal, Weibull, gamma, Lomax,
F , Fisk, Rayleigh, χ2, half-normal, half-Student’s t,
exponential and log-logistic distributions ([11], [15]).
Equation 4 lists the PDF fGB2 of the GB2-distribution
for x > 0 depending on the Beta function B(p, q):

fGB2(x, p, q, α, β) =

|α|
βB(p, q)

(
x

β

)αp−1 (
1 + (x/β)α

)−p−q
. (4)

The CDF FGB2 also exists in a closed form, de-
pending amongst others on the incomplete Beta function
Ix(a, b) which is available in the GNU Scientific Library
[16]. In our calculations we choose to implement FGB2
through numerical integration using the appropriate rou-
tines from the GNU Scientific Library well aware of the
resulting performance degradation.

In addition we checked the more recent 5-parameter
beta distribution given in [15] that introduces a fifth
parameter 0 ≤ c ≤ 1, coinciding with the GB2-
distribution for c = 1 and the GB1-distribution for
c = 0. Parameter fitting did not result in a significant
improvement and lead to a value of c = 0.9999 indicat-
ing that the GB2-distribution is the best choice within
the 5-parameter beta distribution.

4. Technical implementation

Distribution fitting is a common task and many
tools and libraries are readily available. It is – seem-
ingly – trivial to implement the PDF and CDF of a
given distribution. However, the extent of the heavy
tail challenges the numerical evaluation of rather com-
mon functions (see section 4.1). For parameter fitting
we use an optimization library implementing a multi-
dimensional simplex-algorithm (section 4.2) and risk re-
maining stuck in a local optimum.

4.1 Function evaluation

It is straightforward to compute both distributions
numerically: Besides elementary functions, the dPlN-
distribution depends only on the error function (which
is available in the GNU C math library). The GB2-
distribution in turn depends on the Beta function
B(a, b) = Γ(a)Γ(b)/Γ(a + b) that can either be com-
puted numerically using the GNU Scientific Library [16]
or with the Γ-function available in the C math library.

In practice the straightforward implementation of

Table 1: Results of the parameter fitting.

model parameters
GB2 α = 166.413, β = 344.026
∆ = 13.979 p = 0.0115766, q = 0.0089585
dPlN α = 1.51172, β = 1.85461
∆ = 13.390 ν = 5.85733, τ = 0.150105

the formulas is problematic for numerical calculations.
Double precision floating point arithmetic [17] does not
favor e.g. the multiplication of a term very close to zero
(e.g. taking the Gaussian in equation 2) with another
term asymptotically approaching 1. Lacking a numer-
ically stable implementation of fdPlN and FdPlN we no-
tice that the trivial implementation of the functions er-
roneously yields zero for one of the addends in the ad-
dition apparently without impacting the result. Looking
at fGB2 the GSL Scientific Library provides a numerical
implementation of the Beta function. However, in our
case the computation ceases to return non-zero values
for small function values of fGB2. As a consequence,
fGB2 was zero for x > 26000 ms using the built-in dou-
ble precision floating point arithmetic.

As a workaround we implemented both distributions
using the multi-precision software floating point library
MPFR [18]. For the dPlN-distribution we dynamically
increase the precision until all addends in the sum are
non-zero – in rare cases leading to several hundred bit
floating point precision calculations. In contrast a mod-
erate increase in precision (96 bit floating point) is suf-
ficient for the computation of the GB2-distribution. Of
course, the consequence is a large performance degrada-
tion by more than a factor of 1 000.

4.2 Parameter fitting

To find the best parametrization we fit the PDFs fdPlN
and fGB2 to the empirical PDF (scaled to the proportion
of successful connection terminations and using a 20ms
binning to hide short-term network effects). To empha-
size the heavy-tail we choose to calculate the weighted
difference (rather than its square) between the empirical
and mathematical distribution (see equation 5):

∆(α, β, ν, τ) =

xmax∫
xmin

dxx
∣∣∣fempirical(x− xmin)−

fdPlN(x− xmin, α, β, ν, τ)
∣∣∣. (5)

The fitting is limited to the region x ∈ [xmin, xmax]
and the integral is replaced by a sum over the points in
time as given by the empirical data. We choose the first
data point at the time difference xmin where the number
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Figure 3: Histogram of the empirical probability density
function with 20ms binning and the best parameter fits
for the dPlN- and GB2-distribution (dashed and solid line
respectively).

of events in the 20ms bin exceeds 25 for the first time. In
the example this leads to xmin = 1170ms. The upper
limit is set to xmax = 20 000ms. Note that the weight
function in equation 5 is x (i.e. not x−xmin). The same
setup is used to fit fGB2.

For the parameter fitting we take the numerical im-
plementation (either with hardware or software float-
ing point arithmetic) and subject it to the minimiza-
tion algorithm provided by the GSL Scientific Library
(using a multi-dimensional simplex-algorithm with ran-
domized initialization). To avoid getting stuck in a lo-
cal minimum we restart the minimization repeatedly
with slightly changed initial conditions until no further
progress is seen within a fixed number of restarts.

The results are given in table 1: For practical pur-
poses the fitness is indistinguishable for the GB2- and
dPlN-distribution. Both distributions give a very similar
asymptotic power-law behavior with a leading exponent
of −αq − 1 = −2.491 for fGB2 and −α − 1 = −2.512
for fdPlN.

The data has not a single, smooth peak probability:
Looking at the PDF the histogram in figure 3 we see the
rapid onset followed by at least three pronounced peaks
before the onset of the heavy-tail. The histogram uses
20ms binning to suppress the dynamics due to the mo-
bile network and the probability density is normalized
to 1ms binning (the maximum time resolution of the log
data). The existence of several peaks is no surprise since
the data set encompasses four different OBU types op-
erating in three national mobile networks and it is well
known that the latency strongly depends e.g. on the type
of mobile unit used [19].
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Figure 4: pp-plot comparing the empirical data and the
best parameter fits for the dPlN- and GB2-distribution
(dashed and solid line respectively) by plotting the com-
plementary CDFs (Φc

model,Φ
c
empirical). A perfect fit would

produce the diagonal line (shown to guide the eye).

Splitting the data into distinct groups as suggested
by the OBU type and mobile network operator does not
improve the quality of the fit but would introduce many
more fit parameters – clearly deteriorating the quality of
the model [20].

5. Connection termination latency

Looking at the CDF in figure 2 we note that the prob-
ability remains close to zero up to approx. 1200ms ris-
ing quickly thereafter, a picture consistent with the data
observed in [5]. Comparing the latency with the data
reported in [5] we deduce that four TCP packets are ex-
changed in our example. However, without access to
the real-world system or network monitoring we cannot
confirm this directly.

Both the CDF and the PDF (figures 2 and 3 respec-
tively) show a good match between the empirical data
and the dPlN- and GB2-distributions. The visibility of
the remaining differences depends (strongly) on the vi-
sualization used: Whereas the CDF tends to hide differ-
ences, they are obvious in the histogram.

Looking at the tail of the distribution we choose the
pp-plot of the complementary CDFs (see figure 4), i.e.
plotting (

Φcmodel(x),Φcempirical(x)
)

for x ∈ [1170ms, 70000ms]. An ideal fit would pro-
duce a diagonal line (shown in figure 4 to guide the eye)
where the coordinate (1,1) corresponds to the start of the
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Figure 5: Probability density function (normalized to 1ms time resolution) for the TCP connection termination latency
in 2G mobile networks. Empirical data (gray dots using 20ms binning) and fitted dPlN- and GB2-distributions (dashed
and solid lines, fitted in the interval [1170 ms; 20 000ms]).

CDF (i.e. Φ = 0) moving to the lower left corner with
increasing CDF. Both the dPlN- and GB2-distribution
(dashed and solid line respectively) leave the body of
the distribution with moderate deviations in the vicinity
of the cumulated probability of p = 0.9 to follow the
power-law tail closely up to p = 0.999. Beyond that
cumulated probability the fitted distributions no longer
trace the empirical data.

One advantage of the GB2-distribution is that it en-
compasses many well-known distributions as special
cases – that are automatically ruled out with the param-
eters fitted in our case. For some distributions we have
cross-validated this by independently fitting the gam-
ma-, lognormal-, Weibull- and Fisk-distribution. In ad-
dition we checked the Pareto- and Dagum-distributions,
all to no avail.

A log-log-plot of the PDF is a simple way to visu-
ally verify the power-law behavior. Figure 5 gives the
probability density function (again normalized to time
intervals of 1ms, the maximum time resolution of the
log data). The empirical data is shown as grey dots us-
ing a 20ms binning across the whole time range. As
the latency increases the number of events per bin de-
creases, easily noticeable by the increasing ’noisiness’
of the data. Even with more than 300 million events in
the data set, at a latency of 70s the number of events per
20ms bin is getting so small that it fluctuates between
approx. 10 and 30 events. 70s after the peak in proba-
bility a connection timeout is triggered and reduces the
event rate by almost a factor of 100 (not shown).

Both fitted distributions describe the tail equally
well: fGB2 with a slope of −2.491 (dashed line) and
fdPlN with a slightly steeper slope of −2.512 (solid line
in figure 5). While the overall trend is well reproduced,

several notable features are present in the empirical data.
Close to 7s the first pronounced peak is visible (and
present in any combination of OBU type and mobile net-
work operator), we interpret it as the successful retrans-
mission of one TCP packet. The following three peaks
at 11s, 23s and 47s are an artifact of the older OBU types
and match the spacing of an exponential-back-off algo-
rithm potentially used in the calculation of retransmis-
sion timeouts. It remains to be seen whether sufficient
events can be collected to search for the next peak close
to 100s.

6. Summary

We have gathered a large data set on the connec-
tion termination latency in a 2G mobile network. Fitting
the data with well-known statistical distributions we find
that the dPlN- and GB2-distributions fit the data equally
well, both requiring four parameters. Fitting the GB2-
distribution automatically excludes many other statis-
tical distributions as candidates since they are special
cases of the GB2-distribution.

The empirical data shows that the power-law tail ex-
tends to time scales of almost 100 times the average con-
nection termination latency before a connection timeout
reduces the event rate drastically. The fitted distributions
suggest that the latency distribution would otherwise ex-
tend even further.

In practice the fitted distributions apply to network
simulation models and allow the simple integration of
network-wide TCP latencies for 2G mobile networks,
e.g. in our model of the German automatic toll system.
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