
Flexible Ambiguity Resolution and Incompleteness Detection
in Requirements Descriptions via an Indicator-Based

Configuration of Text Analysis Pipelines

Frederik S. Bäumer
University of Paderborn, Germany

fbaeumer@hni.upb.de

Michaela Geierhos
University of Paderborn, Germany

geierhos@hni.upb.de

Abstract

Natural language software requirements
descriptions enable end users to formulate their wishes
and expectations for a future software product without
much prior knowledge in requirements engineering.
However, these descriptions are susceptible to linguistic
inaccuracies such as ambiguities and incompleteness
that can harm the development process. There is a
number of software solutions that can detect deficits in
requirements descriptions and partially solve them, but
they are often hard to use and not suitable for end users.
For this reason, we develop a software system that
helps end-users to create unambiguous and complete
requirements descriptions by combining existing
expert tools and controlling them using automatic
compensation strategies. In order to recognize
the necessity of individual compensation methods
in the descriptions, we have developed linguistic
indicators, which we present in this paper. Based on
these indicators, the whole text analysis pipeline is
ad-hoc configured and thus adapted to the individual
circumstances of a requirements description.

1. Introduction

In software product management, one of the key
challenges is the communication between stakeholders,
especially end users, and software developers about
desired software functions. These activities usually
occur within the initiation phase of the project. This
requirements analysis step is an investigation into the
information and processing needs (i.e. functional
and non-functional requirements) of the prospective
end users. Current techniques for the requirements
analysis step often use high-level language to precisely
document user requirements, but NL makes it easier
for (non-expert) stakeholders to participate in the
requirements analysis process [1, 2]. Nevertheless,
NL requirements descriptions may be considered
as challenging because they are often inconsistent,

ambiguous and incomplete [3, 4, 5, 6]. In particular,
the occurrence of ambiguity and incompleteness is often
discussed in literature [7]. There exist wide-ranging
solutions (e.g. quality checklists, reading techniques,
software tools) to assist stakeholders in unambiguously
expressing and completing their individual software
requirements. However, some methods such as quality
checklists or reading techniques are more qualified
for advanced use because they have to be trained
first. In contrast, the aforementioned software tools
should automatically point out mistakes in requirements
descriptions, at least on paper. Existing tools are
often designed for expert use only and are therefore
limited to the detection of one or two specific deficits
(e.g. lexical ambiguity). All solutions assume
that all stakeholders are aware of possible quality
deficits and are willing and even able to improve
potential deficits in their NL requirements. We do not
follow this assumption, because we do not necessarily
ascribe the technical understanding of ambiguity and
incompleteness resolution in software requirements to
end users. This results in two research questions that
we address in this work: (1) How can the detection
and compensation of inaccuracies in requirements
descriptions be made possible without user interaction?
This fundamental question mainly concerns the state of
research, which is currently dominated by identification
approaches and hard-to-use special NL processing. (2)
How do NL indicators have to be designed to allow
a flexible and automatic compensation of inaccurate
requirements descriptions?

To answer these research questions, we have to
create text analysis pipelines, which take over the
main optimization steps for end users. On the one
hand, we have to select and combine appropriate
(existing) tools for the detection and compensation of
structural, referential and lexical ambiguity as well as
for incompleteness in requirements descriptions. On the
other hand, our goal is to automate the selection, control
and coordination process of the necessary software
modules as well as to implement an end-user-friendly

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50609
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5746

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


text optimization system for NL requirements. In this
paper, we introduce quality features that trigger the
ad-hoc configuration of the applicable text analysis
pipeline for the detection and compensation of possible
verbal deficits. Moreover, we want to provide insight
into the development process of our prototype.

The structure of the paper is as follows: In Section 2,
we give an overview of the related work, before
we present the research methodology (cf. Section 3).
Then we present the possible software modules of our
requirements compensation pipeline (cf. Section 4),
which is automatically configured as needed by applying
the NL quality triggers defined in Section 5. We briefly
present our current prototype in Section 6, then show
and discuss our evaluation results in Section 7 before
we finally conclude in Section 8.

2. Current State of Research

A lot of research has already been conducted in the
field of software-assisted detection and compensation
of deficits in NL requirements descriptions. In
addition to linguistic expert solutions, which focus on
a single linguistic inaccuracy phenomenon (e.g. lexical
ambiguity), there are other approaches that can identify
and resolve several deficits in requirements descriptions.
Even mixed techniques exist that can detect different
forms of ambiguity [8, 9] or, for example, ambiguity
together with incompleteness [10, 11, 12]. An overview
of existing approaches on disambiguation in the context
of NL requirements is given by Husain and Beg [13]
as well as Shah and Jinwala [14]. Shah and Jinwala
[14] distinguish between different approaches based
on pre-selected tools (e.g. Stanford Parser), chosen
methods (e.g. rule-based, ontology-based, etc.) or
the degree of automation. A further comprehensive
overview of existing approaches on disambiguation in
the requirements domain is given by Bano [15], which
focuses on empirical work. All of these surveys show
that a large number of existing software solutions only
concentrate on the recognition of deficits. Consequently,
the compensation remains the task of the stakeholders.

While Bajwa et al. [9] (NL2OCL) as well as Umber
and Bajwa [4] (SR-Elicitor) focus on highly specialized
approaches, Lami [16] (QuARS) and Bucchiarone et al.
[17] (QuARSexpress) present techniques that deal with
a variety of verbal inaccuracies. But these methods also
differ in their goals: While QuARS aims at detecting and
highlighting as many deficits as possible in requirements
descriptions, NL2OCL and SR-Elicitor concentrate on
their detection and compensation. Furthermore, these
tools do not expect user interaction in contrast to RESI
[10, 18]. RESI takes requirements descriptions as

graphs and checks them for linguistic deficits. If any
problems are found, RESI will start a user dialog. In
this case, not only the problematic texts are shown to
the user, but also explicit compensation suggestions for
each type of deficit. This requires linguistic resources
that enable the rule-based detection of deficits on the
one hand and provide additional information for the
compensation on the other hand. Unfortunately, only
few resources for NL requirements exist [19]. There is
especially a lack of end-user requirements collections.
Moreover, the compensation for incompleteness often
relies on exhaustive resources, which are hard to
get. Although there are compensation approaches
for incomplete software requirements [20, 21], the
underlying resources are still limited in scope.

Huertas and Juarez-Raminez [11, 22] introduce
NLARE, a combined approach that concentrates on
functional requirements and recognizes ambiguity,
incompleteness and “atomism”. The authors define
ambiguity as gradable adjectives. NLARE detects
incompleteness by using a matching-approach based on
given questions (“Who”, “What”, “Where”, “When”).
Besides, “atomism” is an additional quality feature,
which means that a single sentence only contains one
requirement. For natural language processing (NLP),
NLARE uses the Natural Language Toolkit (NLTK)
and some regular expressions. In addition to the
sentence boundary detection and tokenization, a spelling
correction is included. As output, users get remarks
such as “The requirement is ambiguous because it
contains the word ‘earlier’ and ‘later”’ [11]. No further
compensation hints or assistance is provided.

Just for the record, the above-mentioned methods
have never been joined within a holistic approach for
the improvement of requirements descriptions, although
individual methods take account of several deficits:
For example, the popular tool QuARS covers a whole
range of ambiguities and other quality features (e.g.
readability). However, a compensation does not take
place, so high user interaction is at least necessary
during the compensation step. User interaction is also
a key factor influencing the performance and acceptance
of the entire processing and is therefore considered as a
possible bottleneck.

Stakeholders and especially end users expect their
requirements to be entirely applied, but are not
able to identify and compensate linguistic deficits
in requirements descriptions on their own. A
computer-aided but still interactive compensation
process would be tedious. Furthermore, it cannot
be ensured that end users detect any ambiguity or
incompleteness even so it could be very frustrating.
With this said, for example, NL2OCL would be

Page 5747



an alternative that focuses on the compensation of
lexical and syntactic ambiguity and does not rely on
user interaction at all. However, NL2OCL needs
additional structured information (e.g. class diagrams)
for the disambiguation, which are most likely not
available. Although there are approaches which can
detect and/or compensate several forms of ambiguity
and incompleteness, they do not fit stakeholder’s needs,
because they do not foresee user interaction and a high
degree of automation. Actually, the link between the
deficits in requirements descriptions and the appropriate
compensation methods is still missing.

Here, we present our current work on indicators
and strategies to combine existing NLP approaches to
compensate linguistic deficits in NL requirements. We
will show that our linguistic quality features are able
to identify deficits in requirements descriptions and that
they assist in configuring the compensation pipeline as
needed. Thus, the selection of necessary compensation
techniques no longer has to be carried out by the end
user. Moreover, the number of further user inquiries
is minimized, which is good for the performance and
reduces the cognitive load of users.

Linguistic quality features for requirements
descriptions are also known as “Requirements smells”.
They are mainly developed by Fermer et al. [23] and are
very similar to the well known “Code smells”, which
are indicators for bad source code [24]. Fermer et al.
[23] define requirements smell as “an indicator of a
quality violation, which may lead to a defect, with a
concrete location and a concrete detection mechanism”.

3. Research Methodology

The research methodology in this paper follows the
seven principles of design science reseach according to
Hevner et al. [25], which serve as the basis for the design
of an IT artefact. Therefore, design science research
must deliver an IT artefact as a result (design as an
artifact). Here, we deliver a software tool as IT artefact.
Furthermore, we provide a methodical contribution to
the software-supported improvement of user-defined
requirements descriptions by dealing with ambiguity
and incompleteness. This is also determined by
further design science principles (research contribution,
problem relevance). An IT artifact must always be
related to a problem and contribute to the research field.
In our case, we tackle the problem of the inaccurate
requirements description and make a contribution to
their automatic correction. Therefore, an IT artifact
has to be evaluated with regard to the benefit (design
evaluation). For this reason, we evaluate our developed
quality indicators on real requirements descriptions.

Preprocessing Information
extraction

Lex. Disambiguation?

Syn. Disambiguation?

Incompleteness
compensation?

Ref. Disambiguation?

Result
structuring

Figure 1. Sample configuration of an indicator-based

text analysis pipeline

Since design science must work methodically in the
design as well as in the evaluation of the artifact
(research rigor), we see our contribution as a response
to the existing state of research. Although, we proceed
until we find a suitable solution (design as a search
process), only the final solution is presented in this
paper. In addition to the IT artifact itself, the results
are also comprehensible for a non-technical audience
(communication of research).

4. Requirements Processing Pipeline

The goal of our system is the automatic detection
and compensation of ambiguity and incompleteness in
NL software requirements. For this purpose, existing
disambiguation and completion techniques are jointly
applied on a requirements description if necessary.

Our system configures the adequate text analysis
pipeline and interprets the resolution results, before
the optimized requirements description is shown to
the end users. In this regard, the identification
of suitable detection and compensation methods for
lexical, syntactic and referential ambiguity, as well as
incompleteness in NL requirements is a preliminary,
but crucial step. The configuration, execution and

Page 5748



Character
normalization

Text cleansing

Grammar /
Spell checking

Sentence
detection

Language
identification

Figure 2. Preprocessing workflow

monitoring of the resulting NLP pipeline is done by
a so-called compensation strategy, which allows to
reconcile results and benefits from some synergy effects
between the applied methods. That is, for example,
semantic information can be obtained from syntactic
disambiguation.

In this paper, we pursue an automatic strategy that
is self-configuring and embedded in a predefined
processing context. For this purpose, with
high performance in mind, the development of
context-sensitive indicators is necessary for ad-hoc
configuration of an NLP pipeline that can handle
individual deficits in requirements descriptions
(cf. Figure 1). Before applying this strategy, text
preprocessing and information extraction are conducted
in order to filter requirement-related statements
(so-called on-topic information).

In other words, the text analysis pipeline includes
a preprocessing step (cf. Figure 2) that is responsible
for the overall text-quality improvement. But it also
provides valuable information that the indicators need
for NLP pipeline configuration (e.g. whether a sentence
is on- or off-topic). The on-/off-topic classification is
done by REaCT [26], which is also used for information
extraction purposes. REaCT is able to recognize main
semantic information bits such as “role” or “action”
(so-called process words) in requirements descriptions.
The enrichment with semantic information is crucial
for the whole process because the compensation of
incompleteness relies on the structured output produced
by this task. Furthermore, each module such as the
referential disambiguation is triggered by its respective
requirements quality indicator.

5. NL Requirements Quality Indicators

How can imprecise statements be detected? We can
test for quality violations in requirements descriptions
by applying so-called linguistic triggers that can spot
ambiguous or missing information bits. These indicators

emerge at a certain passage in a text and trigger at
least one detection and compensation module (e.g.
incompleteness compensation). In the following, the
already-implemented triggers are presented, starting
with the indicators for different types of ambiguity,
followed by the indicator for incompleteness.

5.1. Lexical Ambiguity Trigger

The lexical disambiguation aims at assigning the
correct sense to a lexeme from a set of possible readings
(after contextualization). For instance, lexical ambiguity
for a given token is triggered when more than one
reading is probable. But is it really necessary to check
all the lexemes of any requirements description for
lexical ambiguity? And are there any constraints that
could minimize the set of potential readings? Hence,
the following restrictions were made before applying
this trigger: Only tokens that are embedded in on-topic
sentences and have some semantic function within
a requirement (e.g. an action) are considered for
disambiguation in order to increase efficiency. This way,
the only non-stopwords that are disambiguated are those
that have not been classified as the semantic category
“role” or “priority”.

Given the sample NL requirement “I want to send
emails to my family” in Figure 3. In step (1), the original
sentence is kept, which is labeled with additional
semantic information in step (2) through REaCT [26].
Stopwords that have no semantic function within an
NL requirement (in this case “to”) are removed in step
(3). The same is done for lexemes categorized as “role”
or “priority” information. Subsequently, the remaining
lexemes are POS-annotated (through part-of-speech
tagging) in step (4). Here, further stopwords, based
on the recognized POS tags, are removed. Finally,
step (5) shows the remaining disambiguation candidates:
“send”, “emails” and “family”. This pre-selection
allows a look-up in a taxonomy for English such as
WordNet, which contains nouns, verbs, adjectives and
other word classes, grouped into so-called “synsets”.
By means of WordNet, we can identify all senses for
a given lexeme with its corresponding POS tag. The
lexemes “send” (as verb) and “family” (as noun) both
have eight different readings according to WordNet. In
contrast, “emails” has only one sense and therefore is
excluded from the disambiguation candidate list. For
this example, the indicator check tells us that two out of
eight lexemes are potentially ambiguous.

On the one hand, we have to decide whether all
possible readings according to WordNet are relevant,
or if further restrictions have to be made. On
the other hand, we have to clarify how reliable the

Page 5749



(5) Action Object Refinement

(4) VB NNS PRP$ NN

(3) I want to send emails to my family

(2) Role Priority Action Object Refinement Refinement

(1) I want to send emails to my family

Figure 3. Triggered lexical ambiguity

indicators perform in requirements descriptions: Is the
suspicion of ambiguity for two tokens suf-ficient to
apply lexical disambiguation in the NLP pipeline? Since
the underlying candidates have already been prefiltered
and are definitely part of the core statements (e.g. “send”
= action), it is sufficient to know that at least one of
these lexemes is ambiguous and that it could lead to
misinpretations in further processing steps. The task
of indicators is not to conduct disambiguation but to
trigger its integration into the respective NLP pipeline.
For now, it will suffice to store the information that
several readings are available and that a given lexeme
is considered as ambiguous.

5.2. Syntactical Ambiguity Trigger

In the following, we describe how to spot
coordination and prepositional phrase (PP) binding
ambiguity. Since these types of syntactic ambiguities
are structural phenomena, syntactic patterns are needed
as indicators.

Indicator for coordination ambiguity. Here,
conjunctions and syntactic patterns are used as triggers.
On the one hand, coordination ambiguity occurs when
a modifier (“JJ”) refers to coordinated nouns. Then
it is not clear if only the noun (“NNS”) before the
conjunction (“CC”) or even the one after is modified
(cf. example A). This kind of coordination ambiguity
can be detected by hand-crafted patterns (e.g. “JJ
NNS CC NNS”). On the other hand, it appears when
concatenating nouns with conjunctions (cf. example B).
In both cases, the existence of conjunctions (e.g. “and”
and “or” [27, 28]) is crucial and is checked before
patterns are applied on each sentence.

(A)
I use crawlers and spiders and users report me
PRP VBP NNS CC NNS CC NNS VBP PRP

(B)
I want to send large emails and tasks
PRP VBP TO VB JJ NNS CC NNS

As shown in the sample requirements descriptions
A and B, both types of the coordination ambiguity
are triggered by at least one conjunction (cf. example
A). Therefore, this is used as a preselection criterion.
Following this, sentences containing at least one
conjunction are checked for further conjunctions. The
indicator detects potential coordination ambiguity if at
least two conjunctions are given (cf. example B).

Indicator for PP binding ambiguity. Here, we
adapt existing syntactic patterns for detecting potential
ambiguity, such as “V NP PP” [29, 30]. This
pattern, for example, identifies prepositional phrases
(“PP”) succeeding nominal phrases (“NP”) in object
position. The necessary syntactic information can be
generated by Shallow Parsing approaches, which are
considered to be very performant and reliable [31].
However, the question arises whether this pattern can
be further restricted in terms of high performance.
One restriction could be, for example, the exclusion of
certain prepositions that are not regarded as (highly)
ambiguous. According to an English dictionary,
there exist many prepositions1. The most common
preposition “of” is also one that is not considered to
be ambiguous because it often represents a genitive
and is therefore bound to an NP. In almost all cases,
it can be excluded as a disambiguation candidate [34].
Therefore, “of” is ignored as an ambiguous preposition
(“PREP”) within this work. For this reason, we added
the restriction that a PP does not have to be introduced
by “of” (“V NP PP” | PREP 6= “of”).

5.3. Referential Ambiguity Trigger

A possible approach for the detection of referential
ambiguity would be to check whether pronouns are
given in requirements descriptions. Since pronouns
are also called “substitutes” of nouns (antecedents)
[35], they might be assigned to the wrong antecedent
[36]. This test can be conducted by POS tagging or
by means of word lists. One restriction, to ensure

1DELA contains 124 prepositions, Davies [32] lists 196 and
Essberger’s list [33] contains 150 with the reference that there are
many more prepositions.

Page 5750



performance, is to concentrate only on high-frequent
pronouns. However, pronouns have not proved a recipe
for referential ambiguity detection. For this reason, a
trigger is necessary, that considers both contextual and
semantic information.

(1) Action Object Refinement

I want to send emails with large files

(2) Action Object

I want to import them from an external hard drive

Figure 4. Triggered referential ambiguity

The example, shown in Figure 4, contains an extract
of a sample requirements description consisting of two
consecutive sentences. In sentence (2) the personal
pronoun “them” is used as object, whereas it remains
unclear what its antecedent is: It could be the object
or the semantic category of the refinement in sentence
(1) because both nouns are plural. This illustrates
that indicators for referential ambiguity should be
determined within a whole discourse because antecedent
and direct anaphoric reference can occur in the same or
in consecutive sentences. In Figure 4, the pattern “NNS
+ NNS + them” is sufficient for disambiguation. It can
be extended by considering antecedents in singular, as
in “I want to send an email with an attachment. It is
a very large one.”. Substituting “them” by all possible
POS tags for pronouns, the new pattern (“NN (S) +
NN (S) + PRP”) covers more occurrences of referential
ambiguity. However, the pattern works only if either
two antecedents occur in the same sentence together
with a pronoun or in the preceding sentence. Here, it
is assumed that the last-mentioned antecedent is usually
meant.

5.4. Incompleteness Trigger

We define incomplete requirements descriptions
as named software requirements that are imprecise
because of missing information bits (so-called
partially incomplete requirements). Therefore, our
developed trigger considers existing information to
draw conclusions on how to fill in the missing slots.
For incompleteness detection, we pursue the approach
by Bäumer and Geierhos [20], which mainly relies on
Semantic Role Labeling (SRL) and on a fine-grained
analysis of the Predicate Argument Structure (PAS)
of requirements. This detection and compensation of
incompleteness is difficult because the lack of data
has to be examined. For this reason, the existing
semantic categories, which were annotated by REaCT,

are essential clues for the incompleteness trigger.
As the first indicator for incompleteness, the

semantic category “action” will be investigated. Since
process words are the content words of a requirement,
they cannot be reliably compensated without context
information. We therefore treat a sentence without
process words as off-topic and ignore it in later
processing steps. In most cases, the off-topic
classification has already labeled requirements without
process words as irrelevant during the preprocessing
step.

In addition to process words, the semantic categories
for “role”, “component”, and “object” are taken
into account by this indicator. These categories
usually represent the arguments of a predicate used in
requirements descriptions. In general, the subject of an
NL requirement is occupied by the role or component,
although it is sufficient to find one of the two semantic
categories in a sentence. Since incompleteness can be
assumed for a missing subject, the indicator adds the
module for incompleteness compensation to the text
analysis pipeline. However, the lack of the subject could
have already been identified during the requirements
extraction steps (by REaCT), especially when end users
provided a list of process words, as the following
example shows: “IRole want to writeAction, readAction
and sendAction e-mailsObject”. Here, the requirement
extraction correctly assigns the subject (“I”) to the
predicate “write”, but ignores it as an argument for
“send”.

Another argument of the predicate can be filled
by the semantic category “object”, such as “e-mails”
in the given example. In contrast to the subject
and the predicate, the object is not required to make
up a well-formed sentence. However, it is often
necessary to create a meaningful and even precise
sentence. Additionally, it is assumed that an object is
an obligatory requirements description if the process
word is expressed by a transitive verb. Therefore, a
requirement is considered as incomplete if the semantic
category “object” is missing.

6. Prototype

We implemented the developed triggers (Section 5)
for the automatic compensation strategy by including
all necessary compensation modules in a prototype in
order to test the functionality of our concept. Our
software system allows end users to formulate their
own requirements for a desired software in NL and
automatically checks the descriptions for various errors
and weaknesses (i.e. ambiguity and incompleteness)
and compensates them.

Page 5751



The idea is that end users write their software
requirements in NL and send them to our system
(via a provided web interface). Then, the system
conducts preprocessing and applies the aforementioned
indicators in order to configure the automatic
compensation strategy. This strategy covers not only
the compensation of ambiguity and incompleteness
but also the transformation of the detected functional
requirements into a structured output (cf. Figure 5).
Figure 5 shows that even off-topic information is filtered
during the preprocessing step and complex sentences
are simplified to guarantee a more robust processing
(English translations are not part of the user interface
of the prototype). The output is given in simplified
language, which provides the end user a quick overview
to check if all functional requirements have been
recognized by the system. Here, two perspectives are
supported: the user’s view (e.g. user, administrator)
and the system’s view (e.g. application, system). The
controlled syntax for the user view is, for example,
defined as “As a <role>, <pronoun> <priority>
<action> <object>” and is based on Dollmann’s
information extraction template [37].

Figure 5. Results (semi-structured requirements)

However, this is a simplified view for end users
to understand the processing result and, if necessary,
to correct it. There are also additional user interfaces
which, for example, explain the applied word sense
disambiguation (cf. Figure 6) or explain which quality
indicators were found in the provided requirements
description. These additional interfaces are necessary
for debugging. An example for the word sense
disambiguation is the token “colleagues”, which can
also mean “Woollahra Colleagues Rugby Football Club”
within the category “Rugby union teams in Sydney”.
Furthermore, an wrong disambiguation can occur
through incorrect POS tags. Through the visualization,
users can recognize errors and finally correct them

manually, even if this should affect a minimum of cases.
Moreover, the system has an XML interface that

provides the (on-topic) functional requirements as
well as the results of the various disambiguation and
compensation steps for further processing purposes.

Figure 6. Result explanation (lexical ambiguity)

7. Evaluation

The indicators described in Section 5 rely on
linguistic features and patterns determined by different
tools and resources (e.g. POS tagger, WordNet).
Individual tools as well as the interaction of several
modules can lead to errors (incorrect or undetected
indicators). A high indicator reliability is achieved if the
detected necessity of a compensation is predominantly
correct. Then the underlying tools have a low error rate
for the previously defined features and patterns.

7.1. Results

In the following, it is necessary to evaluate how
often errors occur during the indicator detection. This
can be understood as a binary classification problem:
Either features (e.g. for lexical ambiguity) are or are
not given in a requirements description. The accuracy
of the indicators could be determined by how many
requirements descriptions were correctly classified in
relation to all descriptions:

a =
correct classified descriptions

all checked descriptions
(1)

Conversely, this means that the error rate f can be
described by f = 1 − a. However, this measure of the
accuracy or error rate is to be regarded as superficial,
since there are four possible result combinations (true
positive, true negative, false positive, false negative), of

Page 5752



which up to now only two are considered (true positives
and negatives).

However, it is not always easy for human readers
to identify characteristics reliably, so three (guided)
evaluators evaluate the requirements. The result of
the software system is then compared with the joint
result (majority decision) of the evaluators. Based on
400 randomly selected requirement descriptions from
our requirement corpus, Table 1 represents the result
combinations for each indicator.

TP TN FP FN
INC 171 120 34 75
REF 156 170 11 63
SYN 142 179 22 57
WSD 400 0 0 0

Table 1. Frequency of result combinations

As noted before, a “global value is not sufficient for
the [...] accuracy” [31], since how reliably the methods
work is also of interest. At this point, two established
evaluation measures are used: Recall (r) and Precision
(p).

r =
TP

TP + FN
(2)

p =
TP

TP + FP
(3)

In order to increase the meaningfulness of the
evaluation values, the harmonic mean is used in the
following (β = 1).

Fβ = (1 + β2) · p · r
(β2 · p) + r

(4)

At this point, it should be kept in mind that
each compensation method added to the compensation
pipeline due to incorrect indicator decisions (equivalent
to false positives) has only a negative influence on
the total running time, whereas the non-consideration
of an indicator (missing compensation) leads to a
deterioration in the result (false negatives) because the
necessary compensation does not take place. As shown
in Table 1, this currently affects several indicators. At
this point, it is recommended to modify the F-score with
respect to the higher weighting of the Recall to take the
influence of false negatives more into account (β = 2).
Table 2 shows the results of the different evaluation
measures.

7.2. Discussion

The evaluation results show that the indicators
work in principle. However, it also shows that
errors can occur, which can lead to insufficient
processing pipelines. In particular, Table 2 shows
that the compensation of incompleteness (INC) has the
lowest F2-score, which is due to a low recall. In
contrast, referential disambiguation (REF) is equivalent
to incompleteness with regard to the recall, but has
a much higher precision (∆ 0, 1). This has only a
low effect on the F2-score (∆ 0, 03). At this point, a
difference in the accuracy can be detected (∆ 0, 09). The
syntactic disambiguation (SYN) has a high precision
and a good recall. Only the lexical disambiguation
appears to be more accurate, but this is not necessarily
true: Lexical ambiguity can be determined on the
basis of individual tokens, but the indicators attest
ambiguity and incompleteness for whole requirements
descriptions. It is therefore very likely that at least one
ambiguous token is correctly detected as ambiguous in
all descriptions and thus both recall and precision are
very good. Of course there are also errors in the WSD
indicator application: Errors are caused, for example, by
missing entries in the underlying resources. The WSD
indicator thus represents a special case.

As a constraint of this evaluation, it must be
stated that the requirements descriptions are real-life
specifications that are limited to a few sentences each.
This is mainly due to the fact that more extensive
requirements are not accessible [19]. Our collection
of NL requirements is, to the best of our knowledge,
one of the largest available [38, 39]. However, the
design of our prototype should be scalable to enable
the processing of requirements of complex real-life
systems. The underlying design of the prototype is
not limited in the scope of the requirements. In
the case of very extensive requirements, performance
problems of the individual components may occur. This
has to be evaluated in future research. Furthermore,
domain-specific characteristics such as vocabulary is
conceivable, which is not covered by currently used
linguistic resources. Moreover, list of requirements
which can not be classified into a syntactic structure, are
conceivable and currently supported only rudimentarily.
In future work, we want to enhance the robustness of our
indicators and continue resource development.

8. Conclusion

Within this work, we provide a methodical
contribution to the software-supported improvement of
user-defined requirements descriptions by dealing with

Page 5753



Accuracy Recall Precision F1-Score F2-Score
INC 0.73 0.70 0.83 0.76 0.72
REF 0.82 0.71 0.93 0.81 0.75
SYN 0.80 0.71 0.87 0.78 0.74
WSD 1.00 1.00 1.00 1.00 1.00

Table 2. Evaluation results of the indicator quality

ambiguity and incompleteness. We were able to show
that the detection and compensation of inaccuracies
in requirements descriptions can be made possible
without user interaction (Research question 1) by
developing a flexible processing pipeline. Therefore, we
presented our data-driven linguistic indicators that allow
to optimize the common text analysis pipeline by means
of a needs-oriented analysis. The ad-hoc configuration
of the compensation pipeline minimizes user interaction
as well as program runtime. We were able to show
that rule-based indicators already cover the linguistic
phenomena well and that existing resources can be used
(Research question 2). This procedure is reliable and
performant, especially because the actual compensating
components are not used in the indicator stage.

Acknowledgments

This work was partially supported by the German
Research Foundation (DFG) within the Collaborative
Research Centre On-The-Fly Computing (SFB 901).

References

[1] M. Geierhos, S. Schulze, and F. S. Bäumer, “What did
you mean? Facing the Challenges of User-generated
Software Requirements,” in Proceedings of the 7th
ICAART (S. Loiseau, J. Filipe, B. Duval, and J. van den
Herik, eds.), Special Session on PUaNLP 2015,
(Lissabon, Portugal), pp. 277–283, SCITEPRESS –
Science and Technology Publications, 2015.

[2] A. Ferrari, F. dell’ Orletta, G. O. Spagnolo, and S. Gnesi,
“Measuring and Improving the Completeness of Natural
Language Requirements,” in Requirements Engineering:
Foundation for Software Quality (C. Salinesi and
I. van de Weerd, eds.), vol. 8396 of LNCS, pp. 23–38,
Essen, Germany: Springer, 2014.

[3] V. Pekar, M. Felderer, and R. Breu, “Improvement
Methods for Software Requirement Specifications: A
Mapping Study,” in Proceedings of the 9th QUATIC,
(Guimarães, Portugal), pp. 242–245, IEEE, Sept. 2014.

[4] A. Umber and I. S. Bajwa, “Minimizing Ambiguity
in Natural Language Software Requirements
Specification,” in Proceedings of the 6th ICDIM,
(Melbourn, Australia), pp. 102–107, IEEE, Sept. 2011.

[5] E. Kamsties, “Understanding Ambiguity in
Requirements Engineering,” in Engineering and
Managing Software Requirements (A. Aurum and
C. Wohlin, eds.), pp. 245–266, Berlin / Heidelberg,
Germany: Springer, 2005.

[6] M. Osborne and C. K. MacNish, “Processing Natural
Language Software Requirement Specifications,” in
Proceedings of the 2nd International Conference on
Requirements Engineering, (Colorado Springs, CO,
USA), pp. 229–236, IEEE, Apr. 1996.

[7] QRA Corp, “Leveraging natural language processing
in requirements analysis: How to eliminate over half
of all design errors before they occur.” IEEE Spectrum
Whitepaper, 2017.

[8] S. F. Tjong and D. M. Berry, “The Design of SREE – A
Prototype Potential Ambiguity Finder for Requirements
Specifications and Lessons Learned,” in Requirements
Engineering: Foundation for Software Quality (J. Doerr
and A. L. Opdahl, eds.), vol. 7830 of LNCS, pp. 80–95,
Berlin / Heidelberg, Germany: Springer, 2013.

[9] I. S. Bajwa, M. Lee, and B. Bordbar, “Resolving
Syntactic Ambiguities in Natural Language Specification
of Constraints,” in Computational Linguistics and
Intelligent Text Processing (A. Gelbukh, ed.), vol. 7181
of LNCS, pp. 178–187, Berlin / Heidelberg, Germany:
Springer, 2012.

[10] S. J. Körner, RECAA - Werkzeugunterstützung in der
Anforderungserhebung. PhD thesis, KIT, Karlsruhe,
Germany, Feb. 2014.

[11] C. Huertas and R. Juárez-Ramı́rez, “NLARE, a Natural
Language Processing Tool for Automatic Requirements
Evaluation,” in Proceedings of the CUBE International
Information Technology Conference, CUBE ’12, (New
York, NY, USA), pp. 371–378, ACM, 2012.

[12] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami,
“The Linguistic Approach to the Natural Language
Requirements Quality: Benefit of the use of an
Automatic Tool,” in Proceedings of the 26th Annual
NASA Goddard Software Engineering Workshop,
(Greenbelt, MD, USA), pp. 97–105, Nov. 2001.

[13] S. Husain and R. Beg, “Advances in Ambiguity less
NL SRS: A review,” in Proceedings of ICETECH 2015,
(Coimbatore, TN, India), pp. 221–225, Mar. 2015.

[14] U. S. Shah and D. C. Jinwala, “Resolving Ambiguities
in Natural Language Software Requirements:
A Comprehensive Survey,” SIGSOFT Software
Engineering Notes, vol. 40, pp. 1–7, Sept. 2015.

[15] M. Bano, “Addressing the Challenges of Requirements
Ambiguity: A Review of Empirical Literature,” in
Proceedings of the 5th International Workshop on
EmpiRE, (Ottawa, ON, Canada), pp. 21–24, IEEE,
August 2015.

[16] G. Lami, “QuARS: A Tool for Analyzing
Requirements,” Technical Report ESC-TR-2005-014,
Carnegie Mellon University, Sept. 2005.

[17] A. Bucchiarone, S. Gnesi, A. Fantechi, and G. Trentanni,
“An Experience in Using a Tool for Evaluating a Large
Set of Natural Language Requirements,” in Proceedings
of the 2010 ACM Symposium on Applied Computing,
SAC ’10, (New York, NY, USA), pp. 281–286, ACM,
2010.

Page 5754



[18] S. J. Körner and T. Brumm, “Natural Language
Specification Improvement with Ontologies,”
International Journal of Semantic Computing, vol. 03,
no. 04, pp. 445–470, 2010.

[19] W. F. Tichy, M. Landhäußer, and S. J. Körner,
“nlrpBENCH: A Benchmark for Natural Language
Requirements Processing,” in Multikonferenz Software
Engineering & Management 2015, Mar. 2015.

[20] F. S. Bäumer and M. Geierhos, “Running out of
Words: How Similar User Stories Can Help To
Elaborate Individual Natural Language Requirement
Descriptions,” in Proceedings of the ICIST 2016
(G. Dregvaite and R. Damasevicius, eds.), CCIS,
(Druskininkai, Lithuania), pp. 549–558, Springer, Oct.
2016.

[21] M. Geierhos and F. S. Bäumer, “How to Complete
Customer Requirements: Using Concept Expansion for
Requirement Refinement,” in Proceedings of the 21st
NLDB (E. Métais, F. Meziane, M. Saraee, V. Sugumaran,
and S. Vadera, eds.), (Manchester, UK), June 2016.

[22] C. Huertas and R. Juárez-Ramı́rez, “Towards
assessing the quality of functional requirements
using english/spanish controlled languages and context
free grammar,” in Proceedings of the 3rd International
Conference on DICTAP, pp. 234–241, SDIWC, July
2013.

[23] H. Femmer, D. M. Fernndez, S. Wagner,
and S. Eder, “Rapid Quality Assurance with
Requirements Smells,” Journal of Systems and
Software, 2016. In Press, Corrected Proof. See:
http://www4.in.tum.de/˜femmer/works/
2016-requirements_smells-jss.pdf.
Accessed: 27.08.2016.

[24] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts, Refactoring: Improving the Design
of Existing Code. Object Technology Series,
Addison-Wesley, 1999.

[25] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
science in information systems research,” MIS Quarterly,
vol. 28, pp. 75–105, Mar. 2004.

[26] M. Dollmann and M. Geierhos, “On- and
Off-Topic Classification and Semantic Annotation of
User-Generated Software Requirements,” in Proceedings
of the Conference on EMNLP, Nov. 2016.

[27] D. M. Berry, E. Kamsties, and M. M. Krieger,
“From Contract Drafting to Software Specification:
Linguistic Sources of Ambiguity – A Handbook. Version
1.0.” https://cs.uwaterloo.ca/˜dberry/
handbook/ambiguityHandbook.pdf, 2003.
Accessed: 16.11.2015.

[28] F. Chantree, A. Kilgarriff, A. De Roeck, and
A. Willis, “Disambiguating Coordinations Using Word
Distribution Information,” in Proceedings of Recent
Advances in Natural Language Processing, (Borovets,
Bulgaria), Sept. 2005.

[29] E. Agirre, T. Baldwin, and D. Martinez, “Improving
Parsing and PP attachment Performance with Sense
Information,” in Proceedings of the Annual Meeting of
the ACL, (Columbus, OH, USA), pp. 317–325, ACL,
June 2008.

[30] K. Nadh and C. Huyck, “Prepositional Phrase
Attachment Ambiguity Resolution Using Semantic
Hierarchies,” in The 9th International Conference on
Artificial Intelligence and Applications, (Innsbruck,
Austria), ACTA Press, Jan. 2009.

[31] K.-U. Carstensen, C. Ebert, C. Ebert, S. Jekat,
R. Klabunde, and H. Langer, eds., Computerlinguistik
und Sprachtechnologie: Eine Einführung. Heidelberg:
Spektrum Akademischer Verlag, 3 ed., 2010.

[32] M. Davies, “Word frequency data – Corpus
of Contemporary American English.” http:
//www.wordfrequency.info/free.asp?s=y,
2016. Accessed: 08.09.2016.

[33] J. Essberger, English Prepositions List – 150
Prepositions. Cambridge, UK: Englishclub.com,
2012.

[34] A. Ratnaparkhi, “Statistical Models for Unsupervised
Prepositional Phrase Attachment,” in Proceedings of the
17th COLING - Volume 2, COLING ’98, (Stroudsburg,
PA, USA), pp. 1079–1085, ACL, 1998.

[35] J. Dittmann and R. Thieroff, Richtiges Deutsch leicht
gemacht. Bertelsmann Wahrig, Gütersloh / München:
Wissenmedia, 2009.

[36] IEEE, ISO/IEC/IEEE 29148 – Systems and software
engineering – Life cycle processes – Requirements
engineering. New York, NY, USA: IEEE, Dec. 2011.
ISO/IEC/IEEE 29148:2011(E).

[37] M. Dollmann, “Frag die Anwender: Extraktion
und Klassifikation von funktionalen Anforderungen
aus User-Generated-Content,” master thesis, Paderborn
University, Paderborn, Mar. 2016.

[38] F. S. Bäumer, Indikatorbasierte Erkennung und
Kompensation von ungenauen und unvollständig
beschriebenen Softwareanforderungen. PhD thesis,
University of Paderborn, 2017.

[39] F. S. Bäumer, M. Dollmann, and M. Geierhos, “Studying
software descriptions in sourceforge and app stores for
a better understanding of real-life requirements,” in
Proceedings of the 2nd ACM SIGSOFT International
Workshop on App Market Analytics (F. Sarro, E. Shihab,
M. Nagappan, M. C. Platenius, and D. Kaimann, eds.),
pp. 19–25, ACM, September 2017.

Page 5755


